Optimization for Production Tert-Butyl Oleyl Glycoside Nonioic Surfactant Using Response Surface Methodology

https://doi.org/10.22146/ajche.49537

Harsa Pawignya(1*), Tutuk Djoko Kusworo(2), Bambang Pramudono(3)

(1) Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus UndipTembalang, Semarang 50239, Indonesia; Department of Chemical Engineering, University of Pembangunan Nasional “Veteran” Yogyakarta, Jl. SWK 104 Condongcatur, Yogyakarta, 55283, Indonesia
(2) Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus UndipTembalang, Semarang 50239, Indonesia
(3) Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus UndipTembalang, Semarang 50239, Indonesia
(*) Corresponding Author

Abstract


The development of surfactant production process strongly influenced by the potential use of raw materials and products that are environmentally friendly. For raw materials such as surfactants are carbohydrate-based material utilization example, glucose, which is reacted with tert-butanol, to form tert-butyl glycoside (TBG), then TBG can be esterified with oleic acid forming surfactant tert-butyl oleyl glycoside (TBOG). This study aims to obtain the optimum conditions TBOG production process of esterification reactions TBG and oleic acid catalyst the para toluene sulfonic acid using response surface method to reach optimum yield TBOG. The independent variable used is the mole ratio of TBG with oleic acid, percent of the catalyst and a temperature. Optimization results obtained optimum conditions of mole ratios of 1: 4.096; 2.33 percent of the catalyst and the temperature of 96.04 °C with a TBOG yield of 92.46%, with a TBOG content of 91.72 %. Based on the HLB value of the surfactant TBOG is 3.87, then these surfactants can be used as an emulsifier of water-in-oil.

Full Text:

PDF


References

  1. Ware,    A.M.,    Waghmare,    J.T.,    and Momin,                S.A.                (2007). Alkylpolyglycoside:          carbohydrate based   surfactant,   J.   Dispersion.   Sci.  Technol., 28, 437-444
  2. Schick,       M.J.       (1987).       Nonionic Surfactants,       Physical       Chemistry, Dekker, New York.
  3. Sela,  Y.,  Garti,  N.,  and  Magdassi,  S.  (1993).       Surface       activity       and emulsification    properties    of    new polyethyleneglycol    based    nonionic surfactants, J. Dispersion. Sci. Technol.  14, 237-247
  4. Zaijun,  L.,  Rui,  Y.,  Zhongyun,  L.,  and Fushan, Y. (2005). Synthesis of a novel dialkylaryl         disulfonate        gemini surfactant.  J.  Surfact. Deterg., 8,337-340
  5. El-Sukkary,  M.M.,  Syed,  N.A.,  Aiad,  L., and  El-Azab,  W.I.M.  (2008).  Synthesis and   characterization   of   some   alkyl polyglycosides  surfactants.    J.  Surfact. Deterg., 11, 129-137.
  6. Hill,  K.,  and  Rhode,  O.  (1999)  Sugar-based     surfactants     for     consumer products  and  technical  applications. Fett/Lipid., 101, 25-33.
  7. Rosen,   M.J.   (2004).   Surfactants   and interfacial   phenomena,   3   Ed,   John Wiley & Sons, Inc, New Jersey.
  8. Hait,  S.K.,  and  Moulik,  S.P.J.  (2001). Determination     of     critical     micelle concentration    (CMC)    ofnonionic surfactants        by        donor-acceptor interaction with lodine and correlation of    CMC    with    hydrophile-lipophile balance  and  other  parameters  of  the surfactants.  J.  Surfact.  Deterg.  4,  303-309
  9. Sembiring,  H.Br.,  (2007),  Pembuatan surfaktan       tert-butil       galaktosida melalui reasksi galaktosa dengan tert-butanol, J. Penelitian Mipa, 1, 34-37.
  10. Khuri,   A.L.,   and   Mukhopadhyay,   S. (2010).            Response            surface methodology,  Wiley  Interdiscip.  Rev. Comput. Stat. 2, 128-149
  11. Zhang, H., Liu, M., Han, S., and Wei, Y. (2013).  Optimizing  the  Extraction  of Catechin  from  Peanut  Red  Skin  Using Response  Surface  Methodology  and its  Antioxidant  Activity,  IERI  Procedia, 5, 312-320.
  12. Yemis,   O.,   and   Mazza,      G.   (2012) Optimization    of    furfural    and    5-hydroxymethyl    furfural    production from  wheat  straw  by  a  microwave-assisted  process,  Bioresour.  Technol. 109, 215-223
  13. Vuong,        Q.V.,        Golding,        J.B., Stathopoulos,  C.E.,  Nguyen,  M.H.,  and Roach,        P.D.    (2011).    Optimizing conditions    for    the    extraction    of catechins  from  green  tea  using  hot water, J. Sep. Sci. 34, 3099-3106.
  14. Raymond,   H.M.,   and   C.M.   Douglas, M.A.      (2016).      Response      surface methodology:   process   and   product optimization         using         designed experiments,  4  Ed,    John    Wiley  & Sons, Canada.
  15. Bezerra,  M.A.,  Santelli,  R.E.,  Oliveira, E.P.,   Villar,   L.S.,   and Escaleira,   L.A. (2008).            Response            surface methodology   (RSM)   as   a   tool   for optimization            in            analytical chemistry.Talanta, 76, 5
  16. Raji,  N.A.,  and  Oluwole,  O.O.  (2014). Phase        field        simulation        for recrystallization      kinetics   of   cold-drawn   0.12   wt   %   C   steel   in   full annealing, Int. J. Sci. Eng. Res. 5, 335-349
  17. Adisalamun,   D.,   Mangunwidjaya,   A., Suryani, Sunarti, T.C., and Arkeman, Y.  (2012).     Process     optimization     for production   of   alkyl   polyglycosides nonionic   surfactant   using response surface   methodology,     J.  Teknologi Industri Pertanian, 22, 51-57.
  18. Voung, Q.V., Nguyen, V.T., Thanh, D.T., Bhuyan,      D.J.,      Goldsmith,      C.D.,   Sadeqzadeh,   E.,   Scarlett,   C.J.,   and Bowyer,  M.C.  (2015).  Optimization  of ultrasound-assisted               extraction conditions    for    euphol    from    the medicinal   plant,   euphorbia   tirucalli, using  response  surface  methodology,  Industr. Crops Prod. 63,197-202.



DOI: https://doi.org/10.22146/ajche.49537

Article Metrics

Abstract views : 37 | views : 34

Refbacks

  • There are currently no refbacks.