https://jurnal.ugm.ac.id/v3/JNTETI/issue/feed Jurnal Nasional Teknik Elektro dan Teknologi Informasi 2025-08-29T14:44:22+07:00 Sekretariat JNTETI jnteti@ugm.ac.id Open Journal Systems <p><strong><img style="display: block; margin-left: auto; margin-right: auto;" src="/v3/public/site/images/khanifan/HEADER_JNTETI_2020_1200x180_Background_baru_tanpa_list1.jpg" width="600" height="90" align="center"></strong></p> <p><strong>Jurnal Nasional Teknik Elekto dan Teknologi Informasi</strong>&nbsp;is an international journal accommodating research results in electrical engineering and information technology fields.<br><br><strong>Topics cover the fields of:</strong></p> <ul> <li class="show">Information technology: Software Engineering, Knowledge and Data Mining, Multimedia Technologies, Mobile Computing, Parallel/Distributed Computing, Data Communication and Networking, Computer Graphics, Virtual Reality, Data and Cyber Security.</li> <li class="show">Power Systems: Power Generation, Power Distribution, Power Conversion, Protection Systems, Electrical Material.</li> <li class="show">Signal, System and Electronics: Digital Signal Processing Algorithm, Robotic Systems, Image Processing, Biomedical Engineering, Microelectronics, Instrumentation and Control, Artificial Intelligence, Digital and Analog Circuit Design.</li> <li class="show">Communication System: Management and Protocol Network, Telecommunication Systems, Antenna, Radar, High Frequency and Microwave Engineering, Wireless Communications, Optoelectronics, Fuzzy Sensor and Network, Internet of Things.</li> </ul> <p><strong>Jurnal Nasional Teknik Elekto dan Teknologi Informasi is published four times a year: February, May, August, and November.<br></strong><strong><br>Jurnal Nasional Teknik Elektro dan Teknologi Informasi has been accredited by Directorate General of Higher Education, Ministry of Education and Culture, Republic of Indonesia, </strong>Number 28/E/KPT/2019 of September 26, 2019 (<strong>Sinta 2</strong>),&nbsp;<strong>Vol. 8 No. 2 Year 2019 up to Vol. 12 No. 2 Year 2023<br></strong><strong><br>Publisher<br></strong>Department of Electrical and Information Engineering, Faculty of Engineering, Universitas Gadjah Mada<br>Jl. Grafika No 2. Kampus UGM Yogyakarta 55281<br>Website&nbsp; :&nbsp;&nbsp;<a href="https://jurnal.ugm.ac.id/v3/JNTETI">https://jurnal.ugm.ac.id/v3/JNTETI</a><br>Email&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; :&nbsp;&nbsp; jnteti@ugm.ac.id<br>Telephone&nbsp;&nbsp; :&nbsp; +62 274 552305</p> https://jurnal.ugm.ac.id/v3/JNTETI/article/view/20473 Sentiment Analysis of IKD Application Reviews on Play Store Using Random Forest 2025-08-20T09:16:16+07:00 Kelvin H. kelvinherianto7@gmail.com Erlin erlin@lecturer.pelitaindonesia.ac.id Yenny Desnelita yenny.desnelita@lecturer.pelitaindonesia.ac.id Dwi Oktarina dwi.oktarina@lecturer.pelitaindonesia.ac.id <p>The rapid growth of digital applications in population administration services has increased the importance of sentiment analysis to understand user perceptions more deeply. This study focuses on the Digital population identity (Identitas Kependudukan Digital, IKD), a digital identity application developed by the Indonesian government. It aims to classify user reviews of the IKD application into positive, neutral, and negative sentiments using the random forest algorithm. The dataset consisted of 28,134 user reviews from the Google Play Store, including usernames, review texts, timestamps, and star ratings. The research stages included data preprocessing, labeling, handling missing values, and text processing (cleansing, tokenizing, stopword removal, and stemming). The data were divided into 80% training and 20% testing sets. The best-performing model used the parameters: <em>max_depth=None</em>, <em>max_features=log2</em>, <em>min_samples_leaf=1</em>, <em>min_samples_split=2</em>, and <em>n_estimators=300</em>, achieving an average accuracy of 83.78%. To address class imbalance, the synthetic minority oversampling technique (SMOTE) was applied, resulting in improved performance with an accuracy of 86.29%. Evaluation metrics before SMOTE showed 83.85% accuracy, 80.40% precision, 83.85% recall, and 81.73% F1 score. After SMOTE, precision increased to 81.22%, while accuracy and recall slightly decreased to 80.86%, with an F1 score of 81.03%. Furthermore, sentiment trend analysis using N-gram techniques (unigram, bigram, trigram) was conducted to identify frequently mentioned topics and user concerns. These insights support the research objective of guiding application improvements aligned with user needs and enhancing the overall digital service experience.