Drug-related problems (DRPs) in geriatric patients with type 2 diabetes mellitus (T2DM): a review

Lathifa Nabila*, Shalahuddin Al Madury, Sundas Ejaz
Magister of Clinical Pharmacy, Faculty Pharmacy, Universitas Gadjah Mada, Yogyakarta
https://doi.org/10.22146/ijpther.2695

ABSTRACT

Diabetes mellitus (DM) is a degenerative disease affecting 10 million people in Indonesia, with a prevalence higher than 6.2%. In 2006, WHO reported that Indonesia ranked 4th in the world in terms of the number of diabetes cases after India, China, and the United States. In 2030, DM cases in Indonesia are expected to increase from 7 to 12 million. Drug related problems (DRPs) are unfavorable events that occur in the patients as a result of drug therapy and have the potential to interfere with the desired therapeutic outcomes. The geriatric population at high risk to DRPs due to physiological changes, comorbid conditions which lead to polypharmacy, and irrational drug therapy. Identification of DRPs is crucial not only for increasing the efficacy of drug therapy, but also improving the quality of life patient. This article aimed to identify the types of DRPs in geriatric patients with type 2 diabetes mellitus (T2DM). The information obtained is expected to describe the pattern, to prevent the incidence of DRPs in geriatrics patients, and to be used as basis of further research.

INTRODUCTION

Diabetes mellitus (DM) is a metabolic disorder characterized by high blood glucose levels and caused by abnormalities in insulin secretion/or action. Diabetes mellitus is a highly prevalent disease worldwide. According the latest The International Diabetes Federation (IDF) data published in 2021, 537 million people lived with DM worldwide. Indonesia ranks 5th in DM cases in the world with a prevalence rate of 6.2% or more than 10 million DM cases. In 2019, 10.7 million people with DM was reported and it is estimated to increase to be 16.6 million in 2045. In 2017, DM was one of the top 3 causes of death in Indonesia. Approximately 90% of people with DM is type 2 diabetes

*corresponding author: nabila.lathifa10@gmail.com
mellitus (T2DM).³⁻⁵

Drug problems that involve actual or potential pharmacotherapy and can influence expected health outcomes are called drug related problems (DRPs).³ Geriatric patients with T2DM have a higher incidence of DRP, with an average of four DRPs per patient.¹⁻⁷ A study in Indonesia found DRPs in 78.2% of hospitalized geriatric patients.⁸ At least two reasons why the geriatric population is susceptible to DRP, namely 1) in geriatric, physiological changes occur in body which affect the pharmacokinetic and pharmacodynamic parameters of a drug and, 2) the existence of co-morbidities, medication adherence, and the use of multiple drugs called polypharmacy.⁴⁻⁹ It may also be due to geriatric patients receiving multiple medications and treatments via multiple routes of administration that exceed clinical indications for controlling their medical condition.

This article reviewed the types of DRPs in geriatric patients with T2DM. The information obtained from this article is expected could be used to determine the pattern of DRPs in geriatrics patients with DM, preventing the occurrence of DRPs, and as preliminary data for future research.

MATERIALS AND METHODS

Articles from PubMed, Science Direct, JAMA and Google Scholar databases published form December 2003 to November 2019 were gathered in order to collect the data. The search strategy was designed to identify relevant studies of DRPs in elderly patients with DM. The following keywords were used including DRPs, DM, geriatrics, and elderly patients.

RESULTS AND DISCUSSION

Types of DRPs in patients with T2DM were identified in this review which were 1) adverse drug reaction (ADRs); 2) dose too low (under dose); 3) dose too high (over
doing); 4) therapy without indications (unnecessary therapy); 5) indication without therapy; 6) inappropriate drug selection; 7) adherence problem (non-compliance); 8) drug interaction; and 9) polypharmacy.

Adverse drug reactions (ADRs)

Adverse drug reaction is an unintended and perilous response to a drug therapy. It is encountered in the usual dosages used for treatment, prophylaxis and diagnosis in human beings. Age is one of the risk factors which increases ADR events. The elderly patient has more risk factors to experience ADR. Another risk factor of ADRs is gender. A study conducted in Dr. H. Moch. Ansari District Hospital, Banjarmasin, Indonesia reported that women tend to have DM (90 %) than men, and age more than 55 y.o. has more likely to have T2DM (55%).¹¹ Women are affected twice more than men, which is because of a combination of pharmacodynamic and pharmacokinetic factors.¹²

