Jurnal Ilmu Kehutanan

https://jurnal.ugm.ac.id/v3/jik/ ISSN: 2477-3751 (online); 0126-4451 (print)

Emissions and Potential of Global Warming of N₂O Gas of Mangrove Litter Degradation on the West Muna Regency Coast

Emisi dan Potensi Pemanasan Global Gas N₂O Hasil Degradasi Serasah Mangrove di Pesisir Kabupaten Muna Barat

Rahman^{1*}, Yusli Wardiatno², Fredinan Yulianda², Frijona Fabiola Lokollo¹, Iman Rusmana³

¹Department of Marine Science, Faculty of Fisheries and Marine Science, Pattimura University, Ambon, Maluku, 97233 ²Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, IPB University, Bogor, 16680 ³Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680. *Email: rahmanrajaali@gmail.com

RESEARCH ARTICLE

DOI: 10.22146/jik.v17i2.7009

MANUSCRIPT:

Submitted : 19 February 2023 Revised : 08 June 2023 Accepted : 13 June 2023

KEYWORD gas chromatography, greenhouse gas, mangrove species, pearson correlation.

KATA KUNCI Kromatografi gas, gas rumah kaca, spesies mangrove, korelasi pearson.

ABSTRACT

Comprehensive research was conducted in the mangrove ecosystem of West Muna Regency to investigate the absorption of greenhouse gas (GHG) and degradation of its litter-produced GHG emissions, including N₂O and carbon. The ecosystem consisted of four stations, namely Mangrove Maginti (station I), Mangrove Tiworo Tengah (station II), Mangrove Tiworo Islands (station III), and Mangrove Sawerigadi (Station IV). The research aimed to determine emissions and global warming potential (GWP) of N₂O gas resulting from the degradation of mangrove litter. The team used a syringe mounted on the hood to collect gas samples and gas chromatography for concentration analysis. The correlation of emissions to environmental variables was analyzed using the Pearson correlation method. The results showed that all species' most significant and smallest average emissions were at stations III and II, with values of 0.0019 mg/m²/hour and 0.0015 mg/m²/hour, respectively. Water temperature showed a weak relationship with N₂O emissions, namely r = 0.3511 (p < 0.05), while water salinity did not strongly correlate with N₂O emissions (r=-0.4471; p<0.05). The average GWP value ranged from 0.3665-0.6314 CO₂e mg/m²/hour. Species R. apiculata and B. cylindrica at stations III and II had the largest and smallest GWP values of 0.8392 and 0.1912 CO₂e mg/m²/hour, respectively.

INTISARI

Mangrove memiliki kemampuan menyerap gas rumah kaca (GRK) tetapi juga menghasilkan emisi N₂O yang terbentuk melalui degradasi serasah mangrove. Penelitian dilakukan di ekosistem mangrove Kabupaten Muna Barat yang dibagi menjadi empat stasiun yaitu Mangrove Maginti (stasiun I), Mangrove Tiworo Tengah (stasiun II), Manarove Tiworo Kepulauan (stasiun III) dan Manarove Sawerigadi (Stasiun IV). Penelitian bertujuan untuk mengetahui emisi dan potensi pemanasan global (GWP) qas N,O hasil degradasi serasah mangrove. Gas diambil melalui syiringe yang dipasang pada sungkup. Analisis konsentrasi gas menggunakan metode kromatografi gas. Korelasi emisi terhadap variabel lingkungan dianalisis dengan metode korelasi Pearson. Hasil penelitian menunjukkan bahwa rerata emisi terbesar seluruh spesies terdapat pada stasiun III sebesar 0,0019 mg/m²/jam, sedangkan yang terkecil terdapat pada stasiun II sebesar 0,0015 mg/m²/jam. Suhu perairan menunjukkan hubungan yang lemah dengan emisi gas N_0 yaitu r = 0,3511 (p < 0,05). Selain itu, salinitas perairan tidak memiliki nilai korelasi yang kuat terhadap emisi gas N₂O (r = -0,4471; p < 0,05). Rerata nilai GWP berkisar antara 0,3665 – 0,6314 CO,e mq/m²/jam. Spesies R. apiculata yang ditemukan pada stasiun III mempunyai nilai GWP terbesar yakni 0,8392 CO₂e mq/m²/jam. Spesies B. cylindrica yang ditemukan pada stasiun II mempunyai nilai GWP terkecil yaitu 0,1912 CO,e mq/m²/jam.

