Crowding In dan Crowding Out Dampak Keragaman Penerimaan Bantuan Sosial (BPNT, BST dan BLTDD ) terhadap Pengeluaran Rumah Tangga di Tengah Pandemi Covid-19


bantuan sosial


Beragam bantuan sosial yang didistribusikan oleh pemerintah pada masa pandemi covid-19 menjadi bagian komponen pendapatan rumah tangga yang kemudian dialokasikan untuk pengeluaran konsumsi, bantuan sosial yang didistribusikan oleh pemerintah kepada rumah tangga di Indonesia di antaranya adalah Bantuan Pangan Non Tunai (BPNT), Bantuan Sosial Tunai (BST), dan Bantuan Langsung Tunai Dana Desa (BLTDD). Penelitian ini bertujuan untuk menganalisis efek crowding in dan crowding out dari  keragaman bantuan sosial BPNT,BST, dan BLTDD yang diterima 63.924 rumah tangga di Indonesia pada saat krisis ekonomi terhadap pengeluaran untuk makanan dan bukan makanan. Dengan menggunakan data sekunder dari Survei Sosial Ekonomi Nasional 2020 pada modul ketahanan sosial (Hansos) dan Susenas KOR, kemudian dianalisis menggunakan model Seemingly Unrelated Regression (SUR), penelitian ini menemukan bahwa BPNT, BST dan BLTDD signifikan mempengaruhi pengeluaran rumah tangga. Jika pengaruh bantuan sosial BPNT, BST, dan BLTDD positif (Crowding in) untuk belanja makanan maka dalam penelitian ini menemukan hubungan yang negatif (Crowding out) untuk pengeluaran bukan makanan. Namun ketika bantuan sosial disimulasikan dalam bentuk uang tunai maka konsumsi rumah tangga cenderung negatif untuk makanan (Crowding out) dan positif (Crowding in) untuk konsumsi konsumsi bukan makanan.

Kata kunci: Bantuan sosial, BPNT, BST,BLTDD;Covid-19.


The Covid-19 pandemic has resulted in a significant increase in social assistance distributed by the government, which has become a crucial component of household income. This has enabled households to allocate a greater proportion of income to consumption expenditure. This study aims to analyze the effects of crowding in and out of the various social assistance BPNT, BST, and BLTDD received by 63,924 households in Indonesia during the economic crisis on food and non-food expenditures. Using secondary data from the 2020 National Socioeconomic Survey on the social security module (Hansos) and Susenas KOR, then analyzed using the Seemingly Unrelated Regression (SUR) model, this study found that BPNT, BST, and BLTDD significantly affect household spending. This study finds that while the influence of BPNT, BST, and BLTDD social assistance may be positive towards food spending (crowding in), it has a negative relationship towards non-food expenditure (crowding out). However, when social service simulates as cash, household consumption tends to be harmful to food (crowding out) and positive (crowding in) for non-food consumption.  

Key words: Social Assiatance; BPNT; BST; BLTDD; Covid-19.


Arganini, C., Saba, A., Comitato, R., Virgili, F., & Turrini, A. (2012). Gender differences in food choice and dietary intake in modern western societies. Public health-social and behavioral health, 4, 83-102.

Baker, S. R., Farrokhnia, R. A., Meyer, S., Pagel, M., & Yannelis, C. (2020). How does household spending respond to an epidemic? consumption during the 2020 COVID-19 pandemic. In Review of Asset Pricing Studies (Vol. 10, Issue 4, pp. 834–862). Oxford University Press.

Bazzi, S., Sumarto, S., & Suryahadi, A. (2015). It’s all in the timing: Cash transfers and consumption smoothing in a developing country. Journal of Economic Behavior and Organization, 119, 267–288.

Bryman, Alan. (2012). Social research methods 4th edition. Oxford: Oxford University Press

Badan Pusat Statistik (BPS) diakses dari, diakses pada tanggal 2 Februari 2021 pada jam 20.20 WIB.