The most prevalent ADR in geriatrics with T2DM was hypoglycemia (63.72 %), followed by gastroenteritis (6.86 %) especially with insulins and gastrointestinal events for biguanides and meglitinides.¹³ Sulfonylureas are drugs also associated with hypoglycemic events. Hypoglycemia can cause confusion, loss of consciousness, extreme fatigue, tachycardia, disorientation, even death.¹⁴ Lactic acidosis was frequently reported in metformin-associated lactic acidosis (MALA) cases. High serum lactate concentration can increase mortality in septic shock patients.¹²

A study conducted on elderly Japanese patients with T2DM reported higher prevalence of ADRs associated with ipragliflozin administration. An estimated 10.06 % ADRs occurred in patients that were given ipragliflozin in a year, and 0.61 % of ADRs were classified as severe. The most prevalent ADRs were skin disorders (2.27 %), renal and urinary infection (1.67 %), general disorders and administration site problems (1.12 %),
and digestive disorders (1.02%).

Dose too low (under dose)

Under dose is a very small dose that it fails to achieve the desired response. A study concerning medication errors including under dose drugs in the elderly with chronic disease in Austria reported that metformin has 5.1% over or under dose. However, in another retrospective study geriatric patients with T2DM at Kalooran GMIM Amurang Hospital, North Sulawesi, Indonesia, and Gedong Air Public Health Center in Lampung, Indonesia indicated the most DRPs were drug interaction, contraindicated medication, and drugs without indication. Furthermore, the underdose event was not found in those studies.

For some years, we have given comprehension starting treatment from the lowest dose, especially for elderly patients. The advantages of choosing a very low initial dose are a) it could minimize the possibility of ADRs; b) it may involve patients in determining the optimal dose for them; and c) it could offer placebo effects. Nevertheless, the very low dose has a weakness. It can cause medication ineffectiveness and it also affects the adherence of the patient. If using under dose medication and its effect does not achieve the best result, the patient would not be satisfied and discontinue taking the medications. Adherence is one of the keys to achieve the best treatment for elderly patients with chronic diseases, such as DM.

Dose too high (overdose)

An overdose can be defined as if there is an excessive amount of drug or medicine. It could be toxic or poisonous to the body and life-threatening. A case report about metformin overdose was found in a diabetic woman of 79 y.o. with poor nutritional intake. Metformin reduces blood glucose levels by preventing glycogen breakdown and decreases gluconeogenesis. Metformin also reduces the rate of glucose absorption from the gastrointestinal tract and increased intestinal lactate production. The most commonly reported ADRs of metformin include hypoglycemia and lactic acidosis.

Patients 80 y.o. and up had the greatest rate of emergency department visits and hospitalization due to insulin-related hypoglycemia errors (IHEs). The risk of hypoglycemic in the elderly should be considered in prescribing antidiabetic oral and intensifying insulin. Meal planning accompanied with appropriate antidiabetic oral and insulin dose are the best way for hypoglycemia prevention. Insulin is one of DM treatments and it is still difficult to manage and poses a severe risk of hypoglycemia. IHEs in emergency department visits by taking the wrong insulin were documented, combining long-acting and rapid-acting insulin is the most common error reported.

Hypoglycemia could be defined as low fasting blood glucose levels measured precisely. Hypoglycemia threshold is commonly around 70 mg/dL. Severe hypoglycemia is defined as a plasma glucose level of 40–50 mg/dL. In geriatric patients, hypoglycemia is related to morbidity and death. In order to reduce hypoglycemia, clinicians should do health education programs often and monitor patient condition closely to those diabetic patients with severe hypoglycemia.

Therapy without indications (unnecessary therapy)

Administration of drugs without proper indication not only increases the cost of therapy but also has adverse consequences for the patient. The following factors can lead to the administration of drugs without indication a) patient taking drugs that are not in line with the disease's current indications; b) non-drug therapy (lifestyle modification) is more effective in treating the patient's medical condition; c) patients are given treatment to manage undesirable effects produced by other drugs that should be substituted.
with drugs that have fewer side effects;
d) patients gets multiple drugs for
conditions where single-drug therapy is
enough based on indications; e) there is
duplication of therapy.

Indication without therapy
The patient is suffering from
a disease which needs therapeutic
interventions but patient disease is left
untreated. Some examples of indication
which need therapy are a) patients with
a new medical condition need new drug
therapy accordingly; b) patients suffering
from chronic diseases need follow-up
therapy; c) patients with health
conditions that may require combination
pharmacotherapy to achieve a synergistic
or potentiating effect; d) patients at risk
of developing a new medical condition
that can be prevented by the use of
prophylactic drugs.

