
 

ABSTRACT 
The prevalence of Dengue Haemorrhagic Fever (DHF), a disease prevalent in 
countries with tropical and sub-tropical climates, including Indonesia, has exhibit-
ed a notable increase over the past two decades. A study case of a region experienc-
ing this surge is Malang Region, which situated in East Java. The transmission of 
DHF within individual human is facilitated by the existence of Ae. aegypti, which 
serves as one of the intermediate vector mosquitoes. MaxEnt modelling was em-
ployed to analyse the niche and distribution of Ae. aegypti. The results of this study 
demonstrated that the integration of environmental and anthropogenic variables in 
a combination model provided  more comprehensive approach for comprehending 
the niche and distribution patterns of Ae. aegypti compared to relying only regard-
ing a climatic model. Areas characterised by higher temperatures, high population 
density, and limited vegetation cover possess the inherent capacity to serve as suit-
able habitats for Ae. aegypti. According to the modelling results, the distribution of 
Ae. aegypti in Malang region currently encompasses approximately 14.5 % (545.5 
km2) of the total area. It is projected that this distribution can potentially expand to 
15.5 % (568.9 km2) by the year 2040. Several sub-districts, namely Klojen, Blimb-
ing, Sukun, Lowokwaru, Kedungkandang, Pakisaji, and Kepanjen, have been classi-
fied as high-risk areas that require special concern. The combination model of envi-
ronmental variables and anthropogenic variables provide more comprehensive ap-
proach to understand the niche and the distribution patterns of Ae. aegypti in Ma-
lang Region compared to relying solely on climate models. 
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INTRODUCTION 
Dengue Hemorrhagic Fever (DHF) is a tropical and subtropical disease that 
is receiving increased attention in several regions of the world, including In-
donesia (Capinha et al. 2014; Kraemer et al. 2015). The disease is caused by 
four types of dengue arbovirus (DENV-1, -2, -3, and -4), the family Flaviri-
dae, the genus flavivirus, with the mosquito species Aedes aegypti serving as 
one of several vectors for transmitting the virus to humans (Tuiskunen & 
Lundkvist 2013; Swaidatul et al. 2022). According to Harapan et al. (2019) 
and the Indonesia Ministry of Health (2017), dengue case reports have in-
creased in various regions of Indonesia over the past 2 decades. Although the 
implementation of the dengue preventive program initially led to a decrease 
in the number of cases, few years later there was a subsequent increase in the 
number of cases. This phenomenon is evident from the data compiled by Su-
listyawati (2020) and The Indonesia Ministry of Health (2020), which reveals 
a significant increase in the number of cases since 2000, with fluctuations oc-
curring between 2007 and 2018. In 2020, the number of individuals affected 
by DHF in this region increase significantly, with over 1700 people being af-
flicted (East Java Provincial Health Service 2021). 

The Indonesia Ministry of Health (2017) implemented multiple strate-
gies to counteract the spread of the dengue virus. Since the 1980s, vector con-
trol has heavily relied on active community participation, employing strate-
gies such as larvicide use, fogging, mosquito nets, the 3M (“Menguras, Me-
nutup, Mendaur ulang barang bekas”) Program, larvae monitoring officers, elim-
ination of mosquito nests, and the more recent “Gerakan 1 Rumah 1 Juman-
tik” (this movement is carried out by selecting a family member at home to 
monitor for larvae and using social media to report regularly) (Sulistyawati 
2020). Nevertheless, according to Harapan et al. (2019), these strategies have 
not yet proven to be successful in significantly and optimally decreasing the 
number of individuals affected by dengue in Indonesia. The Indonesia Minis-
try of Health (2021) states that one of the challenges in dengue virus control 
is the lack of technology, so a quality and sustainable information system is 
expected to prioritise resource distribution to the most vulnerable regions. 
Tolinggi and Dengo (2019) suggested that utilising spatial niche analysis 
could serve as empirical evidence that is crucial for targeted interventions and 
can be used for designing programs aimed at preventing and controlling 
DHF. 

