
 

ABSTRACT 
Various types of textile dye have been reported to contaminate the Cikijing River, 
West Java, Indonesia due to its location within the industrial region of Rancaekek 
District. It has been understood that certain bacterial species develop copper re-
sistance and dye decolourisation as a mechanism of stress adaptation. The study 
aims at isolating and characterising copper and dye resistance as well as decolouri-
sation ability of bacteria isolated from the Cikijing River. Copper-resistant bacteria 
were isolated using a series dilution method on Luria Bertani media supplemented 
with the addition of 1-10 mM CuSO4. Purified bacterial isolates were then tested 
for copper resistance onto LB agar medium supplemented with CuSO4 concentra-
tions ranging from 0 mM to 20 mM and decolourisation of various dyes. A total of 
59 copper-resistant bacteria were successfully isolated, nine of them showed the 
highest copper resistance with a MIC value from 11 mM up to 16 mM CuSO4 and 
resistance to   4 types of dyes up to 700 ppm. The 16S rDNA analysis showed that 
the nine isolates were Klebsiella sp., Klebsiella pneumoniae, Lysinibacillus boronitoler-
ans, Lysinibacillus fusiformis, Bacillus proteoliticus, Pseudomonas stutzeri, Klebsiella var-
iicola, Citrobacter freundii, and Klebsiella variicola. Out of nine isolates, five were 
found resistant to 5 mM CuSO4 and decolourise Methylene Blue, Congo Red, and 
Basic Fuchsine dyes at a maximum concentration of 700 ppm.  
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INTRODUCTION 
Cikijing River is a densely populated industrial area located in the Rancaekek 
District of West Java, Indonesia. Categorised as a tributary of Citarik and Ci-
tarum Rivers that flow through 13 cities, the Cikijing River is an important 
water source for residential and industrial regions, agriculture irrigation, and 
hydroelectric turbines (Cavelle 2013; Pantjawati et al. 2020; Riyadi et al. 
2020). However, the Cijiking River has an alarmingly high level of pollution 
due to rapid population growth and anthropogenic activities such as farming 
and product manufacturing (Prananda et al. 2017). Since Rancaekek District 
is the main centre for textile industries, Cikijing River is known to be con-
taminated with a variety of heavy metals and synthetic dyes on the sediments 
(Fadhilah et al. 2018).  Deposition and accumulation of heavy metals in river 
sediments may infiltrate the aquatic food chain, potentially leading to bioac-
cumulation and biomagnification. Heavy metals that are toxic may also dis-
rupt the growth and survival rate of terrestrial plants. Several toxic heavy 
metals that have been found circulating Cikijing River include cadmium, 
chromium, copper, zinc, mercury, arsenic, and lead (Septiono et al. 2015). 
Cikijing River contains a significantly high copper concentration (0.0233 
ppm) that surpasses the international limit (0.014 ppm) (Mahardika & Salami 
2012). As a transition metal, copper is an essential micronutrient and co-
factor for all living organisms at low concentrations, but detrimental at high 
concentrations (Zeng & Han 2020). Copper waste is commonly generated 
through industrial, agricultural, and aquacultural activities (Argudín et al. 
2019). Due to its non-biodegradability, copper is a human and environmental 
health hazard. Extended exposure to copper may result in allergic rhinitis, 
hyper lacrimation, hypersalivation, and photophobia, while chronic exposure 
leads to Wilson’s Disease which is characterised by a Kayser-Fleischer ring 
caused by copper accumulation inside the cornea. Nervous and gastrointesti-
nal (especially liver and kidney) disorders may also result from copper toxici-
ty (Karim et al. 2018).   

