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Abstrak
Sebagian besar diskusi dalam filsafat matematika didominasi oleh
pertanyaan-pertanyaan terkait sifat entitas dalam matematika, seperti
bilangan dan himpunan, sementara hanya sedikit perhatian diberikan
untuk matematika terapan. Padahal, matematika telah memainkan peran
yang sangat penting dalam perkembangan ilmu pengetahuan alam,
menunjukkan bahwa filsafat matematika yang ideal harus dapat
menjelaskan keefektifan luar biasa matematika dalam mendeskripsikan
dunia nyata. Dua aliran utama filsafat matematika, yaitu Platonisme dan
Nominalisme, telah mengabaikan isu tersebut dan tampaknya tidak mampu
memberikan  penjelasan memadai tentang keberhasilan penerapan
matematika dalam ilmu fisik. Akan tetapi, keterbatasan ini tidak bersifat
menyeluruh dalam berbagai pendekatan filosofis. Keterbatasan ini secara
khusus mencerminkan kelemahan Platonisme dan Nominalisme dalam
menghubungkan entitas matematika dengan realitas empiris. Artikel ini
menyelidiki filsafat matematika dari sudut pandang alternatif, khususnya
pendekatan Antroposentris oleh Steiner dan Realisme Aristoteles oleh
Franklin, yang menawarkan kerangka pemahaman yang menjanjikan
untuk memahami hubungan mendalam antara matematika dan realitas
empiris. Preferensi terhadap pendekatan alternatif ini didasarkan pada
potensinya untuk menjelaskan keberhasilan matematika sebagai alat dalam
ilmu pengetahuan, dengan menekankan penerapan matematika yang
selaras dengan konteks ilmiah. Hasil penelitian menunjukkan bahwa
Realisme Aristoteles memberikan kerangka vyang lebih kuat dalam
menjelaskan  keberhasilan — matematika sebagai aplikasi  empiris
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dibandingkan pendekatan lain. Realisme Aristoteles muncul sebagai
pendekatan yang unggul dalam filsafat matematika, dengan menempatkan
penerapan matematika sebagai inti dari pemahaman filosofisnya.

Kata kunci: filsafat matematika, matematika terapan, platonisme, nominalisme,
realisme Aristoteles.

Abstract

Most discussions in the philosophy of mathematics have been
dominated by questions concerning the nature of mathematical
entities, such as numbers and sets, while comparatively little
attention has been given to the applicability of mathematics. Yet
mathematics has played an indispensable role in the development
of the natural sciences, suggesting that any complete philosophy of
mathematics must account for its remarkable effectiveness in
describing the physical world. Two major schools of thought,
namely Platonism and Nominalism, have largely neglected this
issue and seem unable to provide a satisfactory explanation for the
tremendous success of mathematics in the physical sciences.
However, this limitation does not apply wuniversally across all
philosophical approaches. This limitation specifically reflects the
weakness of Platonism and Nominalism in connecting mathematical
entities to empirical reality. In this article, we investigate the
philosophy of mathematics from the standpoint of alternative views,
particularly Steiner’s Anthropocentric approach and Franklin's
Aristotelian Realism, which offer promising frameworks for
understanding the deep connections between mathematics and
empirical reality. This preference for alternative approaches is
justified by their potential to explain the effectiveness of
mathematics as a tool in science, emphasizing its applicability and
alignment with scientific contexts. The result of this study indicates
that Aristotelian Realism provides a more robust framework for
explaining the empirical success of mathematics compared to other
approaches. Aristotelian Realism stands out as a superior
philosophy of mathematics, centering its applicability as the core of
its philosophical understanding.
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INTRODUCTION

What is mathematics really about? Philosophers have debated
this question for millennia, yet no final agreement has been reached.
For many years, two dominant philosophies, Platonism and
Nominalism, have fiercely criticized each other, highlighting each
other's flaws. However, amid this controversy, the issue of the
applicability of mathematics has often been overlooked (Franklin,
2014a).

The extraordinary effectiveness of mathematics in describing
the natural world, as demonstrated by Newton’s use of calculus to
formulate the laws of motion and gravitation, has been called a
“miracle,” and there is still no widely accepted explanation for why
this is the case (Wigner, 1995). This situation is undesirable. The
applicability of mathematics should not be left as an unexplained
mystery but must be addressed by any complete philosophy of
mathematics. Given the central role mathematics plays in science
and technology, a credible account of its application is essential.
Philosophies that fail to explain this connection fall short of
providing a full understanding of mathematics.

Both Platonism and Nominalism struggle with this challenge.
Platonism posits that mathematical objects exist independently in a
timeless, non-physical realm (Godel, 1951). While this view
accounts for the objectivity of mathematics, it leaves a troubling gap:
how do entities beyond space and time so accurately describe the
physical world? Nominalism, on the other hand, denies the
independent existence of mathematical objects and treats
mathematics as a human invention. Yet it also struggles to explain
why human-made conventions should fit the structures of nature so
precisely (Bueno, 2013).
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As an alternative perspective, meta-mathematics explores the
formal properties and consistency of mathematical systems
themselves, such as through Godel’s incompleteness theorems,
offering a self-referential approach to understanding mathematics
beyond its empirical or ontological status. However, this
manuscript does not delve into this area in detail, as its focus
remains on applied mathematics and its philosophical implications.

The rapid evolution of artificial intelligence (AI) in 2025 has
brought mathematics to the forefront of contemporary scientific and
technological debates, offering a fresh lens through which we
examine its applicability. Recent advancements, such as Al systems
assisting in solving complex mathematical problems and proposing
new theorems, underscore mathematics” indispensable role as the
foundation of Al technologies, including machine learning and
neural networks. These systems rely on mathematical principles like
linear algebra, calculus, and probability to process data, optimize
models, and predict outcomes, yet debates persist about whether Al
can truly replicate human mathematical intuition or merely mimic
it through computational power. This raises profound philosophical
questions: if Al can outperform humans in specific mathematical
domains, does this validate Platonism’s abstract realism,
Nominalism’s human-constructed view, or suggest a new
paradigm?