Copyright © 2023 THE AUTHOR(S). This article is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Introduction

The phenomenon of climate change caused by increasing greenhouse gas (GHG) emissions is a hot topic of discussion in international circles. Various research has attempted to determine its impacts. Badjeck et al. (2010) and Shawket et al. (2019) reported that aspects of agriculture, health, and fisheries are affected by climate change. Cheung et al. (2009), Drinkwater et al. (2009), and Jones et al. (2013) reported that climate change has a direct impact on rising water temperatures and sea levels, waves, rainfall, pH, oxygen, and wind speed. Furthermore, these changes decrease ecological benefits and services from the coast, marine, and freshwater ecosystems (Brander 2010; Wang et al. 2016). Coulthard (2008), Ohwayo et al. (2016), and Asch et al. (2017) reported that climate change could trigger damage to the coast and marine ecology and decrease fishery production and loss of community livelihoods.

Apart from carbon dioxide (CO_2) and methane (CH_4) , nitrous oxide (N_2O) becomes the main contributor to GHG emissions. N₂O has a global warming potential (GWP) of up to 298 times compared to CO₂ gas (IPCC 2001). N₂O gas is formed from the activity of microorganisms in the soil through chemical reactions in the form of nitrification and denitrification that occur aerobically and anaerobically (Hogarth 2007). Pathak (1999) states that the formation of N₂O gas has increased with the increasing concentration of organic matter entering the waters.

The formation of gas occurs in wetland ecosystems, especially mangrove ecosystems. Meanwhile, mangrove litter accumulating in sediments through decomposition produces N_2O gas emissions and triggers climate change. Previous research reported that emissions in mangrove sediments range from 0.03 to 1.58 mg/m²/hour (Chen et al. 2010; Allen et al. 2011; Chen et al. 2012; Konnerup et al. 2014; Castillo et al. 2017). Hernandez and Junca-Gomez (2020) found that N_2O gas emissions ranged from 0.04 – 3.25 3.25 μ g/m²/min, while Ma et al. (2023) reported 7.19 - 15.63 μ g/m²/hour. These emissions correlate negatively and positively with water salinity and sediment temperature (Hernandez & Junca-Gomez 2022).

N_,O gas emissions are the total emissions value obtained by placing the lid on the mangrove substrate without distinguishing the type of species. Rahman et al. (2020b) reported that on the coast of West Muna Regency gas emissions in each mangrove litter are relatively different and slightly affected by seasonal variations, especially the duration of rain. Even though the report of Rahman et al. (2020b) has shown variations, information regarding daily emissions and the GWP from the degradation of mangrove litter has yet to be described. It is imperative to acquire knowledge about this subject to facilitate the effective absorption of GHG and the prevention of climate change through low-emissions practices and optimal management of mangrove ecosystems. Therefore, this research determines emissions of N₂O gas resulting from the degradation of mangrove litter in the coast area of West Muna Regency.

Materials and Methods

Time and Research Sites

This research took place in January - December 2019 in the area of the mangrove ecosystem of West Muna Regency. The location consisted of four observation stations, namely District of Maginti (Station I), District of Tiworo Tengah (Station II), District of Tiworo Kepulauan (Station III), and District of Sawerigadi (Station IV), as shown in Figure 1. Meanwhile, the similarity of vegetation characters dominated by Rhizophora and Sonneratia species became the criteria for selecting the research sites. The division into four stations was assumed to represent the mangrove ecosystem condition in West Muna Regency.

The water condition in the mangrove ecosystem area was influenced by river water inputs, affecting fluctuations in water salinity. Mangrove ecosystems in river areas had brackish to salty salinity ranging from 15–33 ppt. Furthermore, the mixing of sea and freshwater resulted in the salinity of the ecosystem. The main mangrove species in the West Muna Regent coast mangrove ecosystem were *Bruguiera cylindrica*,

Figure 1. The map of the study site

Table 1. The materials and instruments used for the research
--

No.	Materials	Function		
1.	Chamber	to trap gas in mangrove litter		
2.	Syringe	to take gas from the chamber		
3.	Injection (50 ml)	to take gas through the syringe		
4.	Vials (10 ml)	to store gas samples		
5.	Clamp	close the air circulation from the syringe to the chamber or vice versa		
6.	Equipment box	to store all equipment tools		
7.	Solation and glue	to close the chamber		
8.	Gas Chromatography	to analyze the concentration of N2O gas		

B. gymnorrhiza, Rhizophora apiculata, R. mucronata, R. stylosa, and *Sonneratia alba*. (Rahman et al. 2020a). These species live on various substrates (silt, sandy silt, and silty sand) (Noor et al. 2006; Hogarth 2007; Rahman et al. 2014).