Synthetic dye is a toxic and reactive compound that creates environ-
mental imbalances. Textile, paper printing, colour photography, pharmaceuti-
cal, cosmetic, and food industries are among the most frequent synthetic dye 
users (Tkaczyk et al. 2020). Dye-contaminated wastewater is difficult to de-
grade and detoxify due to the complex chemical structure of dyes (Lu et al. 
2009). The complexity of dyes is determined because of their diverse func-
tional group and aromatic system, dyes typically contain multiple group func-
tions that contribute to their chemical behaviour and interaction with sub-
strates, while the aromatic system gives dye structure the ability to decolo-
nize electrons which make the structure stable. Dye-covered water surfaces 
prevent sunlight from entering, causing the increase of biochemical oxygen 
demand, decreasing   photosynthetic activity, and disrupting aquatic biota 
growth. 
 Cikijing River needs to be immediately treated to minimise its level of 
copper and dye contamination. Conventional physical and chemical treatment 
methods are ineffective as they are high costs and produce secondary waste 
(Ayangbenro & Babalola 2017). In contrast, bioremediation is an efficient, 
cost-effective, and eco-friendly biological method that utilises microorgan-
isms to remove environmental contaminants (Palanivel et al. 2020). Bacteria 
are pervasive microorganisms that can be found in almost any setting, includ-
ing copper- and dye-contaminated areas (Cocconcelli & Fontana 2014). Cer-
tain bacterial species are equipped with morphologically and metabolically 
advantageous features that allow them to develop copper resistance and dye 
decolourisation mechanisms as an adaptive response to cellular stress. Previ-
ous studies demonstrate that various types of bacterial species, such as Sicci-
bacter colletis, Acinetobacter baumanii, Bacillus cereus, and Escherichia coli isolated 
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from Citarum River in Indonesia are capable of tolerating copper and dye 
toxicity (Irawati et al. 2023). Therefore, an investigation to discover bacterial 
species capable of resisting copper and dye, as well as decolorizing dye, is im-
perative. Accordingly, this study was aimed at: 1) Identifying of multi-dye 
resistant bacteria, 2) measuring the copper resistance of selected isolates, and 
3) analysing the dye-resistance and dye-degrading abilities of selected isolates 
on 4 types of commonly used textile dye.  
 
MATERIALS AND METHODS 
Water Sampling  
Water samples were obtained from Cikijing River in West Java, Indonesia, 
around the industrial area of PT. Kahatex. Random sampling was performed 
at three different location points close to the textile factory waste disposal 
site. The first sample was taken from under a metal bridge, the second sample 
was approximately 10 meters from the first sampling scene, and the third 
sample was approximately 5 meters from the second sampling location. Sam-
ples were stored inside a sterile bottle before being brought to laboratory for 
further research.   
 
Bacterial isolation and purification  
Copper-resistant bacteria were isolated by cultivating water sampling on Lu-
ria Bertani (LB) Agar supplemented with CuSO4 with serial dilution. The 
stock of 1M CuSO4 was added to an autoclaved medium with various concen-
trations. Approximately 100 µl of each water sample was spread onto LB agar 
(25 g L-1) supplemented with the addition of 1-10 mM CuSO4 and was incu-
bated at 37 °C for 48 hours. Each sampling was done in duplicate, with a non-
copper-supplemented medium prepared as a negative control. 
 Bacterial colonies that appeared after the incubation with unique mor-
phological characteristics were purified, then sub-cultured on LB agar medi-
um supplemented with the same CuSO4 concentrations used during the initial 
culture. Cultures were incubated at 37 °C for 48 hours before undergoing 
next round of purification for preservation.  
 
Copper-resistance determination assay  
Minimum Inhibitory Concentration (MIC) was determined by streaking one 
full loop of bacterial isolate onto LB agar medium supplemented with CuSO4 
concentrations ranging from 0 mM to 20 mM (Irawati et al. 2023). Each as-
say was repeated four times and incubated at 37 °C for 48 hours. The highest 
copper concentrations with no observed bacterial growth were noted as the 
MIC of each isolate. Bacterial isolates that grew on the highest CuSO4 con-
centration were selected for further investigation. 
 
Dye resistance assay  
Bacterial isolates were inoculated onto LB agar medium supplemented with 
various concentrations of textile dye. Twelve textile dye variants were used 
for the dye-resistance and decolourisation assay, namely Methylene Blue 
(MB), Malachite Green (MG), Congo Red (CR), Mordant Orange (MO), Re-
active Black (RB), Direct Yellow (DY), Basic Fuchsine (BF), Reactive Orange 
(RO), Disperse Orange (DO), Remasol (R), Wantex Red (WR), and Wantex 
Yellow (WY). The stock solution of 10,000 ppm dyes was diluted in sterile 
aquadest and was sterilised with a filter membrane of 0.20 µM.  Each dye was 
added to the autoclaved LB medium up to the appropriate concentration. The 
dye concentration used for dye resistance and decolourisation essays ranged 
from 100-1000 ppm (Irawati et al. 2023). Each assay was done in quadruple 
and incubated at 37 °C for 48 hours. The highest dye concentrations with no 
observed bacterial growth were noted as the MIC of each isolate. Bacterial 
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isolates that grew on the highest dye concentration were selected for further 
investigation. Decolourisation was observed based on the formation of clear 
zones around bacterial colonies.  
 
