Animal models in antihypertensive drug development research

  • Dwi Aris Agung Nugrahaningsih Department of Pharmacology and Therapy Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Mia Munawarroh Yuniyanti Department of Pharmacology and Therapy Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Rahmi Ayu Wijayaningsih Department of Pharmacology and Therapy Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Mosa Rini Nurul Hidayati Department of Pharmacology and Therapy Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Setyo Purwono Department of Pharmacology and Therapy Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
Keywords: Hypertension, animal model, drug development research


Hypertension is one of the most common diseases in the world. However, its pathogenesis is not fully understood and its treatment is not yet satisfying. Animal models of hypertension have been useful to understand the pathogenesis of hypertension and to test novel therapeutic agents. There are several kinds of hypertension animal models. Each model has different characteristics. Knowing the characteristic of each model is important to obtain valid research. This review will describe several available methods to develop animal model for hypertension.


Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens 2016; 34:1887-920.

NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 2017; 389:37-55.

Chow CK, Teo KK, Rangarajan S, Islam S, Gupta R, Avezuma A, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high, middle- and low-income countries. JAMA 2013; 310:959-68.

Badan Penelitian dan Pengembangan Kesehatan Kementrian Kesehatan Republik Indonesia. Hasil Utama RISKESDAS 2018. Jakarta: Kemenkes RI, 2018.

Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365:217-23.

Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360:1903-13.

Zhang JT, Chen KP, Guan T, Zhang S. Effect of aliskiren on cardiovascular outcomes in patients with prehypertension: a meta-analysis of randomized controlled trials. Drug Des Devel Ther 2015; 9:1963-71.

Archer JS. Evaluation and treatment of hypertension. Prim Care Update Ob Gyns 2000; 7:1-6.

Susalit E, Agus N, Effendi I, Tjandrawinata RR, Nofiarny D, Perrinjaquet-Moccetti T, et al. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: comparison with captopril. Phytomedicine 2011; 18:251-8. 10.1016/j.phymed.2010.08.016

August P. Overview: mechanisms of hypertension: cells, hormones, and the kidney. J Am Soc Nephrol 2004; 15:1971-3.

Wang J and Xiong X. Outcome measures of chinese herbal medicine for hypertension: an overview of systematic reviews. Evid Based Complem Alternat Med 2012; 2012:697237.

Lin HY, Lee YT, Chan YW, Tse G. Animal models for the study of primary and secondary hypertension in humans. Biomed Rep 2016; 5(6):653-9.

Lerman LO, Chade AR, Sica V, Napoli C. Animal models of hypertension: an overview. J Lab Clin Med 2005; 146(3):160-73.

Nugrahaningsih DAA, Emoto N, Vignon-ellweger N, Purnomo E, Yagi K, Nakayama K, Doi M, et al. Chronic hyperaldosteronism in cryptochrome-null mice induces high-salt-and blood pressure-independent kidney damage in mice. Hypertens Res 2014; 37(3):202-9.

Okamoto K, Yamri Y, Ooshima A, Park C, Haebara H, Matsumoto M, et al. Establishment of the inbred strain of the spontaneously hypertensive rats and genetic factors involved in hypertension. In: Okamoto K (ed), Spontaneous Hypertension: Its Pathogcnesis and Complications. Tokyo: IqakuShoin Ltd., 1972, pp 1-8.

TrippodoN and Frohlich E. Similarities of genetic (spontaneous) hypertension: man and rat. Ore Res 1981; 48:309-19.

Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62:347-504.

Ely DL, Weigand J. Stress and high sodium effects on blood pressure and brain catecholamines in spontaneously hypertensive rats. Clin Exp Hypertens 1983; A5:1559-87.

Ely DL, Friberg P, Nilsson, H, Folkow B. Blood pressure and heart rate responses to mental stress in spontaneously hypertensive and normotensive rats on various sodium diet. Acta Physiol Scand 1985; 123:159-69.

Folkow B, Ely DL. Dietary sodium effects on cardiovascular and sympathetic neuroeffector functions as studied in various rat models. J Hypertens 1987; 5:383-95.

Mukai Y, Sato S. Polyphenol-containing azuki bean (vignaangularis) extract attenuates blood pressure elevation and modulates nitric oxide synthase and caveolin-1 expression in rats with hypertension. Nutr Metab Cardiovasc Dis 2009; 19(7):491-7.