As both traditional views appear inadequate when it comes to
the applicability problem, a new approach is needed, one that puts
the question of application at the center of philosophical inquiry. A
philosophy of mathematics must not only account for the existence
and nature of mathematical entities but also explain their
remarkable usefulness in the empirical sciences, a necessity
underscored by Wigner’s (1995) observation of the ‘unreasonable
effectiveness’ of mathematics in natural sciences, Steiner’s (1998)
emphasis on its applicability as a philosophical problem, and
Franklin’s (2014a) argument for a realist framework that integrates
empirical success. This dual focus is supported by the historical
success of mathematics in advancing natural sciences and the
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critiques of traditional views like Platonism and Nominalism for
overlooking this aspect (Colyvan, 2001a).

To begin addressing this issue, we first survey several major
schools of thought, focusing particularly on Platonism with respect
only to mathematics. Since it has been the most influential view, we
review various forms of Platonism and select one version for further
discussion. Supporting arguments for Platonism, such as the
objectivity and necessity of mathematical truth, are considered
alongside serious objections, especially the problem of applicability.

Next, we turn to Nominalism, looking at its two main variants:
Logicism and Formalism. Logicism, as advanced by Gottlob Frege
and Bertrand Russell, seeks to ground mathematics in logic
(Tennant, 2023). Frege's Begriffsschrift (1879) introduced a formal
system to derive arithmetic from logical axioms, laying the
foundation for this approach. This effort was further developed in
Russell and Alfred North Whitehead's Principia Mathematica
(1910), which aimed to formalize the reduction of mathematics to
logical principles through a rigorous symbolic framework.
Furthermore, formalism views mathematics as the manipulation of
symbols according to rules. While each avoids certain metaphysical
commitments, both fail to explain the applicability of mathematics
to the physical world, which is our primary concern. For instance,
Frege and Russell’s logical foundations, while rigorous, do not
account for why mathematical structures align with empirical
phenomena.

Recognizing these shortcomings, we then introduce
Aristotelian realism as a promising alternative. This view holds that
mathematical structures are abstractions from real patterns found
within the physical world itself (Franklin, 2014a). Aristotelian
realism, still relatively young as a philosophical approach, seems
well-positioned to address the applicability problem, as it directly
connects mathematics to empirical reality.

Building on this foundation, we discuss different accounts of
mathematical applicability. After establishing that Platonism and
Nominalism are inadequate, we turn to alternatives that offer more
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promise. First, we examine Mark Steiner’s anthropocentric view.
Steiner suggests that the effectiveness of mathematics arises from
human reasoning patterns, such as symmetry and analogy, which
scientists use to extend known results to new domains. This
perspective may seem unclear at first; a more detailed explanation
and its implications are explored in the following sections.

We then develop the Aristotelian realist account further,
showing how it naturally explains the fit between mathematics and
the physical world. In this view, mathematics works because it
describes real features of reality, accessible through observation and
abstraction.

Finally, we turn to the tools of applied mathematics: models
and simulations. We explore different types of models: physical,
mathematical, and computational, and discuss the role of
abstraction, idealization, and approximation in modeling complex
systems. Simulations, in particular, demonstrate how mathematical
models bridge theory and empirical data, further emphasizing the
need for a philosophy that takes applied mathematics seriously.

The applicability problem highlights a critical gap in
traditional philosophies of mathematics. By examining alternative
approaches, particularly Aristotelian realism, we move toward a
more complete and satisfying understanding of mathematics, one
that places its remarkable applicability at the heart of philosophical
inquiry.

DISCUSSION

1. Platonism in the Philosophy of Mathematics

Platonism has evolved since Plato first proposed that
mathematical entities exist in an abstract, non-spatiotemporal
realm. Contemporary mathematicians who identify as Platonists
often reject Plato’s literal interpretation. Jystein (2024) summarizes
Platonism with three theses: mathematical objects exist, they are
abstract, and they are mind-independent. Full-blooded Platonism,
as Franklin (2014a) describes, posits that universals exist beyond our
causal world.
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Godel (1951) represents a strong version of Platonism,
asserting that mathematics describes a non-sensual reality. The
Continuum Hypothesis, proposed by Cantor in 1878, addresses the
cardinality of the continuum (the set of real numbers), asking
whether there exists a set with a cardinality strictly between that of
the integers (Xo) and the continuum (2", also denoted as c). Cantor
conjectured that no such set exists, meaning there is no intermediate
infinite cardinality, but this remains unproven within the standard
Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC). Godel
believes that the Continuum Hypothesis must be either true or false
independently of its provability, suggesting that current axioms
(e.g., Zermelo-Fraenkel) are insufficient and proposing new axioms
to uncover set-theoretic reality.

Alternative perspectives include Davies (2007), who defines
Platonism as belief in a mathematical realm outside space and time.
However, Gardner (2009) criticizes this, favoring the view that
Platonism recognizes mathematical facts as objective but immanent
in human experience.

Artstein  (2010) proposes "applied Platonism," where
mathematical realities approximate physical phenomena, bridging
abstract mathematics and empirical science. Although similar to
Aristotelian realism, applied Platonism still emphasizes that
mathematical statements "stand alone”. Jystein (2024) also
discusses "plenitudinous Platonism," which, by the plenitude
principle, posits that all possible mathematical objects consistent
with any mathematical theory exist in some universe. For example,
it holds that there are distinct universes of sets where the
Continuum Hypothesis is true and others where it is false, with no
single universe being metaphysically privileged. This view is in
contrast with traditional Platonism’s assertion of a unique
mathematical reality and is proposed to simplify mathematical
epistemology by ensuring that consistent theories are true in some
universe. This resolves epistemological concerns but diverges from
traditional singular-universe Platonism. Despite its variations, there
remains no consensus among mathematicians about what
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Platonism precisely entails. Given the diverse types of Platonism,
for this study, "Platonism" will refer to Godelian Platonism, chosen
for its strong assertion of a non-sensual mathematical reality, where
mathematical entities exist independently of human perception or
physical senses in a timeless, abstract realm, and its influence on
modern set theory, as articulated by Godel.