Despard, Mathieu, Selina Miller, dan Katie Kristensen. 2021. “Timely and Well-Targeted Financial Assistance during COVID-19 A program for hotel employees in New Orleans.” : 1–9.

Drakopoulos, S. A. (2021). The marginalization of absolute and relative income hypotheses of consumption and the role of fiscal policy. The European Journal of the History of Economic Thought, 28(6), 965-984.

Friedman, B. M. (1978). Crowding out or crowding in? The economic consequences of financing government deficits (No. w0284). National Bureau of Economic Research.

Gerard, François, Clément Imbert, dan Kate Orkin. 2020. “Social protection response to the COVID-19 crisis: Options for developing countries.” Oxford Review of Economic Policy 36(April): S281–96.

Güney, O. I., & Sangün, L. (2021). How COVID-19 affects individuals' food consumption behaviour: a consumer survey on attitudes and habits in Turkey. British Food Journal.

miskin di Kecamatan Dendang Kabupaten Tanjung Jabung Timur (Vol. 8, Issue 3).

Kementerian Keuangan Republik Indonesia. 2020. APBN 2020 Diakses di tanggal 13 Maret pukul 09:30 WIB

Mandal, S. C., Boidya, P., Haque, M. I. M., Hossain, A., Shams, Z., & Mamun, A. al. (2021). The impact of the COVID-19 pandemic on fish consumption and household food security inDhaka city, Bangladesh. Global Food Security, 29.

Mankiw, N. G. (2012). Principles of economics. Cengage Learning.

Micklewright, J & Marnie, S. (2005). Targeting social assistance in a transition economy: The Mahallas in Uzbekistan. Social Policy & Administration, 39(4), 431-447.

Mufida, A. (2020). Polemik Pemberian Bantuan Sosial Di Tengah Pandemic Covid 19. A Buletin Hukum & Keadilan, 4(1), 159–166

Mor, K., & Sethia, S. (2017). Developing Consumer Decision Making Style for Clothing in Rural and Urban Areas. ICRBS-2017, 2017.

Pradani, R. F. E., Sarwani, I., Fikri, A. R., & Firdaus, M. (2021b). Analisis Pengaruh Bantuan Sosial Langsung Tunai (BST) Terhadap Pola Konsumsi Masyarakat Selama Pandemi Covid-19. Jurnal Pendidikan Ekonomi (JUPE), 9(3), 121–128.

Pratomo, O. M., & Safitra, D. A. (2021). Pendekatan Tunai Dan Nontunai Dalam Pengentasan Kemiskinan Di Indonesia. Jurnal Manajemen Keuangan Publik, 5(1), 1-12.

Pindyck, R. S., & Rubinfeld, D. L. (2014). Microeconomics. Pearson Education.

Pulighe, G., & Lupia, F. (2020). Food first: COVID-19 outbreak and cities lockdown a booster for a wider vision on urban agriculture. Sustainability, 12(12), 5012.

Rasyid, M., Kristina, A., Sutikno, Sunaryati, & Yuliani, T. (2020b). Poverty Conditions And Patterns Of Consumption: An Engel Function Analysis In East Java And Bali, Indonesia. Asian Economic and Financial Review, 10(10), 1062–1076.

Rosen, H. S., & Gayer, T. (2013). Public Finance. New York: McGrow-Hill. International Edition.

Romeo-Arroyo, E., Mora, M., & Vázquez-Araújo, L. (2020). Consumer behavior in confinement times: Food choice and cooking attitudes in Spain. International Journal of Gastronomy and Food Science, 21.

Seale, J. L., & Regmi, A. (2006). Modeling International Consumption Patterns.

Sidor, A., & Rzymski, P. (2020). Dietary choices and habits during COVID-19 lockdown: experience from Poland. Nutrients, 12(6), 1657.Chicago

Zellner, Arnold. (1962). An Efficient Method of Estimating Seemingly Unrelated Regression and Test for Aggregation Bias. Journal of the American Statistical Association vol 57, No 298. Hlm. 348-368.