Jia H, Liu JW, ufur H, He GS, Liqian H, Chen P. The antihypertensive effect of ethyl acetate extract from red raspberry fruit in hypertensive rats. Pharmacogn Mag 2011; 7:19-24.

Ribeiro RM, Neto VFP, Ribeiro KS, Vieira DA, Abreu IC, Silva SDN, et al. Antihypertensive effect of Syzygiumcumini in spontaneously hypertensive rats. Evid Based Complem Alternat Med 2014; 2014:605452.

Rapp JP. Dahl Salt susceptible and salt resistant rats. Hypertension 1982; 4:753-63.

Kubota Y, Tanaka N, Kagota S, Nakamura K, Kunimoto M, Umegaki K, et al. Effects of Ginkgo biloba extract feeding on salt-induced hypertensive Dahl rats. Biol Pharm Bull 2006; 29(2):266-9.

Hirawa N, Uehara Y, Kawabata Y, Numabe A, Takada S, Nagoshi H, et al. Hachimi-jio-gan extract protects the kidney from hypertensive injury in Dahl salt sensitive rat. Am J Chin Med 1996; 24 (3-4):241-54.

Doi M, Takahashi Y, Komatsu R, Yamazaki F, Yamada H, Shogo H, et al.Salt sensitive hypertension in circardian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med 2010; 16(1): 67-74.

Nugrahaningsih DAA, Sholikhah EN, Mustofa M, Yuliani FS, Purwono S, Ngatidjan N. Blood pressure lowering effect of polyherbal preparation containing Allium sativum, Belericaefructus, Curcuma aeruginosa, and Amomifractus on rat model of hypertension. Asian JPharm Clin Res 2019; 12(4):311-4.

Pinto YM, Paul M, Ganten D. Lessons from rat models of hypertension: from goldblatt to genetic engineering. Cardiovasc Res 1998; 39:77-88.

Brown L, Duce B, Miric G, Sernia C. Reversal of cardiac fibrosis in deoxycorticosterone acetate-salt hypertensive rats by inhibition of the renin-angiotensin system. J Am Soc Nephrol 1999; 10:S143-8.

Brilla CG, Weber KT. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med 1992; 120:893-901

Klein AV, Kiat H. The mechanisms underlying fructose-induced hypertension: a review. J Hypertens 2015; 33(5):912-20.

33. Ramos-Romero S, Hereu M, Atienza L, Casas J, Jauregui O, Amezqueta S, et al. Mechanistically different effects of fat and sugar on insulin resistance, hypertension, and gut microbiota in rats. Am J Physiol Endocrinol Metab 2018; 314(6):E552-E63.

El Hafidi M, Cue'llar A, Ramı'rez J, Banos G. Effect of sucrose addition to drinking water, that induces hypertension in the rats, on liver microsomal Delta9 and Delta5-desaturase activities. J NutrBiochem 2001; 12(7):396-403.

Perez I, El Hafidi M, Carvajal K, Baños G. Castration modifies aortic vasoreactivity and serum fatty acids in a sucrose-fed rat model of metabolic syndrome. Heart Vessels 2009; 24:147-55.

Yamamoto Y, Oue E. Antihypertensive effect of quercetin in rats fed with a high-fat High-sucrose diet. Biosci Biotechnol Biochem 2006; 70(4):933-9.

Uchida A, Nakata T, Hatta T, Kiyama M, Kawa T, Morimoto S, et al. Reduction of insulin resistance attenuates the development of hypertension in sucrose-fed SHR. Life Sci 1997; 61(4):455-64.

Preuss HG, Echard B, Polansky MM, Anderson R. Whole cinnamon and aqueous extracts ameliorate sucrose-induced blood pressure elevations in spontaneously hypertensive rats. J Am Coll Nutr 2006; 25(2):144-50.

Pranprawit A, Wolber FM, Heyes JA, Molan AL, Kruger MC. Short-term and long-term effects of excessive consumption of saturated fats and/or sucrose on metabolic variables in Sprague Dawley rats: a pilot study. J Sci Food Agric 2013; 93(13):3191-7.

