=. TRAB

Jurnal Teknologi Rekayasa Alat Berat (JTRAB)
ISSN 3046-4773

Vol 2, pp. 36-46, 2025

published online on: 11, 08, 2025

ALIGNMENT MODEL OF EXPECTATIONS WITH ACTUAL LIFETIME OF MAINPUMP
COMPONENTS ON HEAVY EQUIPMENT

Anggi Febrianto'®, Mokh. Suef!, Muhammad Saiful Hakim'

" Department of Management Technology, Institut Teknologi Sepuluh Nopember, Surabaya, 60111,
Indonesia

Manggifebrianto@gmail.com
Received 16 November 2024, Revised 24 May 2025, Accepted 21 July 2025

ABSTRACT

This research focuses on the importance of optimal machine
performance in various industrial sectors, emphasising the
reliability of each component as a crucial factor in maintaining
productivity and operational efficiency. In this context, specific
research was conducted to analyse the difference between the
expected life of components and the actual life achieved in the
field. There is a significant knowledge gap associated with the
mismatch between expected and actual component life,
potentially leading to unexpected increases in operating costs
and decreases in efficiency. This study used survey methodology
and linear regression analysis to evaluate the relationship
between the expected and actual age of mainpump components
on Komatsu PC200 units. The main results showed that the
actual life of the components tended to be lower than the
expected life, with an average gap of 3,257 hours, indicating the
need for adjustments to maintenance and replacement strategies.
The analysis also revealed that factors such as severe operational
conditions and suboptimal maintenance methods contributed to
this mismatch. The implications of this study point to the
importance of implementing a more adaptive and data-driven
maintenance strategy to improve operational efficiency and
minimise unexpected downtime.

Keywords: Heavy Equipment; Linear regression; Expected
component life; Gap analysis; Actual component life.

1. INTRODUCTION

Heavy equipment is essential across various industrial
sectors, including construction, mining, and forestry. The
optimal performance of heavy equipment heavily relies on the
reliability of each component, which plays a critical role in
maintaining overall productivity and operational efficiency. In
this context, the lifespan of components is a key consideration,
particularly in the planning of maintenance and part
replacements. Typically, machine owners establish a certain
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expected lifespan for each component based on their experience,
manufacturer recommendations, and available historical data
[1].

However, issues arise when there is a discrepancy between
the expected lifespan of a component and its actual lifespan. This
mismatch can lead to unexpected increases in operational costs,
unplanned downtime, and a decline in operational efficiency.
This phenomenon often goes unnoticed by machine owners until
the component fails or requires earlier replacement than
anticipated, potentially resulting in significant financial losses.
Therefore, there is an urgent need for more in-depth research to
identify the factors influencing the actual lifespan of components
and to evaluate whether the expectations held by machine
owners are based on accurate and relevant data.

From a theoretical standpoint, reliability theory suggests
that the lifespan of components is influenced by various factors,
including material quality, operational conditions, and
maintenance procedures. Discrepancies between expected and
actual component lifespans may result from differences in usage
conditions and working environments that were not anticipated.
Additionally, the concept of life cycle cost analysis (LCCA) is
relevant in this context, as it emphasizes the importance of
understanding and predicting the total cost of a component over
its lifetime, including repair and replacement costs due to
component failure [2].

This research is highly significant because its findings can
provide machine owners with deeper insights into the alignment
between expected and actual component lifespans. These
insights will contribute to improved operational efficiency and
reduced costs associated with component maintenance and
replacement. Furthermore, the results of this study can be used
to update maintenance guidelines and component replacement
planning, as well as to assist in more data-driven decision-
making [8]. As such, this research will not only offer practical



short-term benefits but will also contribute to the development
of more reliable and durable components in the future.

The aim of this research is to determine whether the
expected lifespan of components, as perceived by machine
owners, aligns with the actual lifespan of those components. In
this context, a key issue to investigate is the potential mismatch
between the expected lifespan and the actual lifespan achieved
by components under real operational conditions. This mismatch
has the potential to cause various implications, both operational
and financial, which negatively impact machine performance
and resource use efficiency. Therefore, it is important to
formulate the problems to be addressed by this research.

This research needs to answer the question: "What is the
actual condition of machine component lifespans in various
industrial sectors, and to what extent do these actual lifespans
differ from the expectations of machine owners?" This question
focuses on the objective reality of component lifespans in daily
use and examines how closely this reality aligns with or differs
from existing assumptions or expectations. The answer to this
question will provide a clearer picture of the reality of
component lifespans in the field.

This research has significant benefits from both theoretical
and practical perspectives. Theoretically, this research will
contribute to the body of knowledge on the reliability of heavy
equipment components. By identifying and analyzing the
expectations of component lifespans from machine owners
against the actual lifespans, this research will enrich the literature
on machine reliability and maintenance and provide new insights
that can serve as a foundation for further research. The findings
of this study are expected to bridge the gap between expectations
and reality in component lifespans, a topic that has not been
thoroughly explored in academic studies.

