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ABSTRACT — Deep learning is growing and widely used in various fields of life. One of which is the recognition of pain 

through facial expressions for patients with communication difficulties. Viola-Jones is a simple algorithm that has real-time 

detection capabilities with relatively high accuracy and low computational power requirements. The learning rate is a 

significant number that has an impact on the deep learning result. This study recognized pain using the Viola-Jones and deep 

learning methods. The dataset used was a thermal image from the Multimodal Intensity Pain (MIntPAIN) database. The 

steps taken consisted of segmentation, training, and testing. Segmentation was conducted using the Viola-Jones method to 

get the significant area of the face image. The training process was carried out using four deep learning benchmarks model, 

which were DenseNet201, MobileNetV2, ResNet101, and EfficientNetb0. Besides that, deep learning has a very important 

number to determine that is learning rate, which impact the deep learning results. There were five learning rates, which were 

10-1, 10-2, 10-3, 10-4, and 10-5. Learning rate values were then compared with four deep models learning to obtain high 

accuracy results in a short time and simple algorithm. Finally, the testing process was carried out on test data using a deep 

learning benchmark model in accordance with the training process. The research results showed that a learning rate of 10-2 

from the MobileNetV2 method produced an optimal performance with a training validation accuracy of 99.60% within a 

time of 312 min and 28 s. 
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I. INTRODUCTION 

The innate human tendency to convey inner emotions finds 

its manifestation in the form of facial expressions, which serve 

as a powerful medium of nonverbal communication. This 

phenomenon of utilizing facial cues for conveying emotions 

holds significant relevance in the context of evaluating pain [1]. 

Traditionally, the assessment of pain has heavily relied upon an 

individual’s own verbal account. Nevertheless, situations arise, 

as in the case of individuals grappling with terminal illnesses 

and rendered incapable of conventional communication, where 

self-reported pain becomes a complex puzzle to decipher, 

potentially leading to misinterpretation and erroneous 

conclusions. 

The intricate task of identifying pain through analyzing 

facial expressions stands as a multifaceted challenge 

necessitating the development and implementation of resilient 

methodologies. The process of facial recognition encompasses 

three pivotal phases, namely the initial detection of faces, 

subsequent extraction of distinctive features, and ultimately, 

the recognition of the facial attributes. In the realm of face 

detection, the algorithm proposed by Viola-Jones emerges as 

the preeminent and extensively adopted solution [2], tracing its 

origins back to its introduction in the year 2001 [3]. 

Renowned for its efficacy, the Viola-Jones algorithm has 

garnered widespread acclaim primarily due to its 

straightforwardness and its remarkable proficiency in real-time 

face detection. This approach boasts a commendable balance 

between accuracy and the demand for computational resources, 

thereby making it a preferred choice across various applications 

[4]–[6]. The algorithm’s inherent capacity for swift and 

accurate detection has positioned it as an indispensable tool, 

particularly well-suited for scenarios where timely 

responsiveness and efficiency are imperative. 

The exploration of pain recognition has witnessed a 

triumphant convergence with the realm of deep learning 

methodologies, marking a significant advancement in this 

domain [7]. The deep learning was utilized in the extraction of 

intricate features, thereby facilitating the detection of pain 

through the analysis of facial expressions [8], [9]. Furthermore, 

another notable study has harnessed the power of deep learning 

to navigate the landscape of pain recognition, specifically 

focusing on self-reported pain levels using the visual analogue 

scale (VAS) [10]. 

The evolution of deep learning techniques in the realm of 

pain recognition continues its stride, leveraging an expansive 

RGB image dataset sourced from the Multimodal Intensity Pain 

(MIntPAIN) database. A noteworthy investigation yielded an 

impressive accuracy rate of 92.26% [11], This accomplishment 

is paralleled by the findings of another study, which secured an 

accuracy level of 92.44%, reaffirming the prowess of deep 

learning methodologies in tackling the intricate task of pain 

recognition [12]. Moreover, the horizon of deep learning’s 

applications was broadened to encompass the utilization of 

thermal image datasets from the MIntPAIN database, as 

demonstrated by the endeavors of previous researchers [13]. 

Their efforts yielded a commendable accuracy rate of 83.5%, 

thus underscoring the versatility of deep learning approaches in 

the multifaceted domain of pain recognition. 