Vector mosquitoes, such as Ae. aegypti, exhibit niches which provide a 
crucial role in determining their distribution. These niches are influenced by 
various factors, including environmental conditions (Lozano-Fuentes et al. 
2012) and anthropogenic factor (Obenauer et al. 2017). The interaction of 
both factors in relation to the distribution of vector mosquito populations in-
volves significant importance, particularly due to the anthropophilic nature of 
Ae. aegypti (Gomes et al. 2005). According to their nature, unique anthropo-
genic profile within a specified area, including population density and poverty 
also remain as spreading factor (Obenauer et al. 2017). Hence, the explanation 
of mosquito niches is not restricted to climatic factors, as this oversimplifies 
the dynamics of mosquito niche (Eisen & Moore 2013). 

Climate change is a contributing factor to the distribution dynamics of 
Ae. aegypti populations, as these insects, like other poikilothermic species, are 
influenced by changes in temperature (Upshur et al. 2019). The IPCC (2021) 
has documented that global temperatures have, on average, risen by 1.07 °C 
between the years 1850-1900 and 2011-2019, with a range of 0.8 °C to 1.3 °C. 
The average land temperature is significantly higher, measuring 1.59 °C, 
with a variation between 1.34 °C and 1.83 °C. In addition, there has been an 
increase in both the intensity and frequency of rainfall as a climate variable 
since the 1950s (Wan et al. 2014; Knutson & Zeng 2018). Nevertheless, tem-
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perature and rainfall fluctuations exhibit significant variation across different 
geographic regions (Liu & Allan 2013; Schurer et al. 2020; Susilawaty et al. 
2021). Therefore, it is imperative to conduct adjusted modeling in order to 
obtain accurate and representative results. The Coupled Model Intercompari-
son Project (CMIP6) is a widely utilised Global Climate Model. It is current-
ly utilized alongside Shared Socioeconomic Pathways (SSPs) to establish 
emission scenarios (Meinshausen et al. 2020). 

A commonly employed method recent times is machine learning 
(Witten et al. 2016). MaxEnt (Maximum Entropy), has gained significant 
popularity since its introduction by Phillips et al. (2006) as a machine learn-
ing algorithm. MaxEnt is a common technique for utilising presence-only 
data. It is known for its capability to incorporate background data and spatial 
variables as a deliberate approach (Peterson et al. 2011). Furthermore, 
MaxEnt, a type of machine-learning algorithm, is considered an effective 
modelling technique due to its capacity to accurately represent intricate pat-
terns of data (Elith et al. 2010). Several research studies (e.g., Kraemer et al. 
2015; Santos & Meneses 2017; Dickens et al. 2018; Iwamura et al. 2020, etc.) 
have used geographical distribution or ecological niche modelling to explore 
Ae. aegypti as a disease vector on a worldwide scale. Sallam et al. (2017) as-
serted that the utilisation of the MaxEnt algorithm for modelling the Aedes 
genera can be considered a suitable technique. 

Nevertheless, conducting a reassessment specifically in the Malang re-
gion area is important due to the potential discrepancies in modeling out-
comes between global and regional scales (Hastie et al. 2009; Früh et al. 
2018). The objective of this research was to generate a spatial model using 
MaxEnt algorithm to determine the potential niche and distribution of Ae. 
aegypti in the region of Malang region. In addtition, a future distribution 
model was conducted to project the potential distribution of Ae. aegypti in the 
coming decades. 

 
MATERIALS AND METHODS 
Study Area 
Malang region is a metropolitan area situated in the province of East Java, 
Indonesia and predominantly characterized by its highland urban and sub-
urban areas, with the exception of its southern part which is a lowland area. 
This region is adjacent by several mountains (e.g., Mt. Bromo-Tengger-
Semeru on the south side, Mt. Arjuno-Welirang and Mt. Panderman-Kawi-
Butak on the west side). This region covers a total area of 3882.44 km2 and is 
consists of three distinct administrative regions: (i) Malang City (145.28 km2; 
5 sub-districts), (ii) Malang Regency (3534.86 km2; 33 sub-districts), and (iii) 
Batu City (202.3 km2; 3 sub-districts) in (Figure 1).  