From a practical perspective, this research offers benefits
that can be directly applied in the industry. With a better
understanding of the mismatch between expected and actual
component lifespans, machine owners and operators can make
more informed decisions regarding component maintenance and
replacement. This will not only help in reducing unexpected
operational costs but also in enhancing overall machine
efficiency and productivity. Additionally, the findings of this
study can guide manufacturers in designing more durable
components that are better suited to actual operating conditions.

Furthermore, this research has the potential to have far-
reaching impacts in the context of resource management and
operational sustainability [3]. By improving component lifespan
estimations, the industry can optimize resource usage, reduce
waste, and enhance long-term operational sustainability. This
research can also provide a basis for developing more efficient
and effective maintenance policies, ultimately contributing to the
industry's global competitiveness. Therefore, the benefits of this
research extend beyond theoretical understanding to practical
applications that have a direct impact on industrial operations.

Areview of previous studies reveals various approaches that
have been employed in assessing machine component lifespans
and their operational reliability. For instance, Febrianto et al. [4]
found that material quality and workingyl environment
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conditions significantly influence component life. This finding
aligns with the current study, as both emphasize the importance
of external factors in determining component reliability.
However, the current study specifically focuses on the gap
between expected and actual component lifespans, while Smith's
research focuses more broadly on component reliability analysis.

Moreover, relevant Scopus-indexed journals, such as those
by Rychlik & Szymkowiak [5], highlight that predictive
techniques can enhance the accuracy of component lifespan
estimates. Their research used a data-driven predictive model
approach, contributing significantly to understanding component
life prediction. While this research offers valuable insights, the
current study places greater emphasis on evaluating user
expectations rather than solely relying on data-driven
predictions, thus adding a different perspective to the discussion.
Similarly, Bieniek et al. [6] employed both qualitative and
quantitative methods to assess the lifecycle of machine
components. Wang found notable differences in component
lifespans depending on the maintenance methods applied. While
these studies share similarities with the current research in their
focus on component lifespan analysis, the current study
introduces a new dimension by considering machine owners'
expectations as a critical variable.

Additionally, Kulkarni & Rajarshi [7] conducted a
quantitative study that demonstrated how environmental factors
such as temperature and humidity significantly contribute to
component life degradation. This research underscores the
importance of environmental variables, which is also a
consideration in the current study. However, the current research
combines environmental analysis with user expectations to
provide a more holistic understanding. Lastly, Almuhayfith et al.
[8] used quantitative methods to optimize maintenance strategies
based on component lifespan analysis, finding that appropriate
maintenance strategies can significantly extend component life.
While this research shares a focus on reliability and component
lifespan, the current study offers a more focused perspective on
how owner expectations compare with actual conditions, a topic
not deeply explored in the previous study.

As a researcher, there is a perception that machine owners'
expectations regarding component lifespans are often based on
incomplete information or outdated historical data that may no
longer be relevant to current operational conditions [6]. These
expectations tend to be normative and may not fully consider
variations in working conditions, types of loads, and the quality
of maintenance performed. It is also argued that there is a
significant gap between component life expectations and the
actual lifespans experienced in the field. This gap could result
from a lack of understanding of the variables that significantly
impact component life, such as material quality, component
design, and the effects of operational environmental conditions
[9].

Therefore, there is a need for research that provides a deeper
understanding of how factors influence the actual life of
components and how these expectations can be adjusted to be
more accurate and realistic. Reliability Theory serves as the
primary theoretical foundation for understanding component life
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in an operational context. It posits that component life is
influenced by various factors, including material quality,
component design, and operational conditions [10]. The theory
also introduces the concept of a "failure rate," which refers to the
probability of a component failing within a certain period.

In this research, the application of reliability theory helps
understand how these factors affect component life and how the
ideal component life expectancy should be determined based on
a comprehensive reliability analysis. The Component Life Cycle
Theory, on the other hand, focuses on the entire lifespan of a
component, from production to use, and eventually to its end-of-
life. This theory considers all stages in the lifecycle, including
design, manufacturing, operational use, and replacement or
recycling phases [11].

This theory is relevant to the study as it allows researchers
to analyze how each phase in the lifecycle impacts the overall
lifespan of the component. It also helps identify critical points
where lifespan expectations may not align with the realities
observed in the field [12]. Condition-Based Maintenance Theory
is another operational theory used to optimize maintenance
strategies by monitoring the actual condition of components
during use. This theory suggests that component life can be
extended if maintenance is performed based on actual conditions
rather than on a predetermined schedule [13].

In the context of this research, this theory helps understand
how a more adaptive maintenance approach can help bridge the
gap between expected and actual component lifespans. It also
provides a framework for developing practical recommendations
that can be implemented by machine owners [14].