</p> 2025-08-20T09:06:23+07:00 Copyright (c) https://jurnal.ugm.ac.id/v3/JNTETI/article/view/18791 Classification of Rice Diseases Using Leaf Image-Based Convolutional Neural Network (CNN) 2025-08-25T07:52:19+07:00 Moh. Heri Susanto 200605110087@student.uin-malang.ac.id Irwan Budi Santoso irwan@ti.uin-malang.ac.id Suhartono suhartono@ti.uin-malang.ac.id Ahmad Fahmi Karami afkarami@ti.uin-malang.ac.id <p>Rice diseases significantly impact agricultural productivity, making classification models essential for accurately distinguishing rice leaf diseases. Various classification models have been proposed for image-based rice disease classification; however, further performance improvement is still required. This study proposes the use of a convolutional neural network (CNN) to classify rice diseases based on leaf images. The dataset used in this study included leaf images categorized into four conditions: leaf blight, blast, tungro, and healthy. In the initial stage, data preprocessing was conducted, including resizing, augmentation, and normalization. Following preprocessing, a custom CNN architecture was developed, consisting of four convolutional layers, four pooling layers, and three fully connected layers. Each convolutional layer employed a 3 × 3 kernel with a stride of 1 and ReLU activation, while the pooling layers used max pooling with a 3 × 3 kernel and a stride of 2. Using a batch size of 32 and the Adam optimizer, the best test performance was achieved with 100 training epochs and a learning rate of 0.0002, resulting in a training accuracy of 0.9930, a loss of 0.0221, and a test accuracy of 0.9647. Model evaluation demonstrated a balanced performance across precision, recall, and F1 score, each achieving 0.9647, indicating highly effective classification without bias toward any specific class. These findings suggest that the simplified CNN model can deliver competitive classification performance without the need for complex architectures or additional enhancement techniques. The proposed CNN model outperformed existing CNN architectures, such as Inception-ResNet-V2, VGG-16, VGG-19, and Xception.</p> 2025-08-25T07:52:18+07:00 Copyright (c) https://jurnal.ugm.ac.id/v3/JNTETI/article/view/20516 Interpretable Machine Learning for Job Placement Prediction: A SHAP-Based Feature Analysis 2025-08-28T15:52:40+07:00 Swono Sibagariang swono@polibatam.ac.id <p>Predictive modeling is important in analyzing graduates’ job outcomes, especially in forecasting job placements based on academic performance and courses. This study aims to improve predictive accuracy and interpretability in job placement classification using advanced machine learning models and SHapley Additive exPlanations (SHAP) analysis. Utilizing a dataset containing graduates’ academic records, including course grades, grade point average (GPA), and internship duration, this research employed several classification models, including decision tree, random forest, extreme gradient boosting (XGBoost), light gradient-boosting machine (LightGBM), CatBoost, and logistic regression. Evaluation metrics showed that most models achieve 92% precision, 92% recall, and 92% F1 score, with an accuracy of 85%, while logistic regression excelled with 100% recall, 96% F1 score, and 92% accuracy. SHAP analysis identified key features such as Administration, Computer Organization, Information Systems, Entrepreneurship, Professional Ethics, and Web Programming as the most influential in predicting job placement. Other significant contributors include Introduction to Information Technology, Software Engineering II, and Data Mining, although with relatively lower influence. Extracurricular activities and internship experiences were also found to be influential factors, highlighting the importance of academic and nonacademic elements in shaping graduates’ career prospects. These findings highlight and emphasize the need to provide students with certain academic courses to better prepare them for the job market. These findings emphasize the importance of interpretable machine learning models in career forecasting, enabling educational institutions to optimize curriculum design and enhance graduates’ employability. Future research should explore feature selection techniques, temporal analysis, and personalized recommendation systems to refine predictive accuracy.