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MANUSCRIPT:

Mapping forest fires became one of the efforts to reduce the fire vulnerability. Spatial 
model development for fire vulnerability could employ a GIS-based information 
value model (IVM) that excels in predicting vulnerability by leveraging hotspot 
inventory data. However, this model remained relatively unexplored. This research 
aimed to develop a fire vulnerability model of peatland-dominated areas in West 
Kalimantan Province and identify biogeophysical factors that significantly 
influence fire vulnerability in the research area. The IVM employed hotspots, 
accessibility, land cover, distance to settlements, distance to rivers, soil types, peat 
types, and Normalized Difference Vegetation Index (NDVI) parameters. The results 
revealed that the medium hazard class dominated forest and land fire vulnerability 
in West Kalimantan Province (272,663 ha). In addition, the average annual hotspot 
intensity from 2012 to 2022 negatively correlated with annual rainfall. Factors such as 
the brackish water topogen peat type, podzolic-cambisol soil type, accessibility, 
shrub land cover, and NDVI collectively contributed to the high level of vulnerability.

Pemetaan spasial kerawanan kebakaran hutan merupakan salah satu upaya untuk 
mengurangi tingkat kerawanan kebakaran. Pengembangan model spasial 
kerentanan kebakaran hutan dan lahan dapat dilakukan melalui information value 
model (IVM) berbasis Sistem Informasi Geografis. Metode ini memiliki keunggulan 
dalam memprediksi tingkat kerawanan berdasarkan data inventarisasi titik api, 
namun hingga saat ini penerapannya dalam kajian kebakaran hutan dan lahan 
belum banyak dieksplorasi. Penelitian ini bertujuan untuk mengembangkan model 
kerawanan kebakaran di Provinsi Kalimantan Barat yang didominasi oleh lahan 
gambut, dan mengidentifikasi kondisi biogeofisik yang berpengaruh signifikan. 
Metode IVM diterapkan dalam penelitian ini dengan parameter data hotspot, 
aksesibilitas, tutupan lahan, jarak ke pemukiman, jarak ke sungai, tipe tanah, tipe 
gambut, dan NDVI. Hasil penelitian menunjukkan bahwa sebaran kerawanan 
karhutla di Provinsi Kalimantan Barat didominasi oleh kelas bahaya sedang (272.663 
ha). Rata-rata intensitas titik panas tahunan selama 2012–2022 berkorelasi negatif 
dengan tingginya curah hujan tahunan. Tingkat kerawanan yang tinggi dipengaruhi 
oleh jenis topogen gambut air payau, jenis tanah podsolik-kambisol, aksesibilitas, 
tutupan lahan semak, dan NDVI.
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Introduction

Forest and land fire is a substantial threat, 

carrying a high risk of ecosystem damage, including 

the release of carbon emissions. This fire has the 

potential to profoundly change ecosystem structures, 

leading to impacts on biodiversity and contributing 

significantly to greenhouse gas emissions. The 

escalation of temperatures, changing weather 

conditions, and diverse topographical factors 

collectively promote fire incidence due to human 

activities, specifically in the Asian area (Reddy et al. 

2019). For instance, Indonesia witnessed the adverse 

consequences of forest and land fires, resulting in 

significant societal losses, including reduced air 

quality, respiratory infections, and tragic fatalities 

(Hein et al. 2022). West Kalimantan, Central 

Kalimantan, South Sumatra, Riau, and Jambi became 

the five provinces that experienced a concentration of 

hotspots  from  2016  to  2019  (Arisman 2020).

Fire occurrence depends on the convergence of 

heat sources, fuel availability, and oxygen, allowing 

the ignition stage. Yakub & Phuspa (2019) conveyed 

that human activities account for over 90% of forest 

and land fires in Indonesia. On the other hand, 

weather anomalies, which incorporate El Nino, 

profoundly influence fuel conditions, extending the 

duration of dry periods and causing drought 

conditions.