Drawing from these three theories, this research paradigm is
built on the premise that machine component life results from a
complex interaction between component quality, operational
conditions, and maintenance strategies. Component life
expectations should not be solely based on historical data or
manufacturer guidelines but must be verified and adjusted
through an analysis that considers operational realities and
specific field conditions [15].

This paradigm guides researchers to conduct an empirical
evaluation of the component life expectations held by heavy
equipment owners, aiming to provide recommendations that are
more accurate and aligned with real-world conditions. Based on
the theoretical framework previously described, as outlined in
Table 1, this research hypothesis is formulated to examine the
relationship between the expected component life as held by
heavy equipment owners and the actual component life. The
integration of Reliability Theory, Component Life Cycle Theory,
and Condition-Based Maintenance Theory is expected to offer a
more comprehensive understanding for heavy equipment owners
in setting realistic component life expectations based on their
experience and knowledge see Table 2.

The hypothesis proposed in this study suggests a linear
relationship between the expected component life, as estimated
by the owner, and the actual component life. The basic
assumption underlying this hypothesis is that machine owners,
through their experience and knowledge derived from the
application of reliability and maintenance theories, are capable
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of estimating component life with a high degree of accuracy. In
this context, the expected component life is considered a
reflection of the owner's practical and historical knowledge.

Thus, the hypothesis posits that when component life
expectations are based on adequate analysis and the application
of appropriate maintenance strategies, there will be a positive
and linear correlation with the actual component life. Testing this
hypothesis will provide insights into the reliability of the
expectations held by machine owners in determining actual
component life and how effectively the knowledge gained from
related theories can be applied in industrial practice.

2. METHODOLOGY

This research begins with the data collection phase, which
involves conducting a survey of the owners and operators of
Komatsu PC200 units. The purpose of the survey is to gather
information on the expected lifespan of main pump components,
the actual lifespan achieved, and other variables that may
influence component life, such as operational conditions,
maintenance practices, and the work environment. Additionally,
technical data from the manufacturer's manual and historical data
related to the unit's operation are collected to establish a robust
foundation for the subsequent analysis.

After data collection, the next step involves analyzing the
data using linear regression methods. This analysis aims to
evaluate the linear relationship between the expected lifespan of
the component and the actual lifespan achieved [25]. Several key
steps will be undertaken in this analysis to gain a comprehensive
understanding of the discrepancy between expectations and
reality see Figure 1. First, the average difference between
expected and actual lifespans will be calculated to determine the
overall trend of this difference. Then, the standard deviation of
this difference will be calculated to assess the variation,
providing insights into the extent of the variability. The analysis
will also identify the minimum and maximum values of the
difference to understand the extremes in the discrepancy
between expectations and reality. The distribution of this
difference will be visualized in a histogram, helping to identify
the pattern of distribution.

Next, the coefficient of determination (R?) from the linear
regression will be calculated to evaluate how well the expected
component life explains the variation in actual life. A high R?
value would suggest that the machine owner's expectations have
strong predictive power regarding the actual lifespan of the main
pump component.

The analysis will also include the calculation of the Mean
Squared Error (MSE), which provides a measure of the overall
prediction error [26]. The Mean Absolute Percentage Error
(MAPE) will be calculated as well, offering a measure of the
prediction error in percentage terms, thereby indicating how
much the expected component life deviates from reality on a
relative scale [27]. The value of 1 - MAPE will be used as an
indicator of prediction accuracy, with higher values signifying
more accurate predictions.
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Table 1 Research related with lifetime components