 
Analysis 
The modeling process involves utilising the occurrence data of encounter Ae. 
aegypti. In this study, two distinct models were utilised: (1) utilizing merely 
an environmental model, and (2) integrating both environmental and anthro-
pogenic variable into a combined model. In addition, we projected future 
models involving two climate change scenarios using the present distribution 
model that performed the best. Furthermore, resampling was performed on 
all predictor variables. Multicollinearity tests are particularly necessary when 
examining environmental variables.  

 
Data 
A total of 35 occurrence data of Ae. aegypti in the Malang region was obtained 
through the collection of primary and secondary data sources from literatures 
(Gama et al. 2013; Gama & Salsabila 2021). Primary data collection was con-
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ducted at the larval and imago stages, using a random selection of locations 
both indoors and outdoors. Both active and passive methods were used to ob-
tain samples. The larval sample collection was conducted using the dipping 
method, whereas the imago specimens were collected using aspirators. The 
larvae are collected using the passive method called ovitrap, while the adult 
mosquitoes are collected using a UV mosquito trap. In order to validate the 
species of mosquitoes, we adhere to the identification guidelines provided by 
Becker et al. (2020). Each sampling location coordinate recorded using GPS 
Garmin 64s. 

The predictor variables utilised in our study are associated with envi-
ronmental factors, such as climate and topography, as well as population 
characteristics, including population density and poverty number. The cli-
mate variable data utilised in this study was acquired from the WorldClim 
v.2.1 dataset (~1 km2) (Fick & Hijmans 2017). Additionally, the topography 
data was obtained from the Shuttle Radar Topography Mission (SRTM) da-
taset (Jarvis et al. 2008). Furthermore, we obtained the Normalized Differ-
ence Vegetation Index (NDVI) variables (~30 m2) and tree canopy cover data 
for the year 2000 from composite datasets of Landsat cloud-free images 
(Hansen et al. 2013). The latest available anthropogenic data pertaining to 
population density and poverty was obtained from the BPS-Statistics Indone-
sia Batu Municipality (2022), BPS-Statistics Indonesia Malang Municipality 
(2023), and BPS-Statistics Indonesia Malang Regency (2021). 

 

 
Figure 1. Occurrences of Ae. aegypti utilize in this study. 

Preprocessing 
The RStudio 2023.06.2+561 version software was utilised in order to carry 
out the preprocessing on each and every predictor variable. The raster repre-
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sentations of all environmental predictor variables are obtained, though not 
necessarily in the same resolution or spatial projection across the board. 
Hence, we are going to have to perform resampling using the raster package 
first (Hijmans 2023). We decided on a resolution of 250 by 250 meters so that 
it would be better to give the biological rational following Wiese et al. (2019). 
We determine variables related to the anthropogenic profile by referring to 
Obenauer et al. (2017), which are population density and poverty.  

 
Variable selection 
It is essential to evaluate the presence of multicollinearity among the predic-
tor variables to prevent overfitting, which can render the model unsuitable 
(Pradhan & Setyawan 2021). A multicollinearity test was performed on all 
environmental variables utilising the VIF (variance inflation factor) statistical 
approach. The vifcor function, which is part of the usdm package (Naimi et al. 
2014), is employed to perform this step. The VIF analysis generated results 
indicating that there were 10 environmental predictor variables that exhibit-
ed no issues of multicollinearity (Table 1). 
 
Table 1. The variance inflation factor (VIF) values of the environmental variables 
selected in the modeling process. 