Platonism is significant, as roughly 80% of mathematicians
identify with it (Abbott, 2013). However, it faces substantial
challenges from physicalist and naturalist theories of knowledge,
which argue that all knowledge must arise from physical processes
or empirical interactions with the world. These theories object to
Platonism’s positing of abstract, non-spatiotemporal mathematical
entities, as it is unclear how such entities, devoid of physical or
causal presence, can be known by human minds rooted in the
physical world. This tension leads directly to Benacerraf’s
epistemological problem, which questions how humans, as
spatiotemporal beings, can access or gain reliable knowledge of
such abstract mathematical objects (Benacerraf, 1973). Even
alternative epistemologies like reliabilism, which focus on the
reliability of belief-forming processes, struggle to justify
mathematical knowledge under Platonism, as they cannot easily
account for a causal connection to non-physical entities.

Davies (2007) argues that mathematical intuition is a
neuropsychological illusion, arising from prolonged engagement
with mathematical concepts rather than access to a Platonic realm of
objective truths. Functional Magnetic Resonance Imaging (fMRI)
studies, he claims, demonstrate that the brain constructs
mathematical realities through neural processes, not by perceiving
an independent mathematical world. This view is in parallel with
the historical misperception that Euclidean geometry was an
absolute, universal truth about physical space, a belief that later
challenged by non-Euclidean geometries, which revealed
alternative frameworks could equally (or better) describe reality.

Then Hersh (2008) further critiques Platonism by arguing
mathematics is culturally conditioned. He compares Platonist
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objectivity claims to past mistaken beliefs about natural social
orders, suggesting that mathematics appears objective from within
a cultural framework but has no independent existence.

Nonetheless, Platonism finds strong support in mathematics'
effectiveness in science. Wigner (1995) famously called this "the
unreasonable effectiveness of mathematics." The Indispensability
Argument, advanced by Quine and Putnam, contends we must
accept the existence of mathematical entities because they are
indispensable to our best scientific theories. Colyvan (2024)
summarizes the argument:

Premise 1: We must commit to entities indispensable to our
best theories.

Premise 2: Mathematical entities are indispensable.
Conclusion: We are committed to mathematical entities.

Putnam (1979) claimed that rejecting mathematical entities
while accepting scientific realism is akin to believing in angels
without believing in God, as both mathematical and physical
entities are justified by their indispensability to our best scientific
theories, which are empirically confirmed as a whole. However,
critics like Field and Maddy (1992) challenge the validity of
indispensability premises. For example, they attack the second
premise, arguing that mathematical entities are not truly
indispensable, as scientific theories like Newtonian physics can
potentially be reformulated without reference to abstract objects by
using nominalist strategies. Additionally, Cheyne & Pigden (1996)
argue that the indispensability of mathematical entities in scientific
theories (such as in General Relativity or quantum mechanics)
implies they must have causal efficacy, which poses a challenge for
Platonism’s view of abstract, acausal objects of mathematics. This
contradicts Platonism’s assertion that mathematical entities exist
independently of causal interactions. Thus, if mathematical objects
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are indispensable, Platonism struggles to explain their lack of causal
influence.

David Mumford (2008) provides further support for Platonism
by noting mathematics” apparent universality and independence of
culture, suggesting that mathematical truths hold across all human
societies. Yet, Jystein (2024) notes that this universality may reflect
truth-value realism rather than a commitment to ontological
mathematical objects, as truth-value realism holds that
mathematical statements, like ‘there are prime numbers between 10
and 20,” have objective truth-values independent of whether they
are known or derivable, without requiring the existence of abstract
entities like numbers. This view, endorsed by some nominalists,
posits that such truths can be explained through alternative
translations into a philosophical language that avoids reference to
mathematical objects, thus aligning with Mumford’s observation of
universality without necessitating Platonism’s ontological claims.

While Platonism remains the dominant philosophical stance
among mathematicians, its foundations face serious challenges.
Platonists must overcome significant epistemological objections,
such as Benacerraf’'s (1973) problem of how humans, as
spatiotemporal beings, can access abstract mathematical objects
lacking physical presence. Additionally, metaphysical objections
arise, notably from Cheyne & Pigden (1996), who argue that the
indispensability of mathematical entities in science implies causal
efficacy, conflicting with Platonism’s claim that such entities are
acausal and exist independently of the physical world.

2. Formalism in the Philosophy of Mathematics

Let us now turn to the first alternative of Platonism, namely
Formalism, which is a branch of Nominalism. In contrast to
Platonism, Formalism posits that mathematics is merely the formal
manipulation of symbols according to a set of rules known as
axioms (Weir, 2025). Mathematics, in this view, resembles a game
like chess: if we change the rules, we are simply playing a different
game (Weir, 2025). A typical illustration is Euclidean geometry,
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based on five axioms, one of which states that given a line and a
point not on that line, there is exactly one line through the point
parallel to the original. For centuries, the truth of these axioms was
considered absolute; Kant even believed Euclidean geometry to be
psychologically inevitable, arising naturally from our spatial
intuition (Franklin, 2014a).

However, in the early 19th century, Bolyai and Lobachevsky
independently demonstrated that one can abandon the parallel
postulate and develop a new form of geometry. This non-Euclidean
geometry provides an equally coherent and useful description of
space. This discovery undermined the notion that the axioms of
Euclidean geometry were uniquely determined by human intuition.

According to the formalist perspective, mathematical objects,
relations, and structures do not truly exist (Weir, 2025). The truths
expressed in logic and mathematics are not about anything; they are
purely formal and thus, in a sense, meaningless. Mathematical
statements are viewed as syntactic manipulations, devoid of
reference to any external reality.