Ref Country Industry Research Objective Methodology
Mathematics, To deter'm1r.1e sharp upper b.o unds for the expectations Of. the Theoretical analysis using probability and statistical
o system lifetimes expressed in terms of the mean and various . . - .
[5] Poland Reliability . tools, with focus on increasing failure rate (IFR) and
. : scale units based on absolute central moments of component | . . - .
Engineering lifetimes. increasing density (ID) functions.
Statistics To estimate the parameters of the lifetime distribution of | Theoretical analysis using optimal estimating functions,
7] India Reliabili’ components that form a coherent system using optimal | Fisher’s conditionality principle, and simulation-based
En ineerti};l estimating functions, specifically focusing on exponential | approaches for constructing confidence intervals and
& £ and Weibull distributions. testing hypotheses.
Saud¥ R To introduce a versatile model, called a-monotone inverse Theoretical ‘modeling .and apalysm using the o-
Arabia, Reliability . S .. monotone concept, maximum likelihood, Monte Carlo
[8] . : Weibull distribution (aIW), for lifetime of a component under . . . . RS
Turkey, Engineering . . simulation, and comparison with other distributions
stress and to compare its performance with other models.
Egypt through goodness-of-fit tests.
Poland Reliabili To evaluate tight lower and upper bounds on the expected | Theoretical modeling using failure dependent
[6] Germa;l En ineerti};l differences between system and component lifetimes in the | proportional hazard model, generalized order statistics,
Y g 2 failure dependent proportional hazard model. and Samaniego signatures.
Electronics, To establish a fuzzy evaluation model for the lifetime Theoretical ‘modeling using type- right Censorng
. o . . . sample data, confidence intervals, and fuzzy testing
[16] | Taiwan Reliability performance index of electronic components using type-I o .
. : . : methods to evaluate the lifetime performance index of
Engineering right censoring data. .
electronic components.
To extend the testing procedure for the lifetime performance | Theoretical analysis using maximum likelihood
Reliabili index for products with a single component to the overall | estimation, progressive type I interval censoring, and
[10] | Taiwan En ineerti};l lifetime performance index for products with multiple | hypothesis testing to evaluate the overall lifetime
g g components, where lifetimes follow the Chen distribution | performance index of products with multiple
under progressive type I interval censoring. components.
P To develop a signature-based framework for estimating the Theoretical modeling ~using Archlrr.ledean copulas
Reliability e - . (Frank and Joe) for dependency modeling, followed by
[17] | Greece . : mean lifetime and variance of a coherent system with . . .
Engineering - - numerical  experimentation and Monte Carlo
exchangeable components using Archimedean copulas. . .
simulations.
To investigate the fluorescence properties of tryptophan- | Experimental study involving steady-state and time-
[18] | Poland Molecular containing peptides in an AOT reverse micelle environment | resolved fluorescence spectroscopy to analyze
Sciences and understand the impact of micellar confinement on | tryptophan and its peptides in aqueous and micellar
fluorescence characteristics. environments.
o To study the reliability of two coherent systems with shared The(?renca.l modeling using, Jomnt surv1vgl signature,
. Reliability . survival signature, and various stochastic processes
[19] | Iran, Spain . : heterogeneous components and to introduce the concept of | . . .
Engineering . . . including non-homogeneous Poisson process (NHPP)
joint survival signature for these systems. Lo T
and exchangeable distributions.
To emphasize the importance of considering battery service Simulation-based n}ethodology using HO MER P?O
. Renewable o - ] . : software to assess different battery capacities in hybrid
[9] Palestine lifetime when determining the optimal battery size in hybrid S . .
Energy . PV systems, considering battery cycling and service
PV-diesel energy systems. o
lifetime.
To investigate the uptake, subcellular localization, and . . e .
. . . Experimental study using fluorescence lifetime imaging
Molecular phototoxic ~ mechanism of  meso-tetraphenylporphine . . .
. . . : microscopy (FLIM), confocal microscopy, and reactive
[20] | UK Sciences, Cancer | disulfonate (TPPS2a) in 2D and 3D ovarian cancer models, . . .
. . . oxygen species (ROS) detection probes in 2D and 3D
Research focusing on photodynamic therapy (PDT) and photochemical
. e cancer models.
internalization (PCI).
- To propose a mathematical model of the k-out-of-n system to Theorgtlcal modeling using order statistics, sensitivity
. Reliability .. . analysis, and regenerative process modeling to compare
[21] | Russia . : support Decision Makers (DM) about Preventive . ) .S
Engineering : . different PM strategies and optimize system
Maintenance (PM) under dependent failures. S
availability.
To explore the synergy of coupled gold nanoparticles and J- Experl.mental. study 1nv.01V1ng 'the synthesis of gold
. Nanotechnology, . .27 . nanobipyramids, coupling with J-aggregates, and
[22] | Spain . aggregates in plexcitonic systems to enhance photochemical - . . .
Photonics o analysis of photophysical properties using spectroscopy
applications. . .
and microscopy techniques.
South Applied To develop an expectation-maximization (EM) algorithm for | Theoretical modeling using the quantile variant of the
[12] | Korea Statistics, parameter estimation in the Birnbaum-Saunders distribution | EM algorithm (QEM) to handle multimodal failures,
USA ’ Industrial under competing risks, considering both masking and | masking, and censoring in the Birnbaum-Saunders
Engineering censoring effects. distribution.
. . . . . Experimental study involving behavioral tasks, EEG
To investigate how expectations influence face perception - L0 -
UK, Psychology, . [ h recordings, multivariate pattern analysis (MVPA), and
[23] . and how this is modulated by individual expertise in face - .
Portugal Neuroscience . statistical analysis to decode neural responses and
processing. : .
measure behavioral impacts.
. . . Theoretical modeling using inexact augmented
. To propose a stochastic primal-dual adaptive method . g .
Applied . . . Lagrangian method, adaptive techniques, and
. . (SPDAM) for solving non-convex programs with expectation L .
[24] | China Mathematics, . . . . . momentum-based search directions, with convergence
S constraints, incorporating adaptive step size and momentum- . . . .
Optimization analysis and numerical experiments to validate the

based search directions to improve convergence.

method.
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Figure 1 Conceptual framework