Mapping forest fire vulnerability is essential to 

furnishing spatial data, enabling local stakeholders to 

respond effectively to disasters and mitigate potential 

losses. This spatial model provides diverse levels of fire 

vulnerability, forming the foundation for regional 

monitoring efforts, particularly during dry seasons. 

However, vulnerability represents the cumulative 

outcome of exposure levels, impacts on ecosystems, 

and the adaptability of natural systems and human 

populations (Turner et al. 2003). The development of 

vulnerability-level models uses disaster-based 

Geographic  Information  Systems  (GIS).

GIS has become integral to disaster research for 

mapping physical phenomena and understanding the 

social dimensions of disasters (Aguntar et al. 2022), 

providing knowledge-based disaster management 

and mitigation efforts (Durlević et al. 2021). The 

combination of GIS and remote sensing technology 

enables the analysis of various natural disasters, 

ranging from erosion and overflow floods to 

avalanches and forest fires (Lombardo et al. 2020; 

Sevieri et al. 2020). Various contexts show the use of 

the Information Value Model (IVM) in hazard 

mapping, including investigations of landslide 

vulnerability (Chen et al. 2014; Mansour et al. 2021) and 

endemic diseases (Nakhapakorn & Nitin 2005). 

Although numerous hazard research effectively uses 

GIS (Dicelebica et al. 2022; Humam et al. 2020), the 

application of the model in forest and land fire 

analysis still needs to be explored. The IVM indicates 

the predictive power within a dataset by comparing 

the distribution of feature values for the target variable 

(the variable to be predicted) with the distribution of 

feature values for the non-target variable (the variable 

not to be predicted). Furthermore, IVM assigns values 

to features from zero to infinity, with higher values 

indicating more robust predictive capability. This 

model also allows users to leverage information from 

inventory maps to statistically calculated para-  

meters for predicting future disaster events (Chen et 

al. 2014).

 

Kubu Raya Regency in West Kalimantan Province 

is an area that frequently experiences forest and land 

fire (Rachman et al. 2020). The fire incidence in this 

area is relatively high, contributing significantly to 

global carbon emissions. From 2012 to 2022, Kubu 

Raya has recorded 1735 hotspots, averaging 173 

hotspots per year (https://firms.modaps.eosdis. 

nasa.gov/). The dominant peat ecosystems pose an 

additional threat, as fire can release substantial carbon 

into the atmosphere. Based on the historical 

prevalence of fire and the clear advantages of IVM in 

disaster research. This research aimed to develop the 

IVM model and unveil the spatial distribution of forest 

fire  vulnerability  within  the  Kubu  Raya  Regency.

Methods
Research Area

This research focused on the Kubu Raya Regency 

administrative area, located within West Kalimantan 

Province, with geographical coordinates spanning 
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from longitude 109° 02' 19.32" to 109° 58' 32.16" east and 

between latitude 0° 13' 40.83" north and 1° 00' 53.09" 

south. Geographically, the Natuna Sea bounded the 

west of this area. Simultaneously, Ketapang and 

Sanggau Regencies bordered it to the east, Mempawah 

Regency and Pontianak City to the north, and North 

Kayong Regency to the south (Figure 1). The Schmidt-

Ferguson climate classification showed that Kubu 

Raya Regency experienced a very wet climate type, 

with an average of 0.4 dry months and 10.8 wet months 

within the 2012-2021 timeframe. The highest recorded 

rainfall was in 2016, with 4906 mm, while 2015 saw the 

lowest at 2672 mm (Figure 2). Kubu Raya Regency's 

forest consisted of 63% production forest and 37% 

protected  forest  (https://Sigap.Menlhk.Go.Id/ n.d.)

Data Collection

This research used secondary data from various 

sources, including the Kubu Raya Regency Geoportal 

website, Earth Explorer, and Fire Information for 

Resource Management System (FIRMS). The spatial 

data analysis used raster and vector formats within 

ArcMap  software  version  10.8 (Table 1).