David Hilbert, an early proponent of Formalism, sought to
establish a program that would achieve a consistent and complete
axiomatization of all mathematics. He envisioned a formal system
in which any mathematical statement could be proven true or false
solely through the manipulation of axioms within a formalized
language (Weir, 2025). However, this ambitious goal was later
shattered by Kurt Godel’s incompleteness theorems, which showed
that within any consistent formal system capable of expressing basic
arithmetic, there exist true statements that cannot be proven within
the system. These results demonstrate that any sufficiently powerful
formal system cannot be both complete and consistent. As a result,
Hilbert's dream of fully formalizing mathematics was proven
unattainable.

Since Hilbert's time, Formalism has evolved. Most
contemporary formalists no longer adhere to Hilbert's strict vision.
Instead, they entertain the possibility that computer algorithms
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might eventually automate the proof process, taking over the
human role in verifying mathematical proofs (Weir, 2025).

Nevertheless, Formalism faces a major philosophical
challenge: it struggles to account for the remarkable applicability of
mathematics to the real world. If mathematics is merely a
meaningless game played according to arbitrary rules, there seems
to be no reason why it should be so uniquely effective in helping
scientists make discoveries about the natural world. If we could
simply discover some different axioms and different rules, as
Formalism suggests, why is it that only mathematics, this particular
"game", proves to be indispensable to scientific progress? This
question arises because Formalism views mathematical truths as
derived from human constructed systems rather than inherent
properties of reality, yet no other symbolic system has demonstrated
the same utility in explaining natural phenomena.

To date, there is no alternative symbolic game that rivals
mathematics in its utility for science. Mathematics appears to be
essential to our understanding of physical reality. Hence, the
analogy between mathematics and games, often invoked by
formalists, seems fundamentally flawed. Mathematics is not merely
a game; there is no other "game" quite like it.

3. Logicism in the Philosophy of Mathematics

Another branch of Nominalism is Logicism, which was
influential until around 1930, after the impact of Godel's
incompleteness theorems and the rise of Zermelo-Fraenkel set
theory (Tennant, 2023). Even though logicism is a form of
Nominalism, it differs from Formalism.

Traditionally, Logicism has focused on arithmetic and real
analysis, while Formalists, notably David Hilbert, left integers
undefined, treating them merely as symbols within a formal system
governed by axioms and rules, without requiring an intrinsic
meaning or reference to external entities (Russell, 1903). For a
Formalist, numbers like 0, 1, and 2 have no meaning beyond the
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axioms, hence this approach prioritizes the formal structure of
mathematics over any semantic interpretation of numbers as
objects. In contrast, Logicists aimed to show that mathematics is
reducible to logic. Prior to the rise of Logicism, logic was regarded
mainly as a philosophical tool. Logicism shifted this view by
asserting that mathematics and logic are identical (Russell, 1903).
Accepting Kant’s distinction between analytic and synthetic truths,
Logicism treated mathematical statements as analytic truths within
a logical framework. In Principia Mathematica, Russell and
Whitehead aimed to reduce mathematics to logic by deriving
mathematical truths from logical axioms, as seen in their
development of type theory to define numbers logically. While the
work’s mathematical rigor might suggest a reverse dependency,
their intent was to establish logic as the foundation, not to reduce
logic to mathematics, aligning with the core Logicism thesis.

Two major versions of Logicism emerged: Fregean and
Russellian. Influenced by Dedekind’s reduction of real numbers to
rationals using set theory, Frege aimed to reduce arithmetic to logic
without appealing to psychological intuition. Frege conceived
numbers as objects, adopting a Platonist stance. His system,
articulated in Grundgesetze der Arithmetik, sought to derive
arithmetic from logical axioms, treating truths like 2 + 5 =7 as being
analytic (Tennant, 2023).

Frege defines numbers using logical constructions: zero as the
number of objects not identical to themselves, one based on zero,
and so forth (Franklin, 2014a). However, his project depended on
Basic Law V, claiming that two properties are identical if they apply
to the same objects, a principle intended to define sets logically. This
law led to Russell’s Paradox, which exposed an inconsistency in
Frege’s system by considering a set of all sets that do not contain
themselves: if this set contains itself, it must not contain itself, and if
it does not contain itself, it must contain itself, creating a logical
contradiction (Russell, 1903). This paradox revealed that Frege’s
logical foundation for arithmetic was inherently self-contradictory,
undermining his logicist aspiration. Profoundly disheartened, Frege
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abandoned the project, lamenting in Grundgesetze Volume II:
“Hardly anything more unwelcome can befall a scientific writer
than to have one of the foundations of his edifice shaken after the
work is finished” (Frege, 2013: 253).

Despite recognizing the paradox, Russell pursued Logicism in
a revised form. Russell's Logicism became less Platonist and
subsequently admitted: “When I wrote the ‘Principles’, I shared
with Frege a belief in Platonic reality of numbers... a comforting
faith, which I later abandoned with regret” (Russell, 1903: x). For
Russell, logic concerned ways of constructing statements, not the
study of objectively existing forms. He rephrased mathematical
claims such as "There are two cats" into logical expressions by using
relational terms instead of explicitly invoking numbers. For
example, he might express it as a statement about the relationship
between two distinct objects, ensuring the focus remained on logical
structure rather than numerical quantities. Thus, mathematical
propositions were seen as tautologies, analytic truths by definition.
Nonetheless, Russellian Logicism faced challenges. Logical
elimination of set-theoretic notions like "membership" proved
impossible, and the Axiom of Infinity, necessary for set theory,
seemed non-logical (Franklin, 2014a).

Attempts to revive Logicism emerged as Neo-Logicism in the
mid-20th century. Crispin Wright (1983) proposed Hume’s
Principle, that the number of F’s equals the number of G’s if and
only if they can be paired one-to-one, as a foundation for arithmetic.
Though not vulnerable to Russell’s Paradox, it remains unclear
whether Hume’s Principle is a logical or analytic truth.

While Nominalism has an epistemological edge over
Platonism, it faces other serious problems. It struggles to explain
why mathematics is so successful in scientific theorizing. If
mathematical objects do not exist, how does reference to them
contribute to empirical success? Formalists and Logicists also fail to
tully account for mathematics” deep objectivity. As Franklin (2014b)
notes, mathematical inquiry uncovers a pre-existing structure that
seems independent of human invention.
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Thus, while Platonism and Nominalism both capture
important aspects of mathematical practice, neither provides a fully
satisfactory account. The persistent limitations of both views
suggest the need for a new direction in the philosophy of
mathematics.