The final phase of this research involves conducting a gap
analysis to identify and understand the discrepancies between the
expected and actual lifespans of main pump components. The
findings from this gap analysis will offer valuable insights into
how closely the machine owners' expectations align with actual
conditions. Based on these insights, the research will provide
more accurate recommendations for component maintenance
and replacement planning, as well as strategies for improving the
accuracy of future component lifespan predictions. Ultimately,
this research aims to make a significant contribution to the
management of main pump component lifespans in Komatsu
PC200 units, thereby enhancing the operational efficiency and
effectiveness of these machines

3. RESULT AND DISCUSSION
3.1 Respondent demographics

This study involved respondents with various levels of work
experience, positions within the company, and from the heavy
equipment industry sector as shown in Table 3. Most of the
respondents, 34 per cent, had work experience between 16 and
20 years. In addition, 22% of respondents have less than 10 years
of experience, followed by 17% of respondents with work
experience between 10 to 15 years. Meanwhile, only 14% of
respondents have more than 21 years of work experience. This
data shows that the majority of respondents have a significant
level of work experience, especially in the 16 to 20 years range,
which allows them to have a deep understanding of the industry
they work in.

In terms of job titles, respondents are spread across various
positions in the company's organisational structure. Most
respondents, 31 per cent, work as staff, followed by 28 per cent
who occupy supervisory positions. Manager positions were
filled by 17% of respondents, while director positions were held
by 12% of respondents see Table 1. This shows that the survey
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Table 2 Data expectation age vs actual age of engine

components
No | Expectation Age | Actual Age | No | Expectation Age | Actual Age
1 30000 28252 27 12000 9479
2 30000 25248 28 12000 9211
3 30000 20891 29 12000 9128
4 24000 19366 30 12000 9058
5 20000 18448 31 12000 8926
6 20000 17025 32 12000 8765
7 20000 16213 33 12000 8748
8 20000 15258 34 12000 8657
9 20000 15180 35 12000 8640
10 20000 15048 36 12000 8561
11 20000 14672 37 12000 7996
12 18000 14399 38 11000 7854
13 18000 13489 39 10000 7477
14 18000 12561 40 10000 7420
15 18000 12345 41 10000 7135
16 18000 12000 42 10000 7091
17 18000 11767 43 10000 7074
18 18000 11625 44 8000 6708
19 18000 11540 45 8000 6453
20 16000 11267 46 8000 6428
21 15000 10524 47 8000 6359
22 14000 10161 48 8000 6280
23 14000 10083 49 8000 6219
24 14000 9889 50 6000 6218
25 12000 9674 51 6000 6170
26 12000 9564

includes views from different levels of management, providing
a more comprehensive perspective on the issues faced in the
heavy equipment industry. All respondents in this study were
from heavy equipment companies, demonstrating a specific and
relevant focus on the topic at hand. The diversity of experience
and working positions amongst the respondents lends depth and
credibility to the results, as the feedback comes from individuals
with different backgrounds and responsibilities within the
industry.

3.2 Descriptive statistics

Descriptive analysis of the expected and actual life data of
mainpump components on Komatsu PC200 units showed a
significant difference between expectations and reality in the
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field. The average expected life of the component is around
15,686 hours, reflecting the owner's or operator's expectation of
the durability of the component see Figure 2. However, the data
shows that the actual life of these components tends to be shorter,
averaging only 12,429 hours. This discrepancy suggests that
mainpump components often fail earlier than expected, which
can result in increased operational costs and higher maintenance
frequency see Figure 3.

Table 3. Respondents demograpic characteristics

Experience N
Below 10 year 13
10 - 15 year 10
16 - 20 year 20
Above 21 year 8
Position

Director 7
Manager 10
Staff 18
Supervisor 16
Company

Heavy Equipment Company | 28

The variation in expected and actual life is also significant,
with a standard deviation of 6,688 hours for expected life and
5,461 hours for actual life, respectively. This indicates that not
all components performed consistently, both in terms of
durability and realised lifespan. Some components did manage
to approach or even exceed their expected life, but most others
performed significantly lower. This could be due to a variety of
factors, such as different operating conditions, material quality,
or maintenance methods applied.

Scatter Plot of Expectation Age vs Actual Age

x Data Points
=== Ideal Line -7

25000 5 x
20000 s

15000 e

Actual Age (hours)
\

10000 H

5000 10000 15000 20000 25600 30000

Expectation Age (hours)

Figure 2 Scatter plot of expectation age vs actual age

From the results of this analysis, it can be concluded that
maintenance and component replacement strategies need to be
evaluated and possibly adjusted to better match actual
operational conditions. With a better understanding of the factors
that influence the difference between expected and actual life,
machine owners and operators can make more informed
decisions to improve the operational efficiency and effectiveness
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of Komatsu PC200 units, as well as minimise unexpected costs
due to premature component failure.