Research Materials

This research used materials and instruments for data collection and analysis, as summarized in Table 1.

Gas Sampling

Gas sampling involved placing a hood under the canopy of each mangrove species, namely *B. cylindrica, B. gymnorrhiza, R. apiculata, R. mucronata, R. stylosa,* and *S. alba.* The litter collection from

each mangrove species used a 2 x 4 m litter trap. Subsequently, 600 grams of wet litter were gathered from each species and placed on a square plate measuring 1 x 1 x 1 m, and the litter was left to decompose for 30 days. A $0.5 \times 0.5 \times 1$ m chamber was placed inside the square plate to collect gas resulting from litter decomposition. We used a syringe to extract the gas, which was transferred into a 10 ml bottle (Rahman et al. 2020b). Furthermore, gas sampling was carried out for 8 hours with intervals of two hours (08.00, 10.00, 12.00, 14.00, 16.00) at each station with an observation period of three months (Station I = January - March, Station II = February – June, Station III = July – September, Station IV = October – December).

Measurement of Water Parameters

Water parameters (temperature and salinity) were measured in situ at two-hour intervals each during the gas sampling period. Water parameters were also measured to determine the effect on the value of carbon emissions from the degradation of mangrove litter.

Data Analysis

N₂O Gas Emission

Before conducting emission/flux analysis of N₂O gas, we measured the gas concentration using the gas chromatography method. Two ml of gas through a thermal conductivity detector were analyzed by flow for five minutes with three repetitions of N₂O gas concentration. The analysis of N₂O gas concentration took place at the Laboratory of the Agricultural Environmental Research Institute (BALINGTAN), Regency of Pati, Java of Central. The analysis of the N₂O emission value used the equation modified from Nazareth and Gonzalves and the N₂O gas concentration value (2022).

$$F = \left| \frac{S * V * t * m W}{(RT * A)} \right| \tag{1}$$

Notes:

F: N_2O gas emission (mg/m²/hour), S: slope of regression of the gas concentration measured every two hours, V: volume of the chamber (L), A = area covered by the chamber (m²), R: ideal gas constant = 0.082 L. atm/K/mol, T = temperature in the chamber (K), t: time transformation constant = (1 hour/gas sampling time interval), and mW = relative atomic mass of N₂O (44 mg/mole).

Correlation of Water Parameters to N₂O Emissions

The Pearson Correlation method analyzed the correlation of water temperature and salinity parameters on N₂O gas emissions. Pearson correlation analyzes the relationship between two variables and is denoted by r (Kent State University Library 2023). The coefficient of correlation (r) ranges from -1 to +1; the closer to -1 or +1, the temperature or salinity parameter shows a strong correlation to the value of gas emissions (Nazareth & Gonzalves 2022). Meanwhile, if the value of r is getting closer to 0, it shows the weak effect of temperature or salinity on the importance of

N₂O emissions. Analysis of variance (ANOVA) determines the significance of the environmental variables' effects on N₂O emissions in each type of mangrove litter.

Global Warming Potential (GWP) of N₂O Gas

The Global Warming Potential (GWP) of greenhouse gases is the equivalent value of the radiation emission of N₂O gas in the atmosphere. The calculated GWP is the GHG radiation equivalent for 100 years (IPCC 2001). Analysis of the GWP value of N₂O gas referred to the IPCC equation (2001) as follows.

$$F_e = Fm \ x \ GWP \qquad (2)$$

Where Fe is the CO₂e flux or emissions value (mg/m²/hour) as an approximation of GWP value, Fm is N₂O gas flux (mg/m²/hour), GWP is GWP value N₂O gas, namely the conversion value of emissions per mole of N₂O gas equivalent to 298 times CO₂e emissions over 100 years.