Analysis and Design

The IVM modeling used a decade's historical 

hotspot data from 2012 to 2022 with a confidence level 

of 80%, complemented by biogeophysical factors. The 

hotspot analysis employed the Kernel density method 

to determine the clustering patterns within a given 
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Figure 2. Annual Rainfall of Kubu Raya Regency

Table 1. Data Resources

phenomenon (Arisanty et al. 2021) and characterized 

spatial and temporal heterogeneity (Li et al. 2017). This 

research used kernel density to evaluate the likelihood 

of forest fire occurrences based on the historical 

hotspot distribution homogeneity. The outcomes of 

the kernel density analysis resulted in hotspot density, 

categorized into five distinct classes. Class intervals 

were determined using the natural breaks technique 

within ArcMap version 10.8 software. The two highest-

density hotspots from this classification became the 

input for the subsequent IVM vulnerability modeling. 

These two highest-density classes corresponded to 

areas with the most concentrated hotspots. This 

classification was necessary to investigate the 

influence of each parameter on the vulnerability level. 

The parameters used in this research included hotspot 

density, distance to roads, distance to rivers, distance 

to settlements, land cover, soil type, peat type, and 

NDVI.

Forest and Land Fire Vulnerability Model, 

founded upon IVM, relied on a statistical analysis of 

parameter classifications that affected the occurrence 

of fire-related disasters. The resulting IVM model 

facilitated predictions regarding the spatial 

relationships between parameter classes and fire 

incidents. Furthermore, the IVM value for each 

parameter class was derived by summing the values of 

each class, producing a forest fire vulnerability value. 

The calculation of the model used the following 

formula. 

Remarks:

H		 : Forest fire vulnerability probability

Si	 : The area of each parameter class

Σsi	 : Total mapping area

Ni	 : The area of each parameter class in the fire 

incident area

Σni	: Total fire incidents (Kernel Density)

The overlays of the IVM values of each parameter 

resulted in the forest and land fire vulnerability map. 

The fuel sources analysis used the overlay of the 

vulnerability map and NDVI data. NDVI served as an 

essential index for assessing the distribution of 

vegetation, relying on the interpretation of reflectance 

disparities in near-infrared wavelengths. This index 

not only mapped the presence of vegetation based on 

pixel values but also quantified the amount or 

condition of vegetation within a given pixel (Wan et al. 

2004). This research used Hong et al. (2010) equation 

to  calculate  NDVI. 

Remarks:

NDVI : Normalized difference vegetation index

NIR	 : Near infrared band value

R	  : Red band value 

Results and Discussion

Hotspot Distribution

From 2012 to 2022, Kubu Raya recorded 1,735 or 173 

hotspots/year. In 2020 there were only five fire 

hotspots, the lowest compared to previous years. Even 

though the fire hotspots reached 387 in 2018, the 

annual rainfall is not lower than rainfall in other years 

(Figures 2 and 3). There appeared to be no significant 

relationship between climate conditions and the 

occurrence of hotspots in Kubu Raya. Dicelebica et al. 

(2022) suggested that the elevated hotspot counts in 

2018 attributed to the equatorial  rain type 

characterized by an extended dry season. The results 

of the kernel density indicated that the hotspots had a 

significant concentration in the Rasau Jaya and Sungai 

Raya Regencies. Rasau Jaya Regency consistently 

witnessed hotspot occurrences in the 2012-2022 

period. A more comprehensive understanding of 
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Figure 1. Location map of Tangkahan utilization zone between LPT and GLNP (Source: TNGL 2021)
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Data

Hotspot
Road network, land cover, settlements, 

rivers, soil type, peat, and 
forest area boundaries
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Source

FIRMS (https://firms.modaps.eosdis.nasa.gov/) 

Kubu Raya Regency Geoportal (http://geoportal.kuburayakab.go.id/) 

Landsat 8 (Earthexplorer: https://earthexplorer.usgs.gov/ ) 
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IVM Distribution

Parameters with high IVM values indicated a 

propensity for forest and land fire within the 

parameter class. In contrast, values closer to zero or 

zero indicated a lower likelihood of fire incidents. A 

negative IVM value indicated an inverse relationship 

with forest and land fire, with smaller negative values 

corresponding to a decreased likelihood of fire 

occurrences (Table 2). Low IVM values were in the 

class of very low vegetation density, non-peat soil 

types, peat dome edge, alluvial soil, moor, settlements, 

grasslands, water bodies, locations with greater 

distances from roads and rivers, and locations that 

were  very  close  or very  far  from  settlements. 