Histogram of Differences between Expectation Age and Actual Age
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Difference (hours)
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Figure 3 Histogram of differences of expectation age vs actual
age

3.3 Linier regression analysis

The results of statistical analyses using linear regression
models on the expected and actual ages of mainpump
components on Komatsu PC200 units provide a strong picture of
the relationship between expectations and reality of component
performance. With a Coefficient of Determination (R?) value of
0.933, it can be concluded that approximately 93.3% of the
variability in the actual age of the component can be explained
by the previously defined expected age. This indicates that the
predicted expected life made by the owner or operator has a
significant influence on the actual life achieved by the
component. However, although this relationship is strong,
further results show that there are differences that need to be
considered.

The Mean Squared Error (MSE) value of 1,560,109.81
indicates the average of the squared difference between the
predicted and actual values. While this value is relatively large,
it is understandable given the scale and variation present in the
data. This MSE provides an overview of how far away the model
predictions are from the actual values, highlighting that there is
a margin of error that needs to be considered, especially in an
operational context where the accuracy of component life
prediction is critical for maintenance and replacement planning.

Furthermore, the Mean Absolute Percentage Error (MAPE)
of 7.6% indicates that on average, the model predictions deviate
about 7.6% from the actual values. MAPE provides a measure of
prediction error in percentage terms, which is easier to interpret
in an operational context. With a fairly low MAPE, the model
can be said to be fairly accurate in predicting the actual age of
components based on the expected age, but there is still room for
improvement.

The MAPE value of 92.4% further confirms that the model
has a high level of prediction accuracy. With this level of
accuracy, the model can be considered a reliable tool to assist in
the decision-making process regarding component maintenance
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and replacement. However, it is important to note that despite the
high accuracy of the model, the lower than expected actual life
of the components indicates the presence of other external or
internal factors that may not be fully accommodated in the
model.

Overall, this analysis revealed that while the linear
regression model was able to explain most of the variability in
actual component life, there were indications that expectations
of component life were often higher than what could actually be
achieved in the field. This highlights the importance of further
evaluation of other factors that may affect component
performance, such as severe operational conditions, variations in
maintenance quality, and component material quality. With a
deeper understanding of these factors, machine owners and
operators can develop more effective strategies to maximise
component life and improve overall operational efficiency.

3.4 ANOVA analysis

To address the primary research question regarding the
alignment between heavy equipment owners’ expectations and
the actual lifespan of machine components under real operational
conditions, a one-way analysis of variance (ANOVA) was
conducted. This statistical method aimed to determine whether a
significant difference exists between the expected component
lifespan and the actual lifespan, based on data from 51
observations.

The ANOVA results yielded an F-statistic of 11.57 with a
p-value of 0.00096, indicating a statistically significant
difference between the expected and actual lifespans of the
components (p < 0.05). Consequently, the null hypothesis (Ho)—
which posited no difference between the two lifespan groups—
is rejected.

This finding substantiates the assertion presented in the
literature review that equipment owners’ expectations are
frequently based on incomplete or outdated information, such as
legacy data or generalized manufacturer recommendations.
These expectations often do not account for the variability of
real-world operating conditions. The observed disparity aligns
with the principles of Reliability Theory and Component Life
Cycle Theory, both of which highlight the critical influence of
material quality, environmental conditions, and maintenance
practices on component longevity.

Moreover, the results reinforce the relevance of Condition-
Based Maintenance Theory, which advocates for maintenance
interventions based on actual equipment conditions rather than
fixed schedules. Inaccurate expectations can result in premature
or delayed replacements, leading to increased operational costs,
unexpected downtime, and reduced overall efficiency.

Thus, the findings of this analysis provide empirical support
for the hypothesis that a significant mismatch exists between
expected and actual component lifespans. Addressing this gap
requires recalibrating expectations using empirical field data and
adopting more comprehensive analytical frameworks. Such an
approach will enable equipment owners to make more informed,
data-driven decisions, ultimately improving asset reliability,
operational performance, and cost efficiency.
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3.5 Model testing

The results of testing the linear regression model against the
expected and actual age data of mainpump components on
Komatsu PC200 units provide an in-depth picture of the model's
predictive effectiveness in explaining the relationship between
these variables. The Coefficient of Determination (R?) value of
0.933 indicates that the model is able to explain 93.3% of the
variability in the actual age of components based on the specified
expected age. This is a strong indication that expected life is a
very good predictor for estimating the actual life of components.
However, there is still 6.7% of variability that cannot be
explained by the model, which may be influenced by factors
other than expected life.

Furthermore, the Mean Squared Error (MSE) value of
1,560,109.81 reveals the margin of error in the model prediction,
where the average squared error between the predicted and actual
values is quite large. While the R? indicates that the model is
good at explaining relationships, the MSE value indicates that
there is still a significant difference between the model's
predictions and the actual data. This means that, in practical
applications, decisions made based on these predictions should
consider the potential margin of error.

In terms of prediction accuracy, the Mean Absolute
Percentage Error (MAPE) value of 7.6% indicates that, on
average, the model predictions deviate by 7.6% from the actual
values. This relatively low MAPE indicates that the model is
quite accurate in providing predictions, although such small
errors are still important to consider in an operational context,
especially in critical component maintenance planning. In
addition, the 1 - MAPE value of 92.4% provides confidence that
the model has an excellent level of accuracy, meaning that the
model's predictions are reliable in the majority of cases.
However, it is important to remain aware of possible prediction
errors that may arise due to variability that is not fully captured
by the model.

