Biodiesel Production From Calophyllum Inophyllum Using Base Lewis Catalyst

https://doi.org/10.22146/ajche.49547

Lailatul Qadariyah(1*), Donny Satria Bhuana(2), Raka Selaksa(3), Ja'far As Shodiq(4), Mahfud Mahfud(5)

(1) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember. Kampus ITS Sukolilo Surabaya 60111, Indonesia
(2) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember. Kampus ITS Sukolilo Surabaya 60111, Indonesia
(3) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember. Kampus ITS Sukolilo Surabaya 60111, Indonesia
(4) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember. Kampus ITS Sukolilo Surabaya 60111, Indonesia
(5) Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember. Kampus ITS Sukolilo Surabaya 60111, Indonesia
(*) Corresponding Author

Abstract


The search for renewable alternative energy must be developed, one of which is biodiesel. Seed Calophyllum inophyllum has a fairly high oil content of about 71.4% by weight, has great potential when used as raw material for making biodiesel. The purpose of this research was to synthesize biodiesel from Calophyllum inophyllum oil through the transesterification process using base lewis catalyst with microwave assisted, comparing the performance of sodium acetate to potassium hydroxide, knowing the amount of catalyst required to obtain the best biodiesel, and knowing the optimum power in the manufacture of biodiesel, The first step of making Calophyllum inophyllum biodiesel is degumming process, then continued with esterification. The next process is transesterification, followed by purification of biodiesel. The catalysts used are CH3COONa, and KOH. From the results, Calophyllum inophyllum oil can be used as biodiesel feedstock, the best operating conditions for base catalyst at 300 W power, 1% (w/w) concentration, produced the best yield is 96% (for KOH catalyst) and 87% (for CH3COONa catalyst).

Keywords


Biodiesel, Calophyllum inophyllum,Microwave,Base Lewis Catalyst

Full Text:

PDF


References

  1. Abdullah, Rahmawati Sianipar, R.N., Ariyani, D., Nata, I.F., (2017). Conversion of palm oil sludge to biodiesel using alum and KOH as catalysts. Sustain. Environ. Res. doi:10.1016/j.serj.2017.07.002
  2. Alamsyah, R., Lubis, E.H., Siregar, N.C., Balai, (2011). Esterifikasi-transesterifikasi dan karakterisasi mutu biodiesel dari biji jarak pagar ( 33, 124–130.
  3. Atabani, A.E., (2011). Calophyllum inophyllum L . as a potential feedstock for bio-diesel production 1–8.
  4. Avhad, M.R., Marchetti, J.M., (2015). A review onrecent advancement in catalytic materials for biodiesel production. Renew. Sustain. Energy Rev. 50, 696–718. doi:10.1016/j.rser.2015.05.038
  5. British Petroleum, (2017). BP Statistical Review of World Energy 2017, British Petroleum. doi:http://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf
  6. Comyns, E.A.E., (2007). Encyclopedic dictionary of named processes in chemical technology, 3rd edn, Focus on Catalysts. doi:10.1016/S1351-4180(07)70686-4
  7. Di Serio, M., Tesser, R., Dimiccoli, M., Cammarota, F., Nastasi, M., Santacesaria, E., (2005). Synthesis of biodiesel via homogeneous Lewis acid catalyst. J. Mol. Catal. A Chem. 239, 111–115. doi:10.1016/j.molcata.2005.05.041
  8. Kirubakaran, M., Arul Mozhi Selvan, V., (2018). A comprehensive review of low cost biodiesel production from waste chicken fat. Renew. Sustain. Energy Rev. 82, 390–401. doi:10.1016/j.rser.2017.09.039
  9. Motasemi, F., Ani, F.N., (2012). A review on microwave-assisted production of biodiesel. Renew. Sustain. Energy Rev. 16, 4719–4733. doi:10.1016/j.rser.2012.03.069
  10. Muhammad, Fatih Ridho, Safetyllah Jatranti, Lailatul Qadariyah, M., (2014). Pembuatan Biodiesel dari Minyak Nyamplung Menggunakan Pemanasan Gelombang Mikro. J. Tek. Pomits 3, 154–159.
  11. Nugraha, S., (2016). Energy Outlook Indonesia. Kementerian Energi dan Sumber Daya Mineral, Jakarta Selatan.
  12. Pan, Y., Alam, M.A., Wang, Z., Wu, J., Zhang, Y., Yuan, Z., (2016). Enhanced esterification of oleic acid and methanol by deep eutectic solvent assisted Amberlyst heterogeneous catalyst. Bioresour. Technol. 220, 543–548. doi:10.1016/j.biortech.2016.08.113
  13. Puspitahati, Saleh, E., Sutrisno, Eko, (2011). Pemisahan Getah (Gum) Pada Minyak Nyamplung (Crude Calophyllum Oil ) Menggunakan Zeolit Dan Karbon Aktif Menjadi Rco (Refine Calophyllum Oil ) 1–15.
  14. Sudradjat, R., Sahirman, Suryani, A., Setiawan, D., (2010). Transesterification Process in Biodiesel Manufacture Using Esterified Nyamplung Oil (Calophyllum inophyllumL .) as Raw Material ) 184–198.
  15. Supriya B. Chavan, Yadav, M., Singh, R., Singh,V., Kumbhar, R.R., Sharma, Y.C., (2014). Production of Biodiesel from Three Indigenous Feedstock: Optimization of Process Parameters and Assessment of Various Fuel Properties. Environ. Sci. Technol. 33, 482–489. doi:10.1002/ep
  16. Trombettoni, V., Lanari, D., Prinsen, P., Luque, R., Marrocchi, A., Vaccaro, L., (2017). Recent advances in sulfonated resin catalysts for efficient biodiesel and bio-derived additives production. Prog. Energy Combust. Sci. 0. doi:10.1016/j.pecs.2017.11.001
  17. Wati, A., Motto, S.A., Satriadi, H., (2011). Ekstraksi Minyak Dari Mikroalga Jenis Chlorella Sp Berbantukan Ultrasonik 8, 1–7.



DOI: https://doi.org/10.22146/ajche.49547

Article Metrics

Abstract views : 1664 | views : 1728

Refbacks

  • There are currently no refbacks.