Chou CL, Lai YH, Lin TY, Lee TJF, Fang TC. Aliskiren prevents and ameliorates metabolic syndrome in fructose-fed rats. Arch Med Sci 2011; 7(5):882-8.

Kho MC, Lee YJ, Cha JD,Choi KM, Kang DG, Lee HS. Gastrodiaelata ameliorates high-fructose diet-induced lipid metabolism and endothelial dysfunction. Evid Based Complement Alternat Med 2014; 2014:101624.

Mamikutty N, Thent ZC, Sapri SR, Sahruddin NN, Yusof MRM, Suhaimi FH. The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. Biomed Res Int 2014; 2014:263897.

Giani JF, Mayer MA, Munoz MC, Silberman EA, Hocht C, Taira CA, et al. Chronic infusion of angiotensin-(1-7) improves insulin resistance and hypertension induced by high-fructose diet in rats. Am J Physiol Endocrinol Metab 2009; 296(2).

Vasudevan H, Xiang H, McNeill JH. Differential regulation of insulin resistance and hypertension by sex hormones in fructose-fed male rats. Am J Physiol Heart Circ Physiol 2005; 289:H1335-H42.

Roncal CA, Reungjui S, Sanchez-Lozada LG, Mu W, Sautin YY, Nakagawa T, et al. Combination of captopril and allopurinol retards fructose-induced metabolic syndrome. Am J Nephrol 2009; 30(5):399-404.

Lanzi CR, Perdicaro DJ, Antoniolli A, Fontana AR, Miatello RM, Bottini R, et al. Grape pomace and grape pomace extract improve insulin signaling in high-fat-fructose fed rat-induced metabolic syndrome. Food Funct 2016; 7(3):1544-53.

Tran LT, MacLeod KM, McNeill JH. Endothelin-1 modulates angiotensin II in the development of hypertension in fructose-fed rats. Moll Cell Biochem 2009; 325(1-2):89-97.

Komnenov D, Levanovich PE, Rossi NF. Hypertension associated with fructose and high salt: renal and sympathetic mechanisms. Nutrients 2019; 11(3):569.

Yoshioka T, Shiraga H, Yoshida Y, Fogo A, Glick AD, Deen WM, et al. Intact nephrons as the primary origin of proteinuria in chronic renal disease: study in the rat model of subtotal nephrectomy. J Clin Invest 1988; 11:1614-23

Hamzaoui M, Djerasa Z, Brunel V, Mulder V, Richard V, Bellien J, et al. 5/6 nephrectomy induces different renal, cardiac and vascular consequences in 129?Sv and C57BL/6Rj mice. Sci Rep 2020; 10(1):1524.

Nugrahaningsih DAA, Purnomo E. Protective effect of Centellaasiatica (L.) Urban on heart and kidney of rat withsubtotal nephrectomy. Der Pharm Lett 2018; 10(12):21-9.

Sviglerova J, Kuncova J, Nalos L, Tonar Z, Rajdl D, Stengl M. Cardiovascular parameters in rat model of chronic renal failure induced by subtotal nephrectomy. Physiol Res 2010; 59 (suppl.):S81-S8.

Tan R, Zhong X, Li JC, Zhang YW, Yan Y, Liao Y, et al. An optimized 5/6 nephrectomy maouse model based on unilateral kidney ligation and its application in renal fibrosis research. Renal Failure 2019; 41(1):555-66.

Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, et al. Animal models of hypertension: a scientific statement from the American Heart Association. Hypertension 2019; 73:e87-e120.

Simko F, Matuskova J, Luptak I, Krajcirovicova K. Effect of simvastatin on remodeling of the left ventricle and aorta in L-NAME-induced hypertension. Life Sci 2004; 74:1211-24.

Mali Vishal R, Mohan V, Bodhankar SL. Antihypertensive and cardioprotective effects of the Lagenariasiceraria fruit in N-nitro-L-arginine methyl ester (L-NAME) induced hypertensive rats. Pharm Biol 2012; 50(11):1428-35.

Bartunek J, Weinberg EO, Tajima M, Rohrbach S, Katz SE, Douglas PS, et al. Chronic NG-nitro-L-arginine methyl ester-induced hypertension:novel molecular adaptation to systolic load in absence of hypertrophy. Circulation 2000; 101:423-9.