Based on peat types, the brackish water topogen 

peat recorded the highest hotspots due to a substantial 

occurrence of forest and land fire in these areas, 

despite their fertility. Indigenous people practiced 

land clearing using fire through controlled burns for 

seasonal crop cultivation, contributing to the 

prevalence of fire in these peatlands (Goldstein et al. 

2020). The brackish water topogen peat class had the 

highest IVM value, indicating a significant history or 

extensive coverage of forest fires. However, the 

formation of topogen peat typically occurs within the 

interior of coastal or river plains affected by tidal and 

flood runoff containing rich minerals (Agus 2014), and 

tends to be fertile and characterized by moderate 

thickness. In contrast,  the peat dome edge 

experienced the fewest forest fire incidents due to 

their locations, which were typically close to cater 

bodies. The peat domes were less fertile and prone to 

fire. Consequently, the edge had fewer hotspots than 

the  central  peat  dome  areas.

Based on soil type, organosol soils had the highest 

number of hotspots due to their unique charac-

teristics, including the low pH of approximately 4, 

poor nutrient content, and high acidity levels, 

rendering them susceptible to forest fire (Edwar et al. 

2011). In contrast, the podzolic-cambisol soils had the 

lowest number of hotspots. Despite this low number 

of hotspots, cambisol soils had relatively high IVM 
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clustered in the relatively small areas of the podzolic-

cambisol soils, resulting in high fire density as the 

input for the IVM calculation. In addition, podzolic 

soils are inherently prone to forest fire due to their low 

water-holding capacity, lack of nutrients, and acid 

reaction (Kartono et al. 2020). Moreover, most 

hotspots occurred within a distance of less than 500 m 

from rivers and roads. These areas often coincided 

with human traffic routes and activities, significantly 

contributing anthropogenic factors to forest and land 

fires (Cattau et al. 2016). Horton et al. (2021) revealed 

increased vulnerability in peatlands near rivers and 

roads. 

IVM-Based Vulnerability Model

The IVM analysis resulted in six vulnerability 

classes. The very low, low, moderate, high, and very 

high vulnerability levels covered areas of 139,730 ha 

(16%), 69,093 ha, 272,663 ha (32%), 238,904 ha (28%), 

and 137,374 ha (16%), respectively. Almost all areas fell 

into high and very high vulnerability classes, 

particularly in the northern regions (Figure 6). The 

northern regions had relatively high NDVI values, 

indicating dense vegetation (Figure 7). This dense 

vegetation could serve as fuel and significantly 

Table 2. Hotspot and IVM value for each class of parameter

Parameter

Distance 
to road 

(m)

Distance 
to river 

(m)

Distance to 
settlement 

(m)

Landcover 
type

Soil type

Peat type

NDVI

Code

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5

1
2
3
4
5
6

1
2
3
4
5

Class

0 – 100 
100 - 500

500 - 1000
1.000 – 2.000

> 2.000

0 - 100
100 - 500

500 – 1.000
1.000 – 2.000

> 2.000

0 – 1.000
1.000 – 2.000
2.000 – 3.000
3.000 – 4.000

> 4.000

Water Bodies
Jungle

Grassland
Sand/Sea dunes

Plantation
Settlement

Shrubs
Moor

Sand/Land dunes
Rice Fields

Vacant Land

Alluvial
Alluvial - Gley Humus

Organosol
Podzolic - Cambisol

Podzolic

Non Peat
Brackish Water Topogen Peat

Freshwater topogen peat
Peat Dome

Peat Dome Edge
River Back Marsh Meander

< 0,166 (Very Low)
0,166 – 0,444 (Low)