Copper and dye multi-resistance assay 
Copper and dye multi-resistance of the bacterial isolates were determined 
based on growth observations. Bacterial isolates were inoculated onto LB 
agar medium supplemented with 5 mM of CuSO4 and either 200 ppm, 500 
ppm, 600 ppm, or 700 ppm of Methylene Blue (MB), Malachite Green (MG), 
Congo Red (CR), or Basic Fuchsine (BF) dye (Irawati et al. 2023). Bacterial 
growth was observed after an incubation period of 37 °C for 48 hours.  
 
Molecular identification of copper and dye-resistant bacteria 
Selected bacterial isolates were first inoculated into Nutrient Broth agar me-
dium (13 g L-1), and then isolated using the TIANamp Genomic DNA Kit 
(Tiangen). DNA concentration and purity were confirmed using a 
NanodropTM 2000 Spectrophotometer (Thermo Fischer Scientific). Bacterial 
16S rDNA amplification was performed by Polymerase Chain Reaction with a 
master mix of 25 µl volume consisted of the following: 12.5 µl of GoTaq® 
G r e e n  ( P r o m e g a ) ,  1  µ l  o f  f o r w a r d  p r i m e r  ( 5 ’ -
CGCCTGTTTAACAAAAACAT-3’), 1 µl of reverse primer 
(5’CCGGTCTGAACCAGATCATGT-3’), 2 µl of DNA template, and 8.5 µl 
of nuclease-free water. Visualization of PCR product was done using gel elec-
trophoresis. Results of the electrophoresis were observed under a UV transil-
luminator.  DNA sequencing results were edited using the ChromasPro 2.6.2 
(Technelysium) followed by homology search using the Basic Local Align-
ment Search Tool (BLAST) on http://www.ncbi.nlm.nih.gov.  
 
RESULTS AND DISCUSSION 
Copper-resistant bacteria isolated from Cikijing River  
Fifty-nine copper-resistant bacteria have been successfully isolated from Ciki-
jing River.  Table 1 shows that all copper-resistant bacteria isolated have cop-
per resistance with the MIC values from 1 until 16 mM CuSO4. Irawati et al. 
(2020) reported that bacteria with a MIC value of more than 4.7 mM were 
categorized as very resistant. Among the 59 copper-resistant isolates, 58 iso-
lates showed the highest MIC value of 6-16 mM and only 1 isolate CKJ 0.3.1 
which has a MIC value of 1 mM, therefore it was concluded that most of the 
bacterial isolates had high resistance to copper. Four bacterial isolates (CKJ 
300 1.2, CKJ 300 3.1, CKJ 500 2.1.2, and CKJ 500 2.2) had higher copper re-
sistance than the previous studies on copper-resistant bacteria isolated from 
copper-polluted areas in Indonesia. Previously, it was reported that the MICs 
of bacterial isolates from Cikapundung and Cisadane River in West Java were 
up to 6-8 mM (Nurlaila et al. 2020), Kapuas River in Central Kalimantan up 
to 7 mM (Irawati et al. 2022), Citarum River in West Java up to 10 mM 
(Irawati et al. 2023), and Kemisan River in Banten Province tolerated up to 
10 mM (Irawati et al. 2017).  
 
Resistance to copper and dyes 
Nine selected bacterial isolates demonstrated varying resistance to the four 
types of dyes, with some isolates showing resistance up to a maximum con-
centration of 700 ppm. These isolates are shown in Table 2.  

Multi-resistance testing was conducted on selected copper-resistant 
bacteria previously cultured on LB agar media supplemented with 5 mM of 
CuSO4 and various dyes (MB, MG, CR, and BF) with concentrations ranging 
from 200 ppm to 700 ppm. Out of the nine selected bacterial isolates, five iso-
lates (CKJ 300 1.2, CKJ 500 2.1.2, CKJ 1000 2.2, CKJ 1000 3.1.1, and CKJ 

http://www.ncbi.nlm.nih.gov
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1000 3.2.1) were found to be resistant to 5 mM CuSO4 and capable of decolor-
izing dyes (MB, CR, and BF) at the highest concentration of 700 ppm.  

 
Table 2. Resistance of bacterial isolates to copper and dyes.  