 
 
Species Distribution Modelling using MaxEnt 
Several distribution modelling algorithms have been employed to represent 
mosquito niches and spatial distribution, including the maximum entropy al-
gorithm. The utilisation of this algorithm, which is based on machine learn-
ing, is widespread due to its ability to operate effectively with a modest quan-
tity of presence data (Elith et al. 2006). The software utilised in this study 
was MaxEnt version 3.4.4 (Phillips et al. 2023), employing a cross-validated 
approach with 10 replications. A training presence threshold at the 10th per-
centile was employed, which involved excluding areas with habitat suitability 
values below 10 % of the encounter point. In order to enhance the optimisa-
tion of the conducted modelling, we implemented various adjustment in ex-
perimental parameters. These parameters include the q2lqpt threshold set to 
0, the l2lq threshold set to 0, the beta threshold set to 1.83, the beta categori-
cal set to 0.1, the beta lqp set to 0.9, and the beta hinge set to 0.5. It is essen-
tial to establish appropriate measures to reduce the possibility of overfitting 
or underfitting, particularly in scenarios where the sample size is relatively 
limited (Radosavljevic & Anderson 2014). In addition to the implemented 
modifications, the default adjustments provided by the MaxEnt software were 
utilised. The evaluation of the model generated in each iteration is conducted 

Code Variable VIF value 

bio2 Mean Diurnal Range 1.91 

bio3 Isothermality 1.78 

bio4 Temperature Seasonality 2.53 

bio13 Precipitation of Wettest Month 14.48 

bio14 Precipitation of Driest Month 23.72 

bio15 Precipitation Seasonality 25.98 

bio18 Precipitation of Warmest Quarter 6.45 

Elev Elevation 6.48 

ndvi Normalized Difference Vegetation Index Landsat 8 2.08 

treecov Tree Cover 2.22 
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by evaluating the area under the curve (AUC) value revealed on the receiver 
operating characteristic (ROC) curve. 
 
Data visualisation  
We used QGIS 3.18 to visualize probability maps of Ae. aegypti distribution in 
each model, environmental and combination. After finding the model with the 
highest AUC value, which was assumed to be the best model, we mapped the 
area with the level of risk by adapting the HSC (Habitat Suitability Classifica-
tion) classification concept carried out by Khan et al. (2022). HSC is catego-
rised into five classes: p<0.2 (not suitable), 0.2-0.4 (least suitable), 0.4-0.6 
(moderately suitable), 0.6-0.8 (highly suitable), and p>0.8 (very highly suita-
ble). We also calculated the area of each class and made a ratio with the total 
area in each sub-district. 

 
RESULTS 
Environmental model 
The Maxent model evaluation results indicated that a number of the selected 
environmental predictor variables (Table 1) comprised the most appropriate 
environmental model for estimating the presence of Ae. aegypti in the Malang 
region. The prediction reliability of the average value of the omission rate 
and predicted area was high. The replication resulted in an average AUC val-
ue of 0.877, with a standard deviation of 0.072. This value indicates that the 
predictive ability of the distribution modelling results is high.  

According to the results of the jackknife analysis (Table 2), it is appar-
ent that the variable with the highest percentage contribution was the mean 
diurnal range (bio2) variable. In addition, it was discovered that four addi-
tional variables exhibited a contribution percentage value exceeding 4 %. 
These variables include the normalised difference vegetation index (NDVI), 
isothermality (bio3), and tree canopy cover (treecov). Furthermore, the re-
sponse curve is constructed as a probability estimation for a specific value of 
each variable (Figure 2). For instance, the variable bio2 exhibits an exponen-
tial increase within the temperature range of 7-10 °C, followed by a plateau 
once it surpasses 10 °C. Similarly, the variable NDVI demonstrates an expo-
nential decrease within the range of 0-1, and then stabilizes after exceeding 1. 
Moreover, the variable bio3 displays an exponential increase within the range 
of 77-84, and then reaches a stagnation after surpassing 84. Furthermore, the 
variable treecov demonstrated a decreasing trend between 0-10 % and 50-100 
%, while continuing to reach a stable state between 10-50 %. 