</p> 2025-08-26T09:41:28+07:00 Copyright (c) https://jurnal.ugm.ac.id/v3/JNTETI/article/view/19191 Comparison of Sine-Cosine and Bat Algorithm for Distributed Generation Placement 2025-08-27T14:12:21+07:00 Lindiasari Martha Yustika lindiasarimartha@telkomuniversity.ac.id Jangkung Raharjo jangkungraharjo@telkomuniversity.ac.id Rifki Rahman Nur Ikhsan rfkrhmn@telkomuniversity.ac.id I Gede Putu Oka Indra Wijaya igpoindrawijaya@telkomuniversity.ac.id <p>The enhancement of electricity distribution is a crucial factor in supporting sustainable development and reducing energy access inequality. To ensure the reliability and stability of energy systems, the integration of distributed generation (DG) has a significant role. Numerous studies have explored optimal DG placement using metaheuristic methods. The study evaluated the performance of both algorithms based on key indicators, including voltage profile improvement and power loss reduction, under normal load conditions and under a 10% load increase to simulate future demand growth. The methods employed were the sine-cosine algorithm (SCA) and the bat algorithm (BA). By comparing these two methods, this study aims to optimize the placement and sizing of DG units, with a case study based on the IEEE 9 bus system configuration. Load flow analysis was performed using Electric Transient Analysis Program (ETAP) software to validate the effectiveness of optimized DG placement under various scenarios. Key performance indicators, namely losses reduction and improvement of voltage profile, were evaluated to determine the relative strengths of each algorithm. The results show that both SCA and BA are effective in optimizing DG implementation. Specifically, SCA achieved reductions in active power losses by up to 85% and reactive power losses by 93%, outperforming BA in certain scenarios. Both algorithms enhance system reliability and stability. These findings highlight the potential of metaheuristic algorithms to address the challenges of modern energy systems and contribute to the broader goal of developing sustainable power systems.</p> 2025-08-27T14:12:20+07:00 Copyright (c) https://jurnal.ugm.ac.id/v3/JNTETI/article/view/20175 Sistem Antropometri Lingkar Kepala Manusia berbasis Machine Vision 2025-08-29T07:17:31+07:00 Susetyo Bagas Bhaskoro susetyo.bagas@gmail.com Sandy Bhawana Mulia sandy@ae.polman-bandung.ac.id Afiq Hasydhiqi bagas@polman-bandung.ac.id <p class="JNTETIIntisari"><span lang="EN-US">Penelitian ini bertujuan untuk mengembangkan sistem antropometri otomatis berbasis <em>machine vision</em> yang terintegrasi dalam <em>medical cyber-physical system</em> (MCPS) untuk mengukur lingkar kepala manusia. Lingkar kepala merupakan salah satu parameter penting dalam pemantauan pertumbuhan, terutama untuk mendeteksi gangguan seperti mikrosefalia (<em>microcephaly</em>) dan makrosefali (<em>macrocephaly</em>) yang dapat berdampak pada perkembangan kognitif dan kesehatan individu secara menyeluruh. Untuk menjawab tantangan tersebut, penelitian ini mengusulkan penerapan sistem antropometri yang memungkinkan pengukuran dilakukan secara otomatis, akurat, tanpa kontak fisik, serta dapat diakses secara <em>real-time</em> oleh tenaga kesehatan. Sistem ini dirancang dengan pendekatan berbasis <em>machine vision</em>, menggunakan teknologi deteksi objek dan metode penghitungan keliling model elips dalam menentukan lingkar kepala secara noninvasif. Sistem ini memanfaatkan kamera beresolusi 1.920 × 1.080 piksel (1080p) dengan kecepatan 30 fps dan bidang pandang sebesar 60° yang dipasang pada mekanisme pergerakan tiga sumbu menggunakan motor<em> stepper</em> guna menangkap citra kepala tampak depan dan tampak samping secara otomatis. Proses pengukuran diawali dengan deteksi objek kepala dan penyesuaian <em>bounding box</em> untuk memperoleh parameter lebar kepala. Penghitungan dilakukan dengan metode jarak Euclidean, lalu digunakan pendekatan geometri model elips untuk estimasi lingkar kepala. Hasil pengujian menunjukkan tingkat kesalahan terendah sebesar 2,29% pada jarak 50 cm dengan pencahayaan 300 lux. Evaluasi kinerja menggunakan <em>confusion matrix</em> menghasilkan akurasi 92,8%, presisi 100%, <em>recall</em> 97,5%, dan <em>F-measure</em> 98,7%. Sistem ini memberikan solusi efektif bagi tenaga medis dalam melakukan skrining pertumbuhan secara cepat, akurat, aman, serta mendukung layanan kesehatan jarak jauh, khususnya di wilayah dengan akses terbatas terhadap fasilitas medis.