 
 
Although research on bacteria with multi-resistance to copper and vari-

ous dyes remains limited, numerous studies have investigated bacteria re-
sistant to dyes. Ren et al. (2006) found that Aeromonas hydrophila isolated from 
textile printing activated sludge in Guangzhou, China, displayed resistance to 
50 mg L-1 of malachite green, basic fuchsine, and reactive black. Additionally, 
An et al. (2002) showed that Citrobacter sp. obtained from soil near a textile 
dyeing industrial effluent treatment plant in Korea exhibited resistance to 
both basic fuchsine and congo red dye.  Bacterial isolates can be resistant to 
copper by accumulating copper into cells (Irawati el al. 2020; Irawati et al. 
2021a, 2021b). 
 Decolourisation at high dye concentrations appeared to be less distinct 
compared to low concentrations due to different levels of toxicity (Jamee & 
Siddique 2019). Furthermore, each bacteria have different ability to adapt the 
toxicity for each dye. The result of each bacterium on 3 dyes can be seen in 
Figure 1. 

Decolourisation is defined as the process of removing dyes from stained 
specimens through adsorption or degradation (Victor et al. 2020). Bacteria-
mediated dye decolourisation is determined by several factors, including but 
not limited to dye structure, dye concentration, and bacterial metabolism. De-
colorization mainly occurs due to the synthesis and collaboration of extracel-
lular enzymes such as azoreductase, laccase, lignin peroxidase, and protease 

No.   
Maximum concentration of Dye Type (ppm) 

Isolate Codes   
MB CR BF MG 

1. CKJ 300 1.2 700 700 700 - 

2. CKJ 500 2.1.2 700 700 700 - 

3. CKJ 500 2.2 700 500 500 - 

4. CKJ 1000 1.1 700 500 500 - 

5. CKJ 1000 1.2 - 200 - - 

6 CKJ 1000 2.2 700 700 700 - 

7. CKJ 1000 3.1 500 - - - 

8. CKJ 1000 3.1.1 700 700 700 500 

9. CKJ 1000 3.2.1 700 700 700 500 

Table 1. Determination results of copper-resistant bacterial isolates from Cikijing River. 

No. MIC value (mM) Isolate Codes 

1. 1 CKJ 0 3.1 

2. 6 CKJ 0 1.1; CKJ 0 2.1; CKJ 0 2.2; CKJ 0 3.2; CKJ 200 1.2.2; CKJ 200 3.1; CKJ 400 1.2; 
CKJ 500 1.2; CKJ 500 2.1; CKJ 500 3.1 

3. 7 CKJ 600 2.1; CKJ 600 3.1 

4. 8 CKJ 700 1.1; CKJ 700 1.2; CKJ 700 2.1; CKJ 700 3.1; CKJ 700 3.2 

5. 9 CKJ 200 2.2; CKJ 400 3.2; CKJ 800 1.1; CKJ 800 1.2; CKJ 800 3.1; CKJ 800 3.2 

6. 10 CKJ 400 2.1; CKJ 900 1.1; CKJ 900 1.1.2; CKJ 900 1.2; CKJ 900 1.2.1; CKJ 900 2.1; 
CKJ 900 2.1.1; CKJ 900 2.2; CKJ 900 2.2.1; CKJ 900 3.1; CKJ 900 3.2 

7. 11 CKJ 200 1.1; CKJ 200 1.2; CKJ 200 2.1; CKJ 200 3.2; CKJ 300 2.2; CKJ 300 3.2; CKJ 
400 2.2; CKJ 500 1.1; CKJ 500 3.2; CKJ 1000 1.1; CKJ 1000 1.1.1; CKJ 1000 1.2; CKJ 
1000 2.1; CKJ 1000 2.1.1; CKJ 1000 2.2; CKJ 1000 2.2.1; CKJ 1000 3.1; CKJ 1000 
3.1.1; CKJ 1000 3.2; CKJ 1000 3.2.1 

8. 16 CKJ 300 1.2; CKJ 300 3.1; CKJ 500 2.1.2; CKJ 500 2.2 
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(Misal et al. 2011). Specific enzymes cleave specific bonds and chromophore 
centres, contributing to the overall decolorization process (Jamee & Siddique 
2019). Azoreductase cleaves azo bonds (–N=N–) under anaerobic conditions 
(Saratale et al. 2009). Laccase breaks up nitro functional groups N(CH3)2 
(Zucca et al. 2015). 