0,444 – 0,612 (Medium)
0,612 – 0,72 (Dense)
> 0,72 (Very Dense)

Hotspot Counted

275
587
348
208
317

241
572
397
403
122

194
296
330
285
630

8
1192

1
0

116
3

248
166

1
0
0

33
230
1433

11
18

205
804

0
503
203
0

21
1422
291

1
0

Si

112.646,79
199.149,93
95.764,68
96.477,21

354.000,15

192.199,95
367.576,47
155.097,81

105.898,77
37.265,76

160.233,30
119.966,31

101.448,09
86.209,74
390.181,32

33.423,84
527.964,39

2.587,23
219,96

3.3289,11
8.166,78

98.308,35
15.2132,22

61,20
1.879,29

6,39

171.019,08
187.597,71

470.925,00
6.905,70
21.591,27

346.010,85
193.958,64
130.448,97
187.619,40

0,00
0,90

30.592,80
731.333,34
96.110,91

1,62
0,09

Ni

22.103,28
35.149,05
16.325,64
12.996,54
23.553,09

23.193,72
38.001,78
21.544,38
20.221,83
7.165,89

18.561,06
19.638,72
17.444,61
14.287,77
40.195,44

1.200,69
68.466,15

152,64
0,00

4.924,98
740,52

16.374,51
18.268,11

0,00
0,00
0,00

2.808,99
18.962,19
86.815,62
1.540,80

0,00

21.522,15
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Figure 6. Vulnerability map and area of various vulnerability levels 

Figure 7. NDVI value map of Kubu Raya Regency and forest area map of Kubu Raya Regency
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clustered in the relatively small areas of the podzolic-
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input for the IVM calculation. In addition, podzolic 

soils are inherently prone to forest fire due to their low 
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contribute to an increased vulnerability to fire 

(Ya'Acob et al. 2022). In addition, high hotspot 

concentrations also occurred in the southern regions, 

coinciding with production and protected forest areas 

with relatively high NDVI values (Figure 7b). This 

dense vegetation could serve as fuel and significantly 

contribute to an increased vulnerability to fire 

(Ya'Acob et al. 2022).

The fire vulnerability tended to increase with 

higher NDVI values but decreased when the index fell 

within the medium range (Table 3). NDVI served as a 

representation of vegetation density concerning 

humidity levels, influencing potential fire occurrence. 

The results suggested that denser vegetation 

correlated with increased humidity and fire 

vulnerability. The observation was not in line with the 

analysis of (Astuti et al. 2021), indicating that 

peatlands with lower moisture levels were more 

susceptible to burning during dry seasons. While 

climatic factors, such as high humidity, could reduce 

fire hazards, the human factor significantly 

contributed to increased vulnerability  (Fitria et al. 

2021). In addition, the IVM values in the areas along 

the roads exhibited a direct proportional relationship 

with the rate of fire incidents. Areas with high IVM 

value near highways experienced elevated fire rates. 

Even in high-humidity forests, fire could occur when 

road networks allow access for people to engage in 

activities  (Fitria et al. 2021). Areas with high 

vegetation density could be more susceptible to forest 

and land fire than those with medium and low 

vegetation density (Saputra et al. 2021; Abdo et al. 

2022). High-density vegetation could experience 

higher fire incidence than medium and lower-

vegetation-density areas. Forest and land fire 

contributed to vegetation degradation on peatlands, 

accompanied by reduced carbon biomass (Volkova et 

al. 2021). Biomass served as fuel for forest and land 

fires  during  dry  seasons. 