</span></p> 2025-08-29T07:17:30+07:00 Copyright (c) https://jurnal.ugm.ac.id/v3/JNTETI/article/view/19764 Deteksi Serangan pada Jaringan IoT Menggunakan Seleksi Fitur Gabungan dan Optimasi Bayesian 2025-08-29T08:53:21+07:00 Samsudiat samsudiat31@ui.ac.id Kalamullah Ramli kalamullah.ramli@ui.ac.id <p class="JNTETIIntisari" style="line-height: 99%;"><span lang="EN-US">Deteksi serangan berbasis <em>machine learning </em>(ML) berpotensi menjadi alternatif terbaik dalam penanganan ancaman siber pada jaringan <em>internet of things </em>(IoT). Metode ini memiliki kemampuan untuk menangani berbagai jenis serangan baru yang terus berkembang. Namun, makin banyaknya jumlah data yang dihasilkan dan penggunaan nilai-nilai parameter bawaan dari algoritma ML menyebabkan penurunan kinerja metode ini<a name="_Hlk186181451"></a>. Penelitian ini mengusulkan metode seleksi fitur gabungan (<em>hybrid</em>) yang dikombinasikan dengan optimasi Bayesian untuk meningkatkan efektivitas dan efisiensi model deteksi serangan. <a name="_Hlk191543242"></a>Metode seleksi fitur gabungan ini menggabungkan teknik filter korelasi, untuk menghapus fitur-fitur yang berkorelasi tinggi dengan cepat, dan teknik <em>feature importance</em>, untuk memilih fitur-fitur yang berpengaruh besar terhadap model. Selain itu, teknik optimasi Bayesian bertujuan menemukan nilai optimal secara efisien dari parameter-parameter algoritma ML <a name="_Hlk189202418"></a>yang tangguh dan ringan digunakan pada jaringan IoT, yaitu <em>decision tree</em> dan <em>random forest</em>. Kemudian, model yang dibangun dievaluasi menggunakan <em>dataset</em> serangan terbaru, yaitu CICIoT2023, yang terdiri atas tujuh jenis serangan, yaitu <em>distributed denial of service</em> (DDoS), <em>denial of service</em> (DoS), Mirai, <em>spoofing</em>, <em>reconnaissance</em>, serangan berbasis <em>website</em>, dan <em>brute force</em>. Hasil evaluasi menunjukkan bahwa teknik seleksi fitur gabungan menghasilkan kinerja model yang lebih efisien daripada beberapa teknik seleksi fitur tunggal dengan memilih 5 dari 46 fitur. Selain itu, teknik optimasi Bayesian juga berhasil menemukan nilai optimal dari parameter-parameter model untuk meningkatkan kinerja model pada tingkat akurasi, presisi, <em>recall</em>, dan <em>F</em>1 hingga 99,74% serta penurunan waktu komputasi hingga 97,41%. Berdasarkan hasil penelitian ini, model deteksi serangan menggunakan seleksi fitur gabungan dan optimasi Bayesian dapat <a name="_Hlk190243584"></a>menjadi rujukan dalam penerapan keamanan siber pada jaringan IoT.</span></p> 2025-08-29T08:53:21+07:00 Copyright (c) https://jurnal.ugm.ac.id/v3/JNTETI/article/view/20795 Sustainable Generation and Transmission Expansion Planning Using MOPSO-BPSO in Electrical Grid 2025-08-29T14:44:22+07:00 Astuty astutymahyuddin@akom-bantaeng.ac.id Zainal Sudirman zainalsudirman20@gmail.com <p>As of 2023, approximately 85% of power plants operating in South Sulawesi relied on fossil fuels, such as coal, gas, and oil. To meet the increasing demand for electricity while reducing carbon emissions, it is essential to integrate renewable energy sources into the power system. Renewable energy not only helps conserve fossil fuels but also supports global environmental sustainability. South Sulawesi possesses significant hydro potential, offering opportunities to develop both small and large-scale hydroelectric power plants (<em>pembangkit listrik tenaga air</em>, PLTA). This study employed a multi-objective particle swarm optimization (MOPSO) approach to develop optimal scenarios for generation expansion planning (GEP), and binary particle swarm optimization (BPSO) to determine the necessary transmission expansion planning (TEP). The planning process was supported by long-term load forecasting using the moving average method based on historical electricity demand data in South Sulawesi. Results showed that the proposed integrated GEP and TEP optimization framework successfully identified an optimal scenario maximizing renewable energy used while ensuring transmission reliability. By 2030, PLTA is projected to contribute 67.9% of total electricity generation. Meanwhile, steam-fired power plants (<em>pembangkit listrik tenaga uap</em>, PLTU) become the mainstay with capacities reaching 437.5 MW. To support this scenario, nine new transmission lines are needed, along with the expansion of 25 existing lines to accommodate increased power flow within the interconnection system.</p> 2025-08-29T14:44:21+07:00 Copyright (c)