Result and Discussions

N₂O Gas Emission

At the I, II, III, and IV stations, the largest and smallest N₂O emissions were in *R. mucronata* and *B.* cylindrica, B. gymnorrhiza and B. cylindrica, R. apiculata and B. cylindrica, and R. apiculata and S. alba with emissions value of 0.0024 and 0.0008 mg/m²/hour, 0.0021 and 0.0006 mg/m²/hour, 0.0028 and 0.0012 mg/m²/hour, and 0.0021 and 0.0012 mg/m²/hour, respectively (Figure 2). All species' largest and smallest average emissions were at stations III and II, with emissions values of 0.0019 and 0.0015 mg/m²/hour. The isolation of litter for each mangrove species in this study by capturing it in a hermetically sealed manner to prevent the ingress of organic matter from the outside allowed the identification of the differences. The organic matter mixed and became part of the litter decomposition process. As a result, the gas stream produced was purely from 600 grams of decomposition product, corresponding to the leaf litter wet weight of all mangrove species. In addition, each mangrove species' low greenhouse gas flux was because the mangrove ecosystem on the West Muna Coast was still pristine and unpolluted by industrial

waste, except for a small amount of domestic waste. The tides could quickly dilute household waste entering the waters of mangrove ecosystems. No waste stayed in the ecosystems for extended periods.

Chen et al. (2010) reported that N_2O production positively and negatively correlated with NO_3 - and NH_4^+ because nitrification (oxidation of ammonium by nitrifying bacteria under aerobic conditions) and denitrification (reduction of nitrites and nitrates by denitrifying bacteria under anaerobic conditions) supported by the availability of oxygen (Purvaja & Ramesh 2001; Kreuswiezer et al. 2003; Rusmana 2006; Chen et al. 2010) and inorganic nitrogen content (Corredor et al. 1999) dominated the production of N_2O gas. According to Huang et al. (2014), N_2O gas production positively correlated with the combination of ammonium (NH_4^+), nitrate (NO_3^-), and oxygen availability, with a value of r = 0.764.

Pearson's correlation analyzed the relationship between temperature parameters and N₂O emissions and showed a weak relationship with a value of r =0.3511 (p < 0.05). The temperature variable showed no significant effect on N₂O emissions in all mangrove species. The temperature had no significant effect on N₂O emissions in R. mucronata (r = -0.0696; p < 0.05) and in S. *alba* (r = 0.1816; p < 0.05). Meanwhile, for the species R. stylosa, the temperature had a moderate effect on N₂O emissions with a correlation value of r = 0.6516 (p < 0.01) (Table 2). Variations in water temperature showed a nonlinear relationship to N₂O emissions. N₂O emission fluctuations did not follow the trend of water temperature fluctuations. The lowest gas emission was 0.0005 mg/m²/hour, and the largest was 0.0030 mg/m²/hour, respectively, at 26.2 °C

Figure 2. N₂O gas emissions on each mangrove species on the West Muna Regency Coast; MM is mangrove in Maginti, MTT is mangrove in Tiworo Tengah, MTK is mangrove in Tiworo Kepulauan, and MS is mangrove in Sawerigadi: *Bc* = *Bruguiera cylindrica, Bg* = *Bruguiera gymnorrhiza, Ra* = *Rhizophora apiculata, Rm* = *Rhizophora mucronata, Rs* = *Rhizophora stylosa, Sa* = *Sonneratia alba*

Table 2. Correlation coefficient (r) of the influence of environmental variables (temperature and salinity) on N₂O emissions in each mangrove species

		R		
Species	– Emisi N₂O (mg/m²/hour)	Temperature (°C)	Salinity (ppt)	
B. cylindrica	0.0012±0.0007	0.3571*	-0.4456**	
B. gymnorrhiza	0.0017±0.0008	0.5276**	-0.4891**	
R. apiculata	0.0021±0.0008	0.4482**	-0.4002*	
R. mucronata	0.0019±0.0006	0.0696*	0.1615*	
R. stylosa	0.0016±0.0005	0.6516**	-0.8292***	
S. alba	0.0016±0.0007	0.1816*	-0.3487*	
Total	0.0017±0.0003	0.3511*	-0.4471**	

Remarks: *r* is correlation coefficient, significant value *p < 0.05, **p < 0.01, ***p < 0.001