Table 3. Vulnerabilty area at each NDVI value

Vulnerability 
Level

High
Low

Moderate
Very High
Very Low

Total

Vulnerability Area at NDVI Value

< 0.166 
(Very Low)

1188.00
9499.50
3476.34
158.31

16270.65

30592.80

> 0.72 
(Very Dense)

-
-

0.09
-
-

0.09

0.166 – 0.444 
(Low)

211021.92
51212.52

244135.26
113035.23
111928.41

731333.34

0.444 – 0.612 
(Medium)

26705.79
8457.75

25093.44
24182.64
11671.29

96110.91

0.612 – 0.72 
(Dense)

0.81
-

0.81
-
-

1.62

Figure 8. Forest area with high and very high vulnerability (ha)

Figure 9. Protected forest area towards forest and land fire parameters 

Figure 10. Production forest area towards forest and land fire parameters 
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The production forest area in the Kubu Raya 

Regency was larger than the protected forest (Figure 

8). The protected forests tend to have low levels of 

vulnerability. However, the extent of areas with very 

high vulnerability in protected forests surpassed 

production forests. Several protected forest areas were 

near settlements and roads, allowing access for forest 

burning (Figure 9). In contrast, the production forest 

areas exhibited vulnerability levels ranging from very 

low to low. Most areas were relatively far from 

settlements  and  roads  (Figure 10).

Conclusion

The occurrence of hotspots in Kubu Raya Regency 

did not consistently correlate with high annual rainfall 

due to the extended dry periods associated with 

equatorial rain patterns. The IVM model indicated 

that several factors significantly influenced the 

vulnerability level. These included the presence of 

brackish water topogen peat type, podzolic-cambisol, 

and organosol soil types, proximity to road networks 

and canals within a distance less than 500 m, distance 

to settlements ranging from 2000 to 4000 m, and areas 

characterized by dense NDVI values falling within the 

range of 0.612 to 0.72. Despite its limited coverage, the 

podzolic-cambisol soil type fell within the range of 

high fire density, resulting in a correspondingly high 

IVM value for this category. The proximity of hotspots 

to roads and rivers within 500 m suggested that easy 

accessibility served as a potential ignition source for 

fire.  Moreover,  the analysis of  fuel sources 

underscored that areas with higher NDVI values were 

at increased anthropogenic fire risk. Forest areas with 

high vulnerability levels were primarily in permanent 

production forest areas. The results provided a 

valuable foundation for monitoring fire-prone areas, 

particularly within biogeophysical areas with  

elevated  IVM  values.
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The production forest area in the Kubu Raya 

Regency was larger than the protected forest (Figure 

8). The protected forests tend to have low levels of 

vulnerability. However, the extent of areas with very 

high vulnerability in protected forests surpassed 

production forests. Several protected forest areas were 

near settlements and roads, allowing access for forest 

burning (Figure 9). In contrast, the production forest 

areas exhibited vulnerability levels ranging from very 

low to low. Most areas were relatively far from 

settlements  and  roads  (Figure 10).

Conclusion

The occurrence of hotspots in Kubu Raya Regency 

did not consistently correlate with high annual rainfall 

due to the extended dry periods associated with 

equatorial rain patterns. The IVM model indicated 

that several factors significantly influenced the 

vulnerability level. These included the presence of 

brackish water topogen peat type, podzolic-cambisol, 

and organosol soil types, proximity to road networks 

and canals within a distance less than 500 m, distance 

to settlements ranging from 2000 to 4000 m, and areas 

characterized by dense NDVI values falling within the 

range of 0.612 to 0.72. Despite its limited coverage, the 

podzolic-cambisol soil type fell within the range of 

high fire density, resulting in a correspondingly high 

IVM value for this category. The proximity of hotspots 

to roads and rivers within 500 m suggested that easy 

accessibility served as a potential ignition source for 

fire.  Moreover,  the analysis of  fuel sources 

underscored that areas with higher NDVI values were 

at increased anthropogenic fire risk. Forest areas with 

high vulnerability levels were primarily in permanent 

production forest areas. The results provided a 

valuable foundation for monitoring fire-prone areas, 

particularly within biogeophysical areas with  

elevated  IVM  values.
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