4. Aristotelian Realism Philosophy of Mathematics

Aristotle, a realist and student of Plato, adapted his teacher’s
concept of universals, such as redness and oneness, by grounding
them in physical objects rather than Ilocating them in a
transcendental realm of forms. For Aristotle, the geometrical shape
of a vase, for instance, exists inherently within the vase itself, not in
a separate abstract world (Gardner, 2009). In contrast to Plato,
Aristotle maintained that the properties of objects are real and exist
within the objects themselves. The philosophy of mathematics that
embraces this view is known as Aristotelian realism.

Unlike Platonism and Nominalism, which often focus on
abstract entities like sets, numbers, and logic, Aristotelian realism is
rooted directly in applied mathematics (Franklin, 2014b). It views
mathematics as a science about the real world, not about a separate
transcendental realm (as in Platonism) nor as a meaningless
manipulation of symbols (as in Formalism) (Lear, 1982). According
to this view, mathematical properties such as symmetry, continuity,
and order are realized in the physical world. Thus, mathematics
describes real aspects of reality just as biology or physics does
(Franklin, 2014a). On this account, the real world is understood as a
state of affairs in which particulars instantiate universals, and
universals are genuine parts of the physical world.

One version of Aristotelian realism discussed here is modal
Aristotelianism (or semi-Platonism), which holds that “universals
can exist and be perceived in this world and often do, but it is a
contingent matter which ones exist, and we can have knowledge
even of uninstantiated universals and their necessary interrelations”
(Franklin, 2014a: 26). Another version, strict this-worldly
Aristotelianism, will not be discussed here.
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Our senses and our capacity for reasoning enable us to grasp
mathematical facts. For instance, we understand that 2 x 3 =3 x 2 by
arranging six objects into either two rows of three or three columns
of two. Such relations can be directly realized and observed without
invoking otherworldly entities. Similarly, mathematical proofs
involve intellectual insights that go beyond mere perception,
binding multiple insights into a coherent structure that reveals
necessary truths. Many mathematical necessities can be realized in
the world, as readily as sensory properties like color or shape.
Comparative judgments, such as discerning that one object is taller
than another, demonstrate that relations like "being taller than" are
perceptible and repeatable.

In Aristotelian realism, universals do not exist in an abstract
realm but are embedded within physical objects and possess causal
power. For example, objects emit signals, such as light, that interact
with our senses precisely because of their properties like shape or
color. We recognize a square object because its shape distinctively
affects our visual perception, just as its color would. Structural
features such as symmetry and order are directly observable and
causally efficacious. This gives Aristotelian realism a significant
epistemological advantage over Platonism, which struggles to
explain how we have access to causally inert abstract entities.
Aristotelian epistemology, by contrast, accounts for both sensory
and intellectual knowledge, though a full treatment of this
distinction is beyond our scope here.

A common objection to Aristotelian realism concerns
uninstantiated universals, such as an unseen shade of blue or
numbers larger than the number of particles in the universe. Modal
Aristotelianism addresses this by positing that uninstantiated
properties belong to structured ranges of universals, known as
determinables (Franklin, 2014a). For instance, an unexperienced
shade of blue must lie between two shades we have experienced.
Since our senses respond continuously to variations in color and
length, we can infer the existence of intermediary properties even
without direct experience. Similarly, facts about betweenness and
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ratios, such as the necessary relations between different lengths,
seem logically necessary and are not contingent on instantiation. For
example, there is no possible world in which, if A is twice as long as
B and B is twice as long as C, then A is not three times as long as C.

As Nominalism and Platonism continue to challenge each
other by exposing mutual shortcomings without resolving their
own foundational problems, Aristotelian realism emerges as a
promising alternative. It offers a fresh direction in the philosophy of
mathematics. Although still developing, Aristotelian realism’s
epistemology appears far more robust than Platonic epistemology.
By recognizing the existence of universals while situating them
within the real world, Aristotelian realism strikes a compelling
middle ground between Platonism and Nominalism. There are
turther reasons to favor Aristotelian realism beyond those discussed
here, suggesting it may offer the most coherent framework for
understanding the nature of mathematics.

5. Applicability of Mathematics

Dominant schools of thought, such as Platonism and
Nominalism, focus primarily on the ontological status of
mathematical objects like sets and numbers, often neglecting the
practical question of why mathematics is so successful in real-world
applications. This oversight manifests in several ways: traditional
philosophies tend to prioritize abstract debates about the existence
or nature of mathematical entities over empirical investigations into
how mathematics effectively models physical phenomena, such as
predicting planetary motion or explaining quantum mechanics.
Moreover, these schools rarely address the historical success of
mathematical tools in scientific discovery, leaving the "unreasonable
effectiveness” highlighted by Wigner (1995) largely unexamined in
their frameworks.

Platonism posits that mathematical entities, such as numbers
and geometric forms, exist in a non-spatiotemporal, abstract realm,
independent of the physical world and human minds. This view,
rooted in the philosophy of Plato, suggests that mathematical
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objects have no causal interaction with the empirical world, which
creates a significant challenge: how can such abstract entities be so
relevant to describing physical phenomena? Nominalism, such as
Formalism and Logicism, takes a contrasting stance by denying the
existence of mathematical objects altogether (Bueno, 2013).
Nominalists argue that mathematical terms are mere linguistic
constructs or useful fictions, devoid of ontological reality. This
position, however, struggles to account for the empirical success of
mathematics. If mathematical entities do not exist, how can
referencing them in scientific theories lead to accurate predictions
and explanations? For example, how can nominalists explain the
indispensable role of mathematical structures in disciplines like
physics, where equations reliably describe natural phenomena?
Both Platonism and Nominalism, by focusing on the nature of
mathematical objects, fail to provide satisfactory accounts of applied
mathematics, highlighting the need for an alternative philosophical
perspective.