 
Combination model (Environment + Anthropogenic) 
The evaluation results of the MaxEnt model indicated that it exhibited robust 
predictive capabilities, as demonstrated by its performance when considering 
selected environmental predictor variables (refer to Table 1) in combination 
with population variables such as population density (PopDensity) and pov-
erty (Poverty). The mean value of the omission rate and the predicted area 
demonstrated a high level of reliability in prediction. The mean area under 
the curve (AUC) value for the replication was found to be 0.890, accompanied 
by a standard deviation of 0.201. This finding suggests that incorporating 
both environmental and population variables in the modelling of Ae. aegypti 
distribution results in a more accurate and comprehensive model, as com-
pared to utilising exclusively on environmental variables. 

The findings of the jackknife analysis conducted on the combined varia-
bles (Table 3) regarding the relationship between environment and popula-
tion exhibit that they congruent with the environmental model. This is evi-
dent as the variables bio2 (52.9 %) and ndvi (10.2 %) continue to demonstrate 
a substantial contribution percentage, despite the addition of the PopDensity 



J. Tropical Biodiversity and Biotechnology, vol. 10 (2025), jtbb12678 

-7- 

variable (27.2 %) in the analysis. Despite the aforementioned, the response 
curve was generated to represent the probability estimation at specific values 
of each variable within the combination model (see Figure 3). Specifically, the 
variable "bio2" exhibited an increase within the temperature range of 7.0-
10.25 °C, followed by a decrease beyond 10.25 °C. Similarly, the variable 
"PopDensity" demonstrated a decrease within the ranges of 0-500 and 2500-
3500 families per subdistrict, while the probability increased within the range 
of 500-2500 household per subdistrict. 
 
Table 2. Percentage contribution of environmental predictor variables based on 
jacknife analysis. 

 
 
Table 3. Percentage contribution of predictor variable involve in combination model 
based on jackknife analysis. 

 
 

Future distribution model  
Considering that a combination of models (based on AUC values) can 
precisely represent Ae. aegyptis niche and distribution, we tend to utilise this 
model to categorised risk level based on HSC (Habitat Suitability 
Classification). According to Figure 4, Malang City and several areas of 
Malang district have a high probability of encountering Ae. aegypti, while 

Predictor variable Percentage contribution 

bio2 63 

ndvi 18.6 

bio3 5.7 

treecov 5.2 

bio4 3.2 

elev 1.4 

bio13 1 

bio14 0.9 

bio18 0.9 

bio15 0.1 

Predictor variable Percentage contribution 

bio2 52.9 

PopDensity 27.2 

ndvi 10.2 

treecov 2.5 

bio4 2.2 

Poverty 2.1 

bio3 1.5 

bio13 0.6 

elev 0.2 

bio14 0.2 

bio18 0.2 

bio15 0.1 
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Batu City has a low probability. Malang Region has a potential distribution 
area for Ae. aegypti (HSC-2, HSC-3, HSC-4, and HSC-5) of approximately 
545.5 km2. The findings of our future projection analysis suggest a projected 
expansion in the suitable habitat for Ae. aegypti in 2040. The total area of this 
expansion encompasses a best-case scenario that involves an approximate 

Figure 2. Variable response curve (contribution >4 %) according to environmental model. 

 

Figure 3. Variable response curve (contribution >4 %) in combination model (environment + population). 
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expansion of 0.63 % (23.4 km2). In comparison, the worst-case scenario 
entails a 0.56 % expansion (21 km2) (Table 4). 