 

 
Figure 1. Decolourisation of copper and dye-resistant bacteria isolated from the 
Cikijing River on LB agar media supplemented with 5 mM CuSO4 and 200-700 ppm 
of dyes: I. Methylene Blue, II. Congo Red, III. Basic Fuchsine. A. Isolate 2.1.2; B. 
Isolate 2.2; C. Isolate 1.2; D. Isolate 3.2.1; E. Isolate 3.1.1; F. Isolate 2.2 G. Isolate 
3.2.1; H. Isolate 3.2.1; I. Isolate 1.2; J. Isolate 1.2, 3; K. Isolate 2.1; L. Isolate 2.2. Ar-
rows show a clear zone surrounding the bacterial colonies.  

 
Excluding CKJ 1000 1.2, each of the nine bacterial isolates demonstrat-

ed high resistance to at least one type of dye. Excluding CKJ 1000 3.1, eight 
isolates successfully decolorized at least one of the three selected dyes. How-
ever, only two out of nine isolates, CKJ 1000 3.1.1 and CKJ 1000 3.2.1, were 
capable of decolorizing dye including MG. According to Junqueira et al. 
(2010), MG is a triphenylmethane dye that exerts photodynamic antimicrobi-
al effects on a variety of bacterial species. It is plausible that CKJ 1000 3.1.1 
and CKJ 1000 3.2.1 were the only non-affected bacterial isolates in the selec-
tion.  
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 Interestingly, CKJ 1000 1.2 was incapable of decolourising any type of 
dye in the absence of copper but successfully decolorized CR dye in the pres-
ence of copper. In contrast, CKJ 1000 3.1 was capable of decolorizing MB dye 
in the absence of copper but unable to decolorize any type of dye in the pres-
ence of copper. The first phenomenon supports the theory that copper is a co-
factor for enzymatic reactions, while the second confirms that copper disrupts 
metabolic activity (Knop et al. 2017; Xue et al. 2023).   
 
Identification of copper-resistance bacterial isolates 
Based on morphological and molecular characterization (Table 3), four bacte-
rial isolates belong to the Klebsiella genus. Klebsiella is a Gram-negative bacte-
rium with a rod-shaped cell. Based on the determination data in this study, 
Klebsiella has the highest MIC value, which is 16 mM, except for CKJ 1000 
3.1.1 which is 11 mM (Table 1). Bacteria belonging to this genus include 
Klebsiella sp. (CKJ 300 1.2) with 100 % sequence homology, K. pneumoniae 
(CKJ 500 2.1.2) with sequence homology above 98 %, K. pneumoniae (CKJ 500 
2.2) with sequence homology above 98 %, and K. variicola (CKJ 1000 3.1.1) 
with sequence homology above 99 % (Table 3). The phylogenetic analysis 
indicated that CKJ 500 2.1.2 and CKJ 500 2.2 isolates are clustered into co-
herent groups with K.pneumoniae (Figure 2).  These bacteria are common op-
portunistic pathogens for humans and animals as well as resident or tempo-
rary flora (especially in the digestive tract). Zulfiqar and Shakoori (2012) pre-
viously isolated K. pneumoniae that was resistant to copper with a range of 
MIC values of 5-6 mM. Furthermore, Mustafa et al. (2021) successfully culti-
vated Klebsiella that decolourised around 96 % of 200 ppm Disperse Blue dye 
within 24 hours. 
 Two bacterial isolates belong to the Lysinibacillus genus, a Gram-
positive bacterium with a rod-shaped cell. Bacteria belonging to this genus 
include L. boronitolerans (CKJ 1000 1.1) with a sequence homology above 99 
%, L. fusiformis (CKJ 1000 1.2) with 100 % sequence homology (Table 3). The 
phylogenetic analysis showed that CKJ 1000 1.1 and CKJ 1000 1.2 isolates 
are clustered into coherent groups with L. boronitolerans and L. fusiformis, re-
spectively (Figure 2). Lysinibacillus has been known to have the potential as a 
heavy metal biosorption agent (Mathivanan et al. 2016). Lysinibacillus can de-
colourise azo dyes up to 96 % with the help of azoreductase, laccase, lignin, 
and peroxidase enzymes (Sari & Simarani 2019).  

Isolate CKJ 1000 2.2 was identified as B. proteoliticus with 100 % se-
quence homology (Table 3) and based on phylogenetic analysis indicated the 
same coherent group with B. thuringiensis and B. proteoliticus (Figure 2). This 
bacterium is a Gram-positive bacterium with a rod-shaped cell. The MIC val-
ue for this bacterium is 11 mM. Research on B. proteoliticus as a copper bioac-
cumulation agent has been well known. According to Islam et al. (2020), B. 
proteoliticus was found in polluted environments and can also be a copper bio-
sorption agent. Bacillus is effective in degrading azo dyes with the help of ex-
tracellular enzymes such as azoreductase and ligninase (Wu et al. 2022). 