Overall, the results of testing this linear regression model
reveal that while expected life is a strong predictive tool for
actual life of components, there are indications that actual life is
often lower than expected. This highlights the importance of
continuously monitoring and adjusting component maintenance
and replacement strategies based on actual conditions in the
field, as well as considering other factors that may affect

component performance to achieve higher operational
efficiency.
3.6 Gap Analysis

This gap analysis began by identifying a significant
difference between the expected and actual life of the mainpump
components. From the available data, it was found that the
average expected life of the components was 15,686 hours, while
the average actual life achieved was only 12,429 hours. This
indicates an average gap of 3,257 hours, where components tend
to fail or require replacement sooner than expected. This gap
reveals a gap between expectation and reality in the field that
needs special attention.
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The variability of this gap is also significant, with a standard
deviation of expected age of 6,688 hours and a standard
deviation of actual age of 5,461 hours. This shows that there is
not only a difference between the expected and actual ages, but
also a large variation between the different components. Some
components may be close to or even exceed their expected age,
while others fail much earlier, which suggests that certain factors
may play a role in widening or narrowing this gap.

Factors that could potentially cause this gap include
operational conditions that may be more severe than anticipated,
sub-optimal maintenance methods, and variations in the quality
of materials or parts used. For example, harsh working
environments or higher than normal workloads can accelerate
component wear. Similarly, maintenance that is inconsistent or
not in accordance with the manufacturer's standards can reduce
component life, and differences in material quality can be
another significant factor.

The implications of this gap are very important for machine
owners and operators to consider. These gaps can lead to
increased operational costs as components need to be replaced
more frequently than expected. In addition, unexpected
component failures can lead to unplanned machine downtime,
which negatively impacts productivity and operational
efficiency. Therefore, expectations of component life may need
to be revised and maintenance strategies should be adjusted to
better match actual operational conditions.

3.7 Finding and discussion

From the results of the research on the gap between expected
and actual life of mainpump components on Komatsu PC200
units, there are several important findings that are worth noting.
The main finding shows that there is a significant gap between
the expected and actual life, where the average expected life of
the components is 15,686 hours, while the average actual life
only reaches 12,429 hours. With a gap of 3,257 hours, this
indicates that these components are likely to fail or require
replacement sooner than expected. In addition, the high
variability in this gap indicates that not all components are
performing consistently, and some components are failing much
earlier than expected.

This finding is in line with Reliability Theory, which states
that component life is influenced by various factors, including
material quality, component design, and operational conditions.
The mismatch between expected and actual life can be caused by
differences in usage conditions and working environments that
do not match the initial prediction. This theory also reminds us
of the concept of "failure rate", which suggests that component
failure may occur sooner than anticipated if operational
conditions do not match expectations.

In addition, Life Cycle Cost Analysis (LCCA) theory
supports these findings by emphasising the importance of
understanding and predicting the total cost of a component over
its lifetime, including repair and replacement costs due to failure.
In this context, overly optimistic component life expectations
can lead to increased operational costs and unexpected
downtime, negatively impacting efficiency and productivity.
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This research reinforces the importance of LCCA in helping
machine operators and managers to set more realistic
expectations regarding component life and manage costs more
effectively.

Another significant finding is the influence of operational
and maintenance factors on the actual life of components.
Condition-Based Maintenance Theory offers a relevant view
here, stating that monitoring the actual condition of components
during their use can help extend component life if maintenance
is performed based on real conditions rather than a
predetermined fixed schedule. The findings suggest that the
implementation of technology-based condition monitoring and a
more proactive maintenance approach can be an effective
solution to reduce the gap between expected and actual life.

Overall, the findings of this study not only confirm existing
theories but also highlight the importance of implementing more
adaptive and data-driven practices in machine component
management. Adjusting maintenance strategies and expectations
based on real-world conditions is essential to maximise
component life and improve overall operational efficiency. As
such, this study provides valuable insights for machine operators
and managers in managing expectations and realities regarding
mainpump component life on Komatsu PC200 units.

The results of this study confirm that there is a statistically
significant difference between the expected and actual lifespans
of heavy equipment components, as perceived by equipment
owners. The ANOVA analysis revealed a clear misalignment
between what owners anticipate and what occurs in real
operational environments. This gap reflects a deeper issue in
how component life is estimated and managed in the field.

Expectations regarding component lifespan are often built
upon generalized manufacturer recommendations, legacy
operational knowledge, or anecdotal experience. These sources,
while useful, may no longer fully represent the complexities of
modern working conditions. As a result, operators frequently
overestimate the durability of components, leading to
unanticipated failures. This misalignment has practical
consequences. It increases operational costs due to premature
replacements, causes unplanned downtime, and undermines the
overall efficiency of equipment fleets.