Inappropriate drug selection
Inappropriate drug use has
emerged as a serious problem among
early patients. Inappropriate drug
administration increases the incidence of
ADEs, treatment failure, hospitalization,
death, and medical costs. If a drug is not
the best choice according to the patient's
clinical condition and needs or the drug
is more likely to be harmful than useful,
it is deemed inappropriate. A study
conducted in India reported that 7.42%
of the patients received inappropriate
drugs while 23% of patients had at least
one prescription of the inappropriate
drug. Another study conducted in
the geriatric population of the United
States and Canada found a significant
incidence of inappropriate drug use in
the range of 14% to 34% of the general
elderly population.

Inappropriate drug usage involves
the following: a) inappropriate drug,
dose, frequency of administration,
or length of therapy; b) overlapping
treatment; c) drug interactions and
proper drug indications are not taken
into account; e) even after the acute
illness is resolved, the appropriate
therapy for the illness continues to be
administered inappropriately; f) when a
patient is treated with a drug that is
effective but expensive in the presence
of a drug that is equally effective but
cheap; g) when a patient is allergic to a
given therapy; h) combination therapy
instead of effective single-drug therapy;
i) effective but expensive therapy as
compared to other alternative drug
options; j) patients develop resistance to
the given therapy.

Some drug classes are of particular
concern in the elderly and should be
stopped or used in certain situations with
close monitoring. American Geriatrics
Society introduced Beers Criteria to
identify the drugs that are potentially
inappropriate in geriatric patients. The
physicians must assess the benefits and
risks of treatment on an individual patient
basis. Despite the presence of evidence-
based guidelines, geriatric patients are
still being prescribed inappropriate
drugs. In such patients, the incidence of
undesirable consequences is higher.

Elderly people often have non-
pharmacological treatments (eg, physical
activity, massage, diet) or drugs that
cause adverse effects on mild clinical
symptoms (including harmful effects of
other drugs). Drugs (typically analgesics,
H₂ receptor antagonists, sleeping pills, or
laxatives) are prescribed, even if lower
doses of the drug may provide better
treatment. Initiating the administration
of supplementary medication is usually
unnecessary; benefits are little, the cost
is high, and supplementary medication
can increase the risk of lethal effects.

Avoiding short-listed drugs and
paying attention to the categories of
drug that require attention is not enough
to fix the issues of improper medicine
use in the geriatric patients. In addition
to potential benefits versus hazards, a
patient's overall treatment plan should
also be evaluated on a regular basis to
assess the drug's long-term use.

Adherence problem (non-compliance)
Term adherence is defined by the
WHO as the extent to which a person follows agreed instructions from healthcare professionals in terms of taking drugs, following the diet plan, and/or improving his lifestyle. Lack of adherence usually affects drug efficacy in geriatric patients. Many factors affect adherence, and age is one of them. Half of the elderly do not take the medication as prescribed and generally take less than the recommended dose (poor adherence). Patients who adhere to their treatment plan have a lower risk of hospitalization and mortality. In a study, researchers found that the rate of hospitalization in non-adherent patients was two times higher, while the rate of mortality was 3 times higher than those who showed adherence to their therapy. Patients with DM must adhere to drug therapy, exercise, and healthy food in order to minimize acute and chronic complications.

The following factors play a role in non-adherence; a) economic and physical constraints can make drug purchase difficult; b) cognitive issues that might make it difficult to take medication as prescribed; c) polypharmacy; d) taking medication more than once a day, or in a certain way; e) lack of knowledge about the drugs (benefits) purpose or how to identify and manage the adverse effects; f) prescribed medications contradicting the patient’s health beliefs; g) the unpleasant taste of dosage form.

Regimes that are administered regularly or infrequently, polypharmacy regimens, or both, which may be too complex for patients to understand. Physicians evaluate the patient’s health literacy and ability to follow medication regimens (e.g., dexterity, hand strength, cognition, visual acuity), easy-to-use containers, bold print drug labels, and instructions. Attempts should be made to meet their limitations by organizing and proposing a container with an alarm to avoid missed doses, a daily medicine container, a confirmation phone call, or medical support. Pharmacists and nurses may help by providing education each time they meet an elderly patient and reviewing prescription instructions together. It is important to guide patients about the complications that can arise if diabetes is not appropriately managed. The pharmacist may be able to detect the problem by noticing that the patient is replenishing the medication on time, or that the prescription is not irrational. Many pharmacies have the ability to monitor drug replenishment trends and notify patients and/or prescribers if prescription medicine replenishment is not completed at the required intervals.