Steiner (1998) directly addresses this gap by examining why
mathematics is so effective in the physical sciences and exploring
the implications for our understanding of the universe and the
human mind’s place within it. Steiner’s work is divided into several
key discussions, each tackling different facets of mathematical
applicability. In the first chapter, “The Semantic Applicability of
Mathematics: Frege’s Achievements,” he gives some credit to
Gottlob Frege for resolving critical semantic and metaphysical
issues related to the applicability of mathematics. Frege argued that
mathematical terms, such as the number “twelve” in the statement
“There are twelve fruits on the table,” refer to abstract numbers that
characterize empirical concepts rather than physical objects. For
instance, the number twelve does not directly describe the fruits but
quantifies the concept of the collection of fruits (Steiner, 1998: 16).
This distinction allows mathematics to bridge the gap between
abstract entities and real-world applications by applying to
empirical concepts used in scientific descriptions. Frege’s solution,
Steiner argues, extends to all mathematical terms, providing a
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semantic framework for understanding how mathematics connects
to the physical world.

Steiner then poses a broader question: how do mathematical
concepts enable us to describe and predict physical phenomena? In
addressing this, he begins with simple mathematical operations like
addition and multiplication. To illustrate this, he introduces the
concept of dispersion, defined as the average distance between any
two elements in a set. He suggests that sets with low dispersion are
more “interesting” to humans, as they represent objects that are
physically closer together, such as a cluster of items (Steiner, 1998:
26). When sets are combined, he claims, their dispersion typically
increases, especially if the elements are spatially separated.
However, Simons (2001) challenges this assertion with a
counterexample involving the vertices of a Star of David inscribed
in a circle of radius 1. The two sets of vertices from the equilateral
triangles each have a dispersion of approximately 1.732 (the square
root of 3), while all six vertices together have a dispersion of about
1.493. This shows that dispersion can decrease when sets are
interspersed, = undermining  Steiner’'s  generalization and
highlighting the complexity of applying mathematical concepts to

Fig. 1. Star of David, formed by two overlapping equilateral triangles, inscribed
in a circle of radius 1.

physical systems.

How specific mathematical concepts are suited to describing
natural phenomena is also discussed in Steiner’s work. He argues
that the applicability of each concept must be addressed case by
case, rather than seeking a universal explanation (Steiner, 1998: 47).
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For example, the concept of linearity is particularly effective in
systems where the Principle of Superposition holds, such as in wave
mechanics. Steiner frames this discussion within Wigner’s quandary
about the “unreasonable effectiveness of mathematics,” viewing it
as an epistemological puzzle concerning the relationship between
the human mind and the cosmos. While Steiner identifies this as a
profound issue, he does not provide a conclusive resolution,
suggesting that the problem requires further philosophical
exploration.

Detailed accounts of how physicists have leveraged
mathematical analogies to achieve groundbreaking discoveries are
also provided. These analogies, often Pythagorean in nature, are
expressed solely in the language of mathematics, transcending
verbal or physical descriptions. A subset of these, which Steiner
terms “formalist,” involves manipulating mathematical symbols
without assigning immediate physical meaning. A striking example
is Maxwell’s modification of Ampere’s law, where he introduced
the concept of displacement current, a rate of change of an electric
field, distinct from conduction current. This led to the formulation
of Maxwell’s equation:

oE
VxB :Iio]"‘ﬂofoa

where E is the electric field, B is the magnetic field, J is the
current density, u, is the permeability of free space, and ¢, is the
permittivity of free space. This equation unified electromagnetism,
revealing that a changing magnetic field induces a changing electric
tield, and vice versa, resulting in electromagnetic waves that
propagate at the speed of light (Colyvan, 2001b). Maxwell’s
discovery, driven by mathematical analogy rather than empirical
observation, not only predicted electromagnetic phenomena but
also confirmed that light itself is an electromagnetic wave. This
exemplifies the predictive power of mathematics, as the
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implications of Maxwell’s equations extended far beyond their
initial assumptions.

Steiner (1998: 75) argues that such successes challenge
naturalism, which is the view that scientific inquiry should rely
solely on empirical observation and avoid anthropocentric
assumptions. Instead, he advocates an anthropocentric perspective,
suggesting that nature is “user-friendly” to human goals and values,
aligning with human cognitive capacities in a way that facilitates
discovery. This view implies that humans occupy a privileged
position in the universe, a stance that borders on theistic
interpretations. It is worth noting that his assertion of a "user-
friendly" universe where nature aligns with human cognitive
capacities lacks empirical grounding and relies heavily on unproven
assumptions. This perspective suggests that the effectiveness of
mathematical analogies, such as Maxwell’s equations, stems from a
privileged human position in the cosmos, yet it struggles to explain
the mechanism behind this alignment. Furthermore, as Simons
(2001) critiques, this stance contradicts the anti-anthropocentric
tradition of scientists like Copernicus, Galileo, Newton, and
Darwin, who decentred humanity in their cosmological models.
Steiner’s focus on successful cases of mathematical applicability also
introduces a bias that overlooks instances where mathematics fails
to fit, while his claim that scientists have abandoned naturalism
lacks robust evidence, leaving his anthropocentric thesis vulnerable
to scepticism.

As opposed to Steiner’s anthropocentric view that posits a
contingent alignment between human cognition and nature,
Aristotelian realism asserts a necessary connection grounded in the
physical instantiation of mathematical properties. For example, the
ratio of lengths in a physical object pre-exists measurement, which
merely identifies and quantifies these ratios, with units added for
computational convenience. This perspective grounds mathematics
in the empirical world, making its applicability less mysterious.

Another perspective on mathematical applicability emerges
from the standard view, which posits that informal proofs reliably



Nugraha K. F. Dethan & Merlyn Kristine Nelloe 363

indicate the existence of formal derivations within axiomatic
systems (Avigad, 2021). This reliability is enhanced through
strategies such as generalization for strengthening lemmas to
expose errors, and modularity for breaking proofs into manageable
components. These practices, as seen in formal verifications like the
Kepler Conjecture, suggest that mathematics’ effectiveness stems
from its ability to mirror real-world structures.