The prioritisation of recommended locations for mosquito control in 
Malang Region is determined by calculating the ratio between the area in 
each HSC category and the total area in a sub-district. Several sub-districts 
within the Malang region exhibit the potential for dengue fever transmission, 
albeit occupying only 14.5 % of the total area. This likelihood is determined 
by the presence of areas with a probability exceeding 0.2, specifically within 
the HSC 2 to HSC 5 range. The districts in the Malang region that exhibit a 
habitat suitability percentage of over 50 % and highest HSC-5 ratio for the 
transmission of dengue fever in present distribution model, in sequential 
order, are as follows: Klojen, Blimbing, Sukun, Lowokwaru, Kedungkandang, 
and Pakisaji. In the projection of the Ae. aegypti distribution model for the 
year 2040, it is observed that several sub-districts continue to be classified as 
high-priority areas. The proportion of these sub-districts in the risk list is 
significantly greater when compared to the present distribution model. 
Furthermore, it has been observed that a specific sub-district, namely 
Kepanjen, which was previously excluded from the priority area, has indeed 
witnessed a rise in the proportion of suitable Ae. aegypti distribution (Figure 
5). 

Figure 4. Possible extant of Ae. aegypti based on (A) environmental and (B) combination (environment + 
population) models. 

Habitat Suitability 
Classification 
  

Current 
2040 

ssp126 ssp585 

km2 % km2 % km2 % 

HSC-1 3215.7 85.5 3194.3 84.9 3218.5 84.9 

HSC-2 295.3 7.85 306.3 8.14 286.9 7.63 

HSC-3 107.8 2.87 108.1 2.88 134.9 3.59 

HSC-4 74.1 1.97 71.3 1.90 73.4 1.95 

HSC-5 68.3 1.82 83.2 2.21 71.1 1.89 

Total suitable area 
(HSC-2 – HSC-5) 

545.5 14.50 568.9 15.13 566.5 15.06 

Table 4. Current and future habitat suitability of Ae. aegypti in Malang region. 
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DISCUSSION 
According to the outcomes of our modeling analysis, encompassing both en-
vironmental and combination models, it is evident that the prevalence of Ae. 
aegypti is notably higher in regions characterized by relatively warmer tem-
peratures. Multiple prior studies have also reported similar findings (Lozano-
Fuentes et al. 2012). The reason for this behavior can be attributed to Ae. ae-
gypti poikilothermic nature (Upshur et al. 2019). Moreover, it is important to 
understand that elevated temperatures typically have an impact on the rela-

Figure 5. Spatial distribution of Ae. aegypti in each sub-district assessed based on HSC in (A) the present and the 
next 20 years ((B) best scenario and (C) worse scenario). 
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tive humidity as a result of evaporation phenomena (Thani et al. 2017). Con-
sequently, under such circumstances, Ae. aegypti mosquitoes are able to fly 
without encountering any hindrance caused by the increased relative humidi-
ty present in the surrounding environment. Valdez et al. (2018) demonstrated 
that there exists a negative correlation between the abundance of Ae. aegypti 
and precipitation levels. The influence of climatic factors, such as temperature 
and precipitation, on mosquitoes or insects in general is well-recorded. How-
ever, it is noteworthy that vegetation conditions exhibit a distinct relation-
ship with the habitat preferences of Ae. aegypti. Specifically, these mosquitoes 
tend to select areas characterized by low vegetation density.  