Figure 3. The relationship between water temperature and N₂O gas emissions in the mangrove ecosystem on the coast of West Muna Regency

Figure 4. Correlation between water salinity and N₂O gas emissions in mangrove ecosystem on the coast of West Muna Regency

and 27.8 °C. Emissions then decreased at 28.2 °C (0.0006 mg/m²/hour) and increased again at 29.7 °C (0.0013 – 0.0018 mg/m²/hour). These indicated that the temperature of mangrove waters in the range of 26.2 – 29.7 °C was optimal for forming N_2O through nitrification and denitrification processes and showed a nonsignificant difference from the emission values formed at these temperatures (Figure 3).

Water salinity had a weak correlation with N_3O emissions (r = -0.4471; p <0.05), indicating that the increase in salinity had a nonlinear relationship to N_2O emissions (Table 2). Water salinity had a weak effect on N_2O emission in each mangrove species. These results aligned with the reports of Hernandes and Junca-Gomez (2020), who found that water

salinity had a negative correlation and was nonsignificant in influencing N₂O gas emissions in mangrove sediments. The correlation value was r = -0.4456 (p <0.01) for *B. cylindrica* species, r = -0.4891 (p <0.01) for *B. gymnorrhiza* species, r = -0.4002 (p < 0.01) in *R. apiculata*, r = 0.1615 (p < 0.05) in *R. mucronata* and r = -0.3487 (p < 0.01) in *S. alba*. Conversely, an increase in salinity correlated strongly with N₂O emissions in *R. stylosa* species (r = -0.8292; p < 0.001). Figure 4 showed that the largest and lowest N₂O emissions occurred at a salinity of 28.7 ppt with an emissions range of 0.0006 – 0.0030 mg/m²/hour. Therefore, N₂O gas emissions in mangrove litter occurred in the 25.2 – 30.5 ppt salinity range but were not the primary factors considered.

	CO _s e (mg/m²/jam)					
Locations	Bc	Bg	Ra	Rm	Rs	Sa
Maginti	0.3590	0.2320	0.6238	0.7108	0.4115	0.4628
Tiworo Tengah	0.1912	0.6237	0.4356	0.5309	0.3657	0.5475
Tiworo Kepulauan	0.3502	0.6094	0.8392	0.4457	0.6382	0.5781
Sawerigadi	0.5657	0.6149	0.6270	0.5403	0.5250	0.3544
Averages	0.3665	0.5200	0.6314	0.5569	0.4851	0.4857

Table 3. GWP contribution value of N_aO gas from mangrove litter degradation on the coast of West Muna Regency.

Notes: Bc = Bruguiera cylindrica, Bg = Bruguiera gymnorrhiza, Ra = Rhizophora apiculata, Rm = Rhizophora mucronata, Rs = Rhizophora stylosa, Sa = Sonneratia alba

Global Warming Potential (GWP)

N,O gas was the third contributor after CO, and CH₄ to the increase in GHG emissions, which induced climate change (IPCC 2001). Burning of fossil, fuel use, deforestation, and waste organic degradation influenced the increased concentration of N₂O in the atmosphere. It was also increased due to natural processes such as litter degradation in mangrove sediments (Rahman et al. 2018). The GWP of N₂O gas was the radiation potential of N,O emissions, equivalent to a CO₂ emissions value. The results showed that each species had different GWP values for N₀O gas emissions from mangrove litter degradation. The average GWP value ranged from 0.3665 - 0.6314 CO₂e mg/m²/hour. R. apiculata and B. cylindrica of Tiworo Kepulauan and Tiworo Tengah mangrove ecosystems had the largest and smallest GWPs, which were 0.8392 and 0.1912 CO, e mg/m²/hour, respectively (Table 3).

Conclusion

In conclusion, the largest and smallest average emissions from litter degradation for each mangrove species were found at stations III and II, with values of 0.0019 and 0.0015 mg/m²/hour, respectively. The water temperature and water salinity had a weak relationship with N₂O emissions, namely r = 0.3511 (p <0.05) and r = -0.4471 (p <0.05), respectively. Salinity had a nonlinear relationship to N₂O emissions. The average GWP values ranged from 0.3665 – 0.6314 CO₂e mg/m²/hour. The largest and smallest GWPs were in *R. apiculata* and *B. cylindrica* of Tiworo Kepulauan and Tiworo Tengah mangrove ecosystems, which were 0.8392 and 0.1912 CO₂e mg/m²/hour, respectively.