The present study represents a significant evolution built 

upon the groundwork established by a preceding investigation 

[13], which focused on the identification of pain through the 
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combined utilization of the Viola-Jones and deep learning 

methodologies. In this progressive endeavor, the core dataset 

under scrutiny consists of thermal images extracted from the 

MIntPain database. The methodological trajectory unfolds 

through distinct stages, encompassing segmentation, training, 

and subsequent testing. 

The initial stage, namely segmentation, drew upon the 

Viola-Jones method, effectively pinpointing crucial regions 

within facial images that bear relevance to the pain recognition 

task. This strategic step serves as the preliminary filtering 

mechanism, sifting through the visual data to identify salient 

features. Subsequently, the training phase was conducted, 

leveraging the prowess of four deep learning benchmarks as 

foundational pillars. These benchmarks encompass a diverse 

array of models, including the dense convolutional network 

model (DenseNet201) [14], MobileNetV2 [15], residual 

network (ResNet101) [16], and EfficientNetb0 [17]. 

Integral to the research’s success is the determination of the 

learning rate, a hyperparameter pivotal in governing the extent 

of model adjustments in response to computed errors during 

weight updates [18]. In this endeavor, a range of five learning 

rates namely, 10-1, 10-2, 10-3, 10-4, and 10-5, is employed, each 

playing a crucial role in shaping the outcomes of the ensuing 

deep learning processes [18]. 

In effect, the study endeavors to conduct a comprehensive 

comparison amongst the four distinct deep learning models, 

juxtaposing their performance with varying learning rate values. 

The primary objective here is twofold: to achieve heightened 

accuracy levels within a compressed time frame and to retain 

the inherent simplicity of the algorithmic methodologies 

employed. 

The final phase of this study culminates in the rigorous 

testing of the evolved model. The testing procedure is 

meticulously executed on data specifically earmarked for 

validation, utilizing the very same deep learning benchmark 

models that were cultivated during the training phase. This 

congruence between training and testing models serves to 

authenticate the translational applicability of the developed 

framework, ensuring that the insights gleaned from the training 

process seamlessly manifest in real-world scenarios. 

II. METHODOLOGY 

The stages carried out in this study are described in Figure 

1. 
A. DATA COLLECTION 

For the purpose of this study, the dataset selected for 

analysis originated from the MIntPAIN database, specifically 

in the format of thermal images. This database contains an 

extensive array of 9,366 variables derived from 20 subjects [19]. 

To facilitate a comprehensive evaluation, the dataset was 

systematically partitioned into two distinct subsets: the training 

and the test datasets. 

The training dataset contained a total of 5,000 thermal 

images, while the test dataset was comprised of 1,600 images. 

The dataset collectively covered a spectrum of pain intensity, 

encompassing a total of five distinct pain levels, each ranging 

from level 0 indicating “no pain” to level 4 signifying a “high 

pain level”, as shown in Figure 2. This categorization of pain 

levels offers a nuanced perspective that captures the diversity 

of pain experiences and aids in training and validating the 

models for effective pain recognition. 

B. DATA PREPROCESSING 

The data preprocessing phase in this study was conducted 

through the adept application of the Viola-Jones method, a 

technique employed to extract the facial regions within the 

images. This initial step involved the manipulation of input 

images, effectively isolating and extracting critical facial 

components that had been identified as pivotal for subsequent 

 

Figure 1. Research stages. 

 

(a) 

 

(b)  

Figure 2. Pain level dataset, (a) RGB face images and (b) thermal face images. 
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analysis. The inception of this process was marked by the 

utilization of the Haar-like feature technique, a method that 

systematically breaks down the image into discrete regions, 

progressing from the top-left corner to the bottom-right corner. 

A fundamental augmentation to this technique is the 

incorporation of the integral image procedure, a computational 

strategy designed to expedite object detection [3]. 

An additional layer of sophistication was introduced 

through the amalgamation of multiple weak classifiers into a 

more potent classifier, achieved through the Adaptive Boosting 

technique. Adaptive Boosting serves as a mechanism to 

synergistically harness the strengths of these weak classifiers, 

resulting in the formulation of a robust and adept classifier. 