Drug interaction

Drug interaction can be defined as a reaction between two or more drugs, with foods, herbal and supplements, beverages, or alcohol which results in unwanted effects. High proportion of prescription drugs in geriatric (taking an average of five drugs in one prescription) increases the chances of drug interactions. Interaction can occur at pharmacodynamic and/or pharmacokinetic levels. A study investigated the potential drug interaction between rebamipide, diclofenac and celecoxib by monitoring the effects on plasma concentrations. It was found that rebamipide concentration were significantly altered in rats after oral administration followed by diclofenac orally, compared to rebamipide only and rebamipide plus celecoxib combination.

Combination of glimepiride and insulin can increase risk of hypoglycemia. A randomized controlled trial compared the efficacy and safety parameters of glimepiride when given in combination with morning insulin gargline, bedtime insulin gargline, and bedtime neutral protamine hagedorn (NPH) in T2DM patients. The given dose of glimepiride was 3 mg and to achieve fast blood glucose levels of 5.56 mmol/L, the dose of insulin was titrated by using predefined regimen. Patients with hypoglycemia events was higher in glimepiride combined with bedtime NPH insulin than bedtime insulin gargline and...
morning insulin gargline. Hypoglycemia is one of adverse effect that should be monitored closely especially for elderly population.42

Polypharmacy

The Centers for Medicare and Medicaid Services (CMS) defines polypharmacy as the simultaneous taking of prescriptions for the use of inappropriate drugs, drugs without clinical indications, or patients receiving 3 to 5 or more medications. Polypharmacy is a common practice in elderly population because they suffer from complicated diseases that require more than one drug for treatment.43 Polypharmacy results in irrational drug use, adverse drug events, poor health outcomes and excessive use of resources. The complexity of health management in elderly patients continues to increase. Comorbidity and polypharmacy are linked closely. Healthcare providers must play an active role in eradicating drug-related problems by continuing to assess and seek treatment of patients for secondary problems due to polypharmacy to optimize outcomes.44

There are many drug guidelines for elderly patients to treat common complicated diseases such as hypertension, DM, and heart failure. In a study on diabetic patients, most patients ended up being treated with one to four drugs along with several daily glucose monitoring tests. The findings revealed that, only few individuals adopt definite lifestyle modifications and performed activities to improve their treatment goals with less drug possibilities. Analysis showed that age, presence of comorbidities and ADRs, year of diagnosis with DM, and physician communication and awareness about the patient's disease management all appeared to be prognostic factors for polypharmacy.45

CONCLUSION

Geriatric population at high risk to DRPs due to physiological changes, comorbid conditions which lead to polypharmacy, and irrational drug therapy. Geriatric patients with T2DM have a higher incidence of DRP, with an average of four DRPs per patient. The most prevalent of DRPs in geriatric patients with T2DM are adverse drug reaction (ADRs); dose too low (under dose); dose to high (over dose); therapy without indications (unnecessary therapy); indication without therapy; inappropriate drug selection; adherence problem (non-compliance); drug interaction; and polypharmacy. Coordination and collaboration among physicians, pharmacists, and other healthcare professionals are needed to minimize the DRPs events and to enhance the quality of pharmaceutical care services for patients to achieve desired therapeutic outcomes.

ACKNOWLEDGMENTS

We would like to thank our colleagues for supporting in the writing of this article.

REFERENCES

4. Maharani DD, Syafhan NF, Hersunaryati Y. Drug-related

18. Lira CP, Lolo WA, Wewengkang DS. Potensi rru - related problems (DRPs) penggunaan obat antidiabetes
https://doi.org/10.35799/pha.6.2017.17775

https://doi.org/10.1038/clpt.2014.59

https://doi.org/10.3109/15563650.2013.784774

https://doi.org/10.1001/jama.2013.280844

https://doi.org/10.3349/ymj.2011.52.6.898

https://doi.org/10.1186/1471-2318-9-5

https://doi.org/10.9790/3008-10644449

https://doi.org/10.1157/13095047

https://doi.org/10.1590/S1984-825020100000400003

https://doi.org/10.1111/jgs.13702

https://doi.org/10.1016/S1262-3636(07)80060-7

https://doi.org/10.1016/S1474-5151(03)00091-4

34. Mendes R, Martins S, Fernandes L. Adherence to medication, physical activity and diet in older adults...