References

- Allen DE, Dalal RC, Rennenberg H, Schmidt S. 2011. Seasonal variation in nitrous oxide and methane emissions from the subtropical estuary and coastal mangrove sediments, Australia. Plant Biol. 13: 126 – 33. https://doi.org/10.1111/j.1438-8677.2010.00331.x
- Asch RG, Cheung WWL, Reygondeau G. 2017. Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change. Mar Pol; http://dx.doi.org/10.1016/j.marpol.2017.08.015.
- Badjeck MC, Allison EH, Halls AS, Dulvy NK. 2010. Impacts of climate variability and change on fishery-based livelihoods. Mar Pol 2010; 34: 375 – 83. https://doi.org/ 10.1016/j.marpol.2009.08.007
- Brander K. 2010. Impacts of climate change on fisheries. J Mar Sys. 79: 389 – 402. http://dx.doi.org/10.1016/j. jmarsys.2008.12.015
- Castillo JAA, Apan AA, Maraseni TN, Salmo III SG. 2017. Soil greenhouse gas fluxes in tropical mangrove forests and in land use on deforested mangrove lands. Catena; 159: 60 – 9. http://dx.doi.org/10.1016/j.catena.2017.08.005
- Chen GC, Tam N.F.Y., Ye Y. 2010. Summer fluxes of atmospheric greenhouse gases N₂O, CH₄, and CO₂ from mangrove soil in South China. Sci Tot Environ; 408: 2761-7. doi:10.1016/j.scitotenv.2010.03.007
- Chen GC, Tam N.F.Y., Ye Y. 2012. Spatial and seasonal variations of atmospheric N₂O and CO₂ fluxes from a subtropical mangrove swamp and their relationships with soil characteristics. Soil Biol Biochem. 48: 175 81. doi:10.1016/j.soilbio.2012.01.029
- Cheung W.W.L., Lam V.W.Y., Sarmiento JL, Kearney K, Watson R, Pauly D. 2009. Projecting global marine biodiversity impacts under climate change scenario. Fish Fisher. DOI 10.1111/j.1467-2979.2008.00315.x.
- Coulthard S. 2008. Adapting to environmental change in artisanal fisheries-insight from a South Indian Lagoon. Glo Environ Cha. 18: 479 – 89. https://doi.org/10.1016/ j.gloenvcha.2008.04.003
- Corredor JE, Moorel JM, Bauza J. 1999. Atmospheric Nitrous Oxide fluxes from mangrove sediments. Marine Pollution Bulletin. 38 (6): 473-478. https://doi.org/ 10.1016/S0025-326X(98)00172-6
- Donato DC., Kauffman JB., Mackenzie RA., Ainsworth A., Pfleeger AZ. 2012. Whole-island carbon stock in tropical pacific: Implications for mangrove conservation and upland restoration. J. Environ. Manage. 97:89-96. https://doi.org/10.1016/j.jenvman. 2011.12.004