Franklin criticizes traditional philosophy of mathematics for
its “intellectual anorexia,” focusing narrowly on numbers and set
theory while neglecting applied mathematics (Franklin, 2014a).
Aristotelian realism, by contrast, embraces fields like geometry,
group theory, combinatorics, and formal sciences such as operations
research and information theory, which study structural properties
directly relevant to the physical world. For instance, the
measurement of lengths reveals ratios that exist independently of
human intervention, and mathematical models of these ratios can
predict physical behaviors. This approach answers Wigner’s
question about the unreasonable effectiveness of mathematics by
asserting that mathematics is effective because it studies properties
intrinsic to the physical world. By focusing on applied mathematics,
Aristotelian realism not only overcomes the limitations of Platonism
and Nominalism but also remedies the philosophical neglect of this
critical field.

6. Mathematical Modelling and Simulations

Mathematics’” extraordinary capacity to describe, measure, and
evaluate phenomena is one of its most powerful features. As Galileo
Galilei declared in The Assayer (1960), the universe is written in the
language of mathematics, with its characters being triangles, circles,
and other geometric figures, without which understanding the
world is impossible. From mundane activities like saving money or
throwing a baseball to complex events like towing icebergs or
meteors colliding with Earth, mathematics provides precise, concise
descriptions through mathematical models.



364 Jurnal Filsafat, Vol. 35, No. 2, August 2025

A mathematical model is a representation of a system using
mathematical concepts and language (Dym, 2004). Effective models
explain systems, analyse components, and predict outcomes. The
process of creating such models, known as mathematical modelling,
is fundamental to natural sciences, particularly physics, and
engineering disciplines like computer science. It also plays a central
role in formal sciences, such as operations research, which emerged
during World War II to optimize military strategies, such as
determining the most effective search patterns for U-boats or the
optimal size of convoys. Despite its significance, philosophers have
paid scant attention to formal sciences, which achieve rigorous
proofs in areas like network flows and program correctness,
resembling a “philosopher’s stone” that transforms contingent
observations into necessary knowledge (Franklin, 2014a).

Mathematical models typically consist of variables and
equations that establish relationships between them. By providing a
structured representation of these relationships, this approach lays
the groundwork for the scientific method, which involves three
stages: observation, modelling, and prediction (Dym, 2004). In
observation, empirical data is collected, either directly through
senses or indirectly through measurements, such as observing the
products of a chemical reaction. Modelling analyses these
observations to describe behaviours, explain causes, or predict
future outcomes. Prediction tests models” validity by comparing
their outputs to real-world events. Models enable surrogate
reasoning, allowing scientists to study systems indirectly (Frigg &
Hartmann, 2025). For reliability, models must be structurally stable,
meaning small changes in inputs do not drastically alter predictions.

Consider the equation Pt = P,_; + (1/100)P,_;, which models
compound interest at 1% per month, where P,_; is the amount at
month ¢—1. This equation describes a local structure, the
relationship between successive months and yields a global
structure of exponential growth after iterative calculations.
Remarkably, the same model applies to the temperature of an iron
rod, where P, represents the temperature at a point t notches from
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the left, increasing by 1% per notch. This versatility across domains
(money, temperature) and dimensions (time, space) underscores
mathematics” focus on structure, supporting Aristotelian realism’s
view that mathematics is the science of quantity and structure.

Many mathematical models are idealizations, simplifications
like frictionless planes or perfect spheres, that may create gaps
between model predictions and reality. Platonism views these as
reflections of an abstract mathematical realm, but Aristotelian
realism challenges this. Franklin (2014a) demonstrates this using the
Konigsberg bridge problem, where the impossibility of crossing all
bridges without retracing one is a structural property of the actual
system, not an idealized version. The proof depends on
connectivity, not distances or areas, which eliminates any
idealization-reality gap. Aristotelian realism replaces idealization
with approximation, treating complex systems as closely
resembling simpler structures. For example, an imperfect bronze
sphere’s volume can be approximated using a perfect sphere’s
formula, as their boundaries are nearly identical. This approach
avoids  Platonism’s  abstract-physical  divide, grounding
mathematics in empirical reality.

Models vary ontologically: material (e.g., wooden ship
models), fictional (e.g., frictionless pendulums), set-theoretic
structures, descriptions, equations, or combinations (Frigg &
Hartmann, 2025). Material models, like Watson and Crick’s DNA
model, are physical and straightforward, raising only metaphysical
questions about objects. Fictional models, existing only in the mind,
face ontological challenges, with critics like Quine (1953) arguing
that fictional entities lack existence and should be reframed as
predicates. Set-theoretic models, prevalent in mathematized
sciences, are criticized for not explaining construction or
representation without additional assumptions (Cartwright, 1999).
Models as descriptions or equations, such as the Black-Scholes
model, encounter issues because different descriptions or
coordinates may represent the same model, suggesting distinct
properties.
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Modelling often follows a cycle: formulate, develop, validate,
and reformulate. For example, the Malthusian equation for

population growth, Z—I: = aN, yields exponential growth N(t) =
Nye®, but ignores growth limits, making it unrealistic. The Verhulst
equation,

dN_ N(l N)
ac ¢ N*)

with solution
N*N,

N = )
NO + (N* - No)e_at

caps growth at the carrying capacity N*, better reflecting
reality (R. Banks, 2013).

From the perspective of Aristotelian realism, this modelling
cycle exemplifies how mathematics captures real-world properties,
such as quantity and structure, inherent in physical systems. In the
case of population growth, the Malthusian model initially
approximates the quantitative property of population increase but
fails to account for the structural constraint of a carrying capacity.
The reformulation into the Verhulst model aligns more closely with
reality by incorporating this limit, reflecting the actual behaviour of
population growth. This iterative process of refining models to
better represent empirical structures supports Aristotelian realism’s
claim that mathematics is grounded in the physical world, not an
abstract realm as Platonism suggests.