Despite the fact that the environmental model demonstrates concord-
ance with numerous studies and exhibits favourable model evaluation out-
comes, the best model derived from this study was determined to be a combi-
nation of models integrating both environmental and anthropogenic varia-
bles. According to this model, it is hypothesized that, Ae. aegypti exhibits a 
preference for densely populated residential regions, with a particular prefer-
ence for indoor habitats (Samson et al. 2015; Martin et al. 2019). This prefer-
ence is associated with an attraction for human blood (Gomes et al. 2005; 
Mengko & Tuda 2016). Ratnasari et al. (2020) have also indicated that, Ae. 
aegypti commonly engages in oviposition within diverse categories of artificial 
receptacles that hold stagnant water, such as water drums, flowerpots, plastic 
cups, and discarded tires. Currently, the management of Ae. aegypti existence 
has proven to be challenging due to the diverse range of containers found in 
human settlements, which has led to uncertainty regarding their preferred 
sites for egg-laying (Hribar et al. 2004; Barrera et al. 2008; Arana-Guardia et 
al. 2014). The containers in question are frequently linked to disadvantaged 
areas of poverty (Obenauer et al. 2017; Martin et al. 2019; Souza et al. 2023). 
However, our model indicates that in the Malang region, poverty does not 
provide a significant contribution to our model. We hypothesise that, Ae. ae-
gypti favours reproduction in various forms of standing water (Agustin et al. 
2017), which is not exclusive to poor neighborhoods but can also occur in 
more affluent areas. Furthermore, urban areas that lack efficient waste man-
agement and drainage systems can serve as favourable environment for the 
development of Ae. aegypti mosquitoes (Banerjee et al. 2015), even though the 
socioeconomic condition of the subdistrict. Furthermore, the validity of the 
model's demonstration requires additional empirical research to verify the 
data in Malang region.  

Our future projection model suggests that, Ae. aegypti may expand in 
2040 within scenarios. In the best-case scenario, CO2 emissions are reduced 
and dispersed more widely than in the worst-case scenario. This is unusual 
because insects prefer high CO2 and temperatures (Menéndez et al. 2007; 
Menéndez 2007). The rise in temperature caused by CO2 emissions may also 
contribute to this condition. High temperatures (20–30 °C) accelerate Aedes 
spp. metabolism, speeding up its life cycle. The rising temperatures in Ma-
lang region may lead to the spread of Ae. aegypti. In addition to in conse-
quently, could result in an increase in reported cases of dengue virus, as indi-
cated in previous research conducted by Stephenson et al. (2022). However, 
extreme high temperatures (>30 °C) directly affect the hatching percentage 
of Ae. aegypti, with higher temperatures resulting in fewer hatchlings and vice 
versa (Mohammed & Chadee 2011). Aedes spp. larvae and pupae develop in 
puddles of water, and relative humidity indirectly affects evaporation 
(Steinhoff et al. 2016). The presence of exceedingly elevated temperatures 
leads to a reduction in relative humidity and an increase in evaporation rates, 
thereby instigating competition among larvae. Increasing the evaporation 
rate reduces the standing water where Aedes spp. larvae develop, potentially 
reducing their density (Alto et al. 2015; Bara et al. 2015). 
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In general, the utilisation of MaxEnt as a distribution modeling method 
for the distribution of Ae. aegypti in the Malang Region demonstrates promis-
ing outcomes and can serve as initial data for subsequent investigations. Nev-
ertheless, further investigation is required to validate the optimal ecological 
niche for Ae. aegypti and to effectively mitigate the transmission of DHF in 
Malang Region. This entails employing alternative algorithms (e.g., GLM or 
GAM), utilising predictor variables derived from locally accurate climate da-
ta. This research is particularly crucial in sub-districts with higher risk levels. 
In addition, it would be advantageous to acquire over time case data and in-
volve direct observations to authenticate the congruity between the model 
constructed in this study and actual situations across different years. 

 
CONCLUSIONS 
The combination model of environmental variables and anthropogenic varia-
bles provide more comprehensive approach to understand the niche and dis-
tribution patterns of Ae. aegypti compared to relying solely on climate models. 
Areas with higher temperatures, high population densities, and limited vege-
tation cover could become suitable habitats for Ae. aegypti. Based on modeling 
results, the distribution of Ae. aegypti in Malang Region currently covers 
around 14.5 % (545.5 km2) of the total area. It is projected that this distribu-
tion has the potential to expand to 15.5 % (568.9 km2) in 2040. Several sub-
districts, namely Klojen, Blimbing, Sukun, Lowokwaru, Kedungkandang, 
Pakisaji, and Kepanjen are classified as high-risk areas that require special 
concern. 
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