From a cost and planning perspective, the consequences are
significant. When component lifespans fall short of expectations,
maintenance schedules become reactive rather than proactive.
This reduces control over inventory, leads to emergency
procurement, and disrupts workflows. Moreover, these events
contribute to a higher total cost of ownership, especially when
multiplied across a fleet of machines over extended operational
periods. The findings, therefore, reinforce the importance of
aligning expectations with empirical data to support more
precise and economically sound decision-making.

Beyond the statistical result, a deeper technical
understanding is also essential. Many premature component
failures can be traced back to physical degradation mechanisms
that are often overlooked during expectation setting. These
include fatigue, corrosion, and thermal stress—each of which
has a specific influence on component longevity.
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Fatigue occurs through the accumulation of stress over time,
particularly in high-load or repetitive-use environments. This is
common in rotating parts or hydraulic components subjected to
cyclic forces. Corrosion, meanwhile, accelerates in high-
humidity or chemically exposed environments, silently
weakening structural integrity. Thermal stress—resulting from
fluctuations in operating temperatures—causes expansion and
contraction that gradually damages seals, gaskets, and sensitive
materials. These mechanisms do not always manifest visibly
until a component fails, which contributes to the false perception
of reliability during much of the component’s service life.

Understanding these mechanisms highlights the importance
of moving beyond purely time-based maintenance strategies.
The adoption of condition-based or predictive maintenance
strategies—grounded in actual operational data and supported by
monitoring technology—can dramatically improve the accuracy
of lifespan forecasting. It also allows for tailored maintenance
interventions that prevent early failure while minimizing
unnecessary replacements.

4. CONCLUSION

While this study employs established methodologies such as
ANOVA and draws upon foundational theories like Reliability
Theory and Life Cycle Cost Analysis, its core novelty lies in
reframing component lifespan not solely as a technical
parameter, but as a comparative construct between expectation
and reality. Unlike prior studies that focus predominantly on
engineering-based predictions or failure modeling, this research
introduces a unique perspective by treating owner-perceived
lifespan as a measurable and analyzable variable. By statistically
examining the gap between expected and actual component life,
the study reveals a critical disconnect that has practical
consequences in terms of cost overruns, unplanned downtime,
and maintenance inefficiencies—dimensions often overlooked
in conventional reliability research.

In addition to this conceptual contribution, the study
integrates practical insights with technical reasoning by
connecting field data to the physics of failure mechanisms such
as fatigue, corrosion, and thermal stress—factors that directly
affect component longevity in real-world settings. This
integration not only validates the significance of the expectation-
reality gap but also leads to actionable recommendations for
condition-based maintenance, data-driven planning, and
customized lifecycle management. Therefore, while the
statistical tools used are well-established, the novelty of this
research lies in its focus, framing, and applied implications,
offering both theoretical enrichment and tangible value to
industry practitioners.This study revealed a significant gap
between the expected and actual life of mainpump components
on Komatsu PC200 units, with actual life consistently lower than
expected. This gap averaged 3,257 hours indicating that many
components failed or required replacement earlier than
predicted. Factors such as severe operating conditions, sub-
optimal maintenance methods, and varying material quality
contribute to this mismatch. This finding confirms that
expectations of component life need to be matched with actual
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operational conditions to minimise the gap between expectation
and reality.

This research makes an important contribution by providing
an in-depth analysis of the difference between expectation and
reality in machine component life. Using a gap analysis
approach, this research identifies the factors that cause the
mismatch between expected and actual life. In addition, this
research strengthens existing theories such as Reliability Theory,
Life Cycle Cost Analysis (LCCA), and Condition-Based
Maintenance Theory, by providing relevant empirical evidence
in the context of the heavy equipment industry. The results also
provide insights for practitioners in setting more realistic
expectations regarding component life.

The findings of this study have important implications for
machine managers and operators in managing component
maintenance and replacement. Firstly, managers should consider
adopting a more proactive and data-driven condition-based
maintenance approach to reduce the gap between expected and
actual life. Secondly, managers should conduct periodic
evaluations of component life expectations, using historical data
from component performance in the field to adjust these
expectations. This will help in making more informed decisions
regarding maintenance and replacement planning, which in turn
can improve operational efficiency and reduce unexpected
downtime.

For future research development, there are several areas that
need to be further explored. Firstly, future research could focus
on identifying in more detail the specific factors that influence
the difference between expected and actual age, such as in-depth
analyses of working environmental conditions and variations in
maintenance methods. Secondly, the study could be extended by
considering other types of components or other types of
machines to see if similar findings occur in different contexts. In
addition, experimental research that tests the effectiveness of
condition-based maintenance approaches or sensor-based
monitoring technologies may also provide additional insights for
improving component reliability and durability in the heavy
equipment industry. As such, future research can contribute to
the development of best practices in maintenance management
and component replacement, and improve overall operational
efficiency.
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