This process began with the calculation of weight, which was 

then followed by the evaluation of feature values for each weak 

classifier [3]. Subsequent decisions hinge upon the assessment 

of these feature values; if the value fell below 0, the image was 

categorized as devoid of an object. Conversely, if the value 

exceeded 1, the image was deemed to host an object. The 

cascade classifier approach increased the complexity by 

integrating intricate classifiers within a hierarchical framework, 

resulting in faster object detection. 

The culmination of this preprocessing stage was marked by 

the implementation of bounding box techniques, instrumental 

in demarcating and delineating the detected facial entities [3]–

[5]. This process was conducted to isolate the critical facial 

regions. This strategy was subsequently applied to both the 

training and testing image datasets. The delineated facial 

regions were then subjected to cropping or truncation, resulting 

in the extraction of specific facial contours. This cropping 

strategy was essential for facilitating the subsequent 

identification of facial contours, effectively simplifying the 

overall process. This cropping procedure also triggered a 

transformation of the image dimensions, transitioning from the 

original 640 × 480 pixels to a more compact 104 × 104 pixels 

post-cropping. Visual representation of the outcomes of the 

bounding box and facial area cropping procedures can be 

observed in Figure 3, offering a tangible glimpse into the results 

attained at this juncture of the preprocessing pipeline. 

C. DATA TRAINING 

 In this study, the training process was performed through 

the integration of pretrained convolutional neural network 

(CNN) models, which are leveraged in conjunction with 

transfer learning techniques. This approach was guided by the 

imperative of efficiency and expediency, utilizing well-

established models such as DenseNet201, EfficientNetb0, 

MobileNetV2, and ResNet101. 

DenseNet201 establishes connections between every layer 

in a feed-forward fashion. The working principle of 

DenseNet201 involves concatenating the output from the 

previous layer. Initially, a 28 × 28 × 3 image size was spread 

over 24 channels which resulted in an image size of 28 × 28 × 

24. Furthermore, 12 features with the same width and height 

were used in each subsequent convolution layer, producing an 

output layer of 28 × 28 ×12. In the next layer, the input was 28 

× 28 × 24 + 12, then, in the next layer, it was 28 × 28 × 24 + 12 

+ 12, and so on. In this way, DenseNet201 can reduce 

overfitting and use fewer parameters [14]. 

MobileNetV2 can improve the performance of mobile 

models on many tasks and benchmarks across a spectrum of 

different model sizes. MobileNetV2 is based on an inverted 

residual structure in which the bypass connections are between 

thin layers of the bottleneck. The MobileNet architecture is 

changed by replacing the fully convolutional operator with a 

factorization that divides the convolution into two layers: a 

depthwise convolution layer and a pointwise convolution layer 

[15]. 

ResNet101 is a pretrained model that can manage its layers 

without needing specific configurations. ResNet101 is used to 

overcome performance degradation on deep networks. This 

model can build deeper networks and can find the number of 

layers optimized for missing gradients. ResNet101 has 101 

layers and is able to classify 1,000 image categories [16]. 

EfficientNetb0 scales all dimensions from depth, width, and 

resolution uniformly using compound coefficients to deliver 

better performance. EfficientNet is also able to transfer well 

and achieve the best accuracy on CIFAR-100 (91.7%), flower 

(98.8%), and three other transfer learning datasets with fewer 

parameters [17]. These models were equipped with preexisting 

knowledge and patterns extracted from the training on 

extensive datasets, rendering them as optimal starting points for 

further training. 

 Transfer learning, a central facet of this approach, operated 

on the premise of utilizing a pretrained model as a foundational 

scaffold and then refining its parameters through fine-tuning to 

align with the new dataset under consideration. This technique 

capitalizes on the wealth of knowledge encapsulated within the 

pretrained model. In addition, through iterative adjustments, it 

adapts to the specific features and intricacies of the target 

dataset. The primary goal of transfer learning is to capitalize on 

the preexisting capabilities of the model in its original domain 

and extend its utility to solve related problems in a different 

domain. 

 

(a) 

 

(b) 

Figure 3. Visual representation of (a) the bounding box image of the face area 
and (b) the cropped area of the face. 
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The pretrained model serves as a feature extractor, distilling 

high-level image representations that hold significance across 

various domains. By adjusting the parameters of the pretrained 

model in harmony with the new dataset, the model’s 

capabilities were fine-tuned to the