- Drinkwater KF, Beaugrand G, Kaeriyama M, Kid S, Ottersen G, Perry RI, Pörtner HO, Polovina JJ, Takasuka A. 2009. On the processes linking climate to ecosystem changes. J Mar Sys. 79: 374 – 88. https://doi.org/10.1016/j.jmarsys. 2008.12.014
- Hernandez EM, Junca-Gomez D. 2020. Carbon stocks and greenhouse gas emissions (CH₄ and N₂O) in mangroves with different vegetation assemblies in the central coastal plain of Veracruz Mexico. Sci of the Tot Environ; 741: https://doi.org/10.1016/j.scitotenv.2020.140276
- Hogarth PJ. 2007. The Biology of Mangroves and Seagrasses. America, U.S. Oxford University Press.
- Huang J, Chen Y, Sui P, Nie S, Gao W. 2014. Soil Nitrous Oxide Emissions Under Maize-Legume Intercropping System in the North China Plain. J of Integrative Agriculture. 13(6): 1363-1372. https://doi.org/10.1016/ S2095-3119(13)60509-2
- I.P.C.C. Climate Change. 2001. The Intergovernmental Panel on climate change a scientific basis. Cambridge UK: Cambridge University Press.
- Jones PD. 2013. Greenhouse effect and climate data. Reference Mod Earth Syst Environ Sci. 1 – 17. https:// doi.org/10.1016/B978-0-12-409548-9.05365-3
- Kent State University. 2023. SPSS tutorials: Pearson Correlation. Diakses pada hari Kamis 8 Juni 2023 melalui link https://libguides.library.kent.edu/ SPSS/PearsonCorr.
- Konnerup D, Portela JMB, Villamil C, Parra JP. 2014. Nitrous oxide and methane emissions from the restored mangrove ecosystem of the Ciénaga Grande de Santa Marta, Colombia. Estuar Coast Shelf Scie; 30: 1 – 9. https://doi.org/10.1016/j.ecss.2014.01.006
- Kreuswiezer J, Buchholz J, Rennenberg H. 2003. Emission of methane and nitrous oxide by Australian mangrove ecosystems. Plant Biol; 5: 423 – 31. DOI: 10.1055/s-2003-42712
- Ma J, Niu A, Liao Z, Qin J, Xu S, Lin C. 2023. Factors affecting N₂O fluxes from heavy metal-contamined mangrove soils in a subtropical estuary. *Mar Pol Bullet;* 186. https://doi.org/10.1016/j.marpolbul.2022.114425
- Nazareth DR, Gonzalves MJ. 2022. Influence of seasonal and environmental variables on the emission of methane from the mangrove sediments of Goa. *Environ Monit Assess.* 194:249. doi: https://doi.org/10.1007/s10661-021-09734-3
- Noor YR, Khazali M, Suryadiputra INN. 2006. Pengenalan Ekosistem Mangrove di Indonesia. Bogor, ID: Wetlands International – Indonesia Programme.
- Ohwayo RO, Natugonza V, Musinguzi L, Olokotum M, Naigaga S. 2016. Implications of climate variability and change for African lake ecosystems, fisheries productivity, and livelihoods. J Great Lakes Res; 42: 498 – 510. https://doi.org/10.1016/j.jglr.2016.03.004
- Pathak H. 1999. Emission of nitrous oxide from soil. Article Reviews. Current Science. 77(3): 359-360. https://www. jstor.org/stable/24102954.
- Purvaja R, Ramesh R. 2001. Natural and anthropogenic methane emission from coastal wetlands of South India. Environ Manage. 27: 547 – 57. doi: 10.1111/j.1365-2486.2004.00834.x
- Rahman, Yanuarita, D., Nurdin, N. 2014. Struktur komunitas mangrove di Kabupatean Muna. Torani Jurnal Ilmu Kelautan dan Perikanan, 24(2):29-36.
- Rahman, Yulianda F, Rusmana I, Wardiatno Y. 2018. Fluxes

of greenhouse gases CO₂, CH₄ and N₂O from mangrove soil in Tallo River, Makassar. J Trop Biol; 18: 149 – 58. DOI: 10.29303/jbt.v18i2.755

- Rahman, Wardiatno, Y., Yulianda, F., Rusmana, I., 2020a. Socio-ecological system of carbon-based mangrove ecosystem on the coast of West Muna Regency, Southeast Sulawesi, Indonesia. AACL Bioflux. 13(2): 518-528. http://www.bioflux.com.ro/docs/2020.518-528.pdf
- Rahman, Wardiatno, Y., Yulianda, F., Rusmana, I., 2020b. Seasonal fluxes of CO₂, CH₄, and N₂O greenhouse gases in various mangrove species on West Muna Regency, Southeast Sulawesi, Indonesia coast. Plant Archives. 20(2):4301-4311.
- Rusmana I. 2006. Gaseous end products of nitrate and nitrite reduction by denitrifying Pseudomonads isolated from estuarine sediment. J Microbiol Indones, 11(2):279-291.
- Shawket N, Elmadhi Y, Kharrim KE, Belghyti D. 2019. Impacts of climate change on fish performance. J Entomol Zoo Stud; 7: 343 – 49.
- Wang H, Zhou S, Li X, Liu H, Chi D, Xu K. 2016. The influence of climate change and human activities on ecosystem service value. Ecol Engin. 87: 224 – 39. https://doi.org/ 10.1016/j.ecoleng.2015.11.027