Mathematical models also often rely on advanced
probabilistic frameworks to handle infinite or complex systems, as
seen in the development of non-Archimedean probability functions
that use ultrafilters to address challenges like the fair lottery
paradox on the natural numbers (Horsten & Brickhill, 2024). This
approach, detailed in their analysis of generalized infinite
additivity, enhances the applicability of mathematics in simulations
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by providing a robust method to model scenarios such as random
dart throws on the real unit interval.

The cycle of formulation, validation, and reformulation
mirrors the Aristotelian approach of studying real properties
through measurement and approximation, ensuring that
mathematical models remain tethered to observable phenomena.
Mathematical models often rely on equations that may yield closed-
form analytical solutions. However, when analytical solutions are
infeasible, computer simulations become essential. Simulations,
widely used in natural and social sciences, model complex
phenomena such as galaxy formation, high-energy ion reactions,
evolutionary processes, economic trends, and conflict dynamics
(Winsberg, 2022).

J. Banks et al. (2001) define a simulation as “an imitation of a
real-world process or system,” typically applied to dynamic models
involving time. The goal is to solve equations that represent a
system’s temporal evolution, with one process mimicking another.
Simulations have sparked debate about their philosophical
implications. Some argue they represent a new scientific paradigm,
raising novel epistemological questions, while others contend that
they pose few unique philosophical challenges (Frigg & Hartmann,
2025). Regardless, their practical importance is undeniable, enabling
exploration of dynamic models when traditional methods fail, thus
“extending” human analytical capabilities (Humphreys, 2004).

A critical issue is the reliability of simulation results, which
hinges on two questions: do the model’s equations accurately
describe the target system (validation), and does the computer
provide sufficiently precise solutions (verification)? These are
difficult to assess independently, as only the simulation’s “net
outcome” is observable (Frigg & Hartmann, 2025). Equation-based
simulations, prevalent in physics and related fields, are guided by
governing theories and differential equations. They are classified as
particle-based, modelling interactions among discrete bodies (e.g.,
galaxy formation via gravitational forces), or field-based,
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addressing continuous media (e.g., storm dynamics, where fluid
variables are discretized in space and time) (Winsberg, 2022).

Simulations serve multiple purposes: heuristic exploration,
predicting unavailable data, understanding existing data, and
anticipating system behaviour under specific conditions. They can
forecast future events, reconstruct past phenomena, or explain
observed behaviors by clarifying underlying mechanisms.
Simulations often focus on structural properties, allowing flexibility
in application. For instance, a model describing accumulated money
after t months, P, = P,_; + (1/100)P,_; above, can also represent
the temperature along an iron rod, with P, as the temperature at t
notches from the left. This versatility highlights that simulations
model structural relationships, independent of whether the variable
represents money, temperature, time, or space.

Aristotelian realism offers a compelling lens for understanding
simulations. It asserts that the structures modelled in simulations,
such as growth patterns or physical interactions, are inherent in the
physical world. In the example of the money-temperature model,
the simulation captures a structural property (exponential change)
that exists in both financial and thermal systems. This aligns with
Aristotelian realism’s emphasis on mathematics as a study of
empirical properties, not idealized abstractions.

Simulations, by approximating these real structures through
discretized equations, reflect the iterative process of measuring and
refining models to match observable phenomena. The ability to
apply the same model across domains underscores the universality
of structural properties in nature, which supports the idea that
mathematics is grounded in physical reality. This perspective
enhances our understanding of simulations as tools that reveal the
intrinsic mathematical order of the world, bridging theoretical
models and empirical outcomes.

By positing that mathematical properties are inherent in the
physical world and thus accessible to both human observation and
Al analysis, Aristotelian realism gains relevance. For instance, Al-
driven simulations of physical systems such as climate modelling or
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quantum computing optimizations rely on mathematical structures
abstracted from real-world data, aligning with this view. Unlike
Steiner’s anthropocentric perspective, which attributes Al’s success
to a contingent human-nature alignment, Aristotelian realism offers
a necessary connection, explaining why mathematics underpins
Al’s empirical success. The novelty lies in this synthesis: the debate
over Al's mathematical capabilities challenges traditional
philosophies to adapt, positioning Aristotelian realism as a dynamic
framework that not only accounts for historical applicability but
also anticipates future technological integration. This shift prompts
a rethinking of mathematics’ nature, moving beyond abstract
speculation to a philosophy grounded in its active role in shaping
modern science and technology.

CONCLUSION

A comprehensive philosophy of mathematics must confront
the central challenge of explaining the applicability of mathematics
to the physical world, a theme that has been a recurring focus
throughout this article. Platonism, with its assertion of
mathematical objects in a non-spatiotemporal realm, fails to bridge
the gap to empirical reality. Similarly, Formalism and Logicism, by
framing mathematics as either a rule-based game or a logical
construct, have failed in accounting for its profound influence on
scientific discovery.

Steiner highlights this issue, arguing that the success of
mathematical analogies, such as Maxwell’'s equations derived
through Pythagorean reasoning, reveals an “unreasonable
effectiveness” that challenges naturalism and suggests an
anthropocentric, “user-friendly” wuniverse. However, Steiner’s
anthropocentrism lacks a fully satisfying explanation for this
effectiveness, as it rests on the unproven assumption that the
universe is inherently structured to align with human cognitive
capacities. This view struggles to provide a robust mechanism for
why such alignment occurs, leaving the effectiveness of
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mathematics as an unexplained coincidence rather than a necessary
feature of reality.

Aristotelian realism, in contrast, offers a compelling solution,
viewing mathematics as the science of real-world properties like
structure and quantity. This perspective grounds applied
mathematics in physical reality, resolving the impasse between
Platonism and Nominalism. By positing that mathematical
properties are inherent in the physical world and accessible through
observation and abstraction, Aristotelian realism provides a
coherent explanation for mathematics’” applicability. For its ability
to explain the applicability of mathematics through empirically
grounded principles, Aristotelian realism emerges as a superior
framework and a significant breakthrough in the philosophy of
mathematics.
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