Isolate CKJ 1000 3.1 was identified as P. stutzeri with a sequence homol-
ogy above 99 % (Table 3) and also confirmed by the results of phylogenetic 
analysis (Figure 2). This bacterium is a Gram-negative bacterium with a rod-
shaped cell. The MIC value of the isolate was 11 mM (Table 1). According to 
Palanivel et al. (2020), P. stutzeri is a potential agent for copper bioremedia-
tion. Pseudomonas has also been reported to degrade up to 80 % of crystal vio-
let dye at a concentration of 60 µM. 
 Isolate CKJ 1000 3.2.1 was identified as C. freundii with a sequence ho-
mology above 97 % (Table 3) and also confirmed with phylogenetic analysis 
that CKJ 1000 3.2.1 are in the same group as C. freundii (Figure 2). This bac-
terium is a Gram-negative bacterium with a rod-shaped cell. The MIC value 
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of the isolate was 11 mM (Table 1). This bacterium has great potential for the 
treatment of industrial waste containing copper under aerobic and anaerobic 
conditions (Wang et al. 2013). Benhalima et al. (2019) reported that C. freun-
dii is a copper-resistant bacterium with an MIC value of 10 mM. Citrobacter is 
known to remove dyes through enzymatic degradation mechanisms (An et al. 
2002).  
 For further research, Copper and dyes multi-resistance bacterial isolates 
will be determined for the ability to decolourise of dyes and to reduce copper 
concentration. The bacterial isolates which have multi resistance to copper 
and dyes will be applied in wastewater treatment plant using bioreactor. 
 
CONCLUSION 
Nine isolates from 59 copper resistant bacteria isolated from Cikijing River, 
that are Klebsiella pneumoniae, Lysinibacillus boronitolerans, Lysinibacillus fusi-
formis, Bacillus proteoliticus, Pseudomonas stutzeri, Klebsiella variicola, and 
Citrobacter freundii.  Out of the nine selected bacterial isolates, five isolates 
(CKJ 300 1.2, CKJ 500 2.1.2, CKJ 1000 2.2, CKJ 1000 3.1.1, and CKJ 1000 
3.2.1) were found to be resistant to 5 mM CuSO4 and capable of decolorizing 
dyes (Methylene Blue, Congo Red, and Basic Fuchsine) at the highest concen-
tration of 700 ppm. The selected bacterial isolates from the Cikijing River 
exhibit great potential to be further developed as bioremediation agents em-
ployed in biological processes for wastewater treatment.   
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Table 3. Top homology search of copper- and dye-resistant bacterial isolates based on 16S rDNA. 

Isolate code  The closes taxon to BLAST 
results on NCBI  

Max score  Query coverage 
(%)  

Accession  Sequence Sim-
ilarity (%)  

CKJ 300 1.2  Klebsiella sp.  1410  100  HM462447.1  100  

CKJ 500 2.1.2  Klebsiella pneumoniae  1400  100  LC455961.1  98.85  

CKJ 500 2.2  Klebsiella pneumoniae  1351  100  LC455961.1  98.94  

CKJ 1000 1.1  Lysinibacillus boronitolerans  1410  100  MH385002.1  99.87  

CKJ 1000 1.2  Lysinibacillus fusiformis  1430  100  MT605500.1  100  

CKJ 1000 2.2  Bacillus proteolyticus  1450  100  MT573794.1  100  

CKJ 1000 3.1  Pseudomonas stutzeri  1432  100  MF125023.1  99.87  

CKJ 1000 3.1.1  Klebsiella variicola  1395  100  MN725749.1  99.74  

CKJ 1000 3.2.1  Citrobacter freundii  824  100  MH668092.1  97.69  
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Figure 2. Phylogenetic tree based on 16S rDNA sequences of isolates CKJ 300 1.2, CKJ 500 2.1.2, CKJ 500 2.2, 
CKJ 1000 1.1, CKJ 1000 1.2, CKJ 1000 2.2, CKJ 1000 3.1, CKJ 1000 3.1.1, and CKJ 1000 3.2.1.  This tree was made 
using the neighbour-joining method with Kimura two-parameters distances with the no-gap option.  Number indi-
cated the percentages of occurrence in 1000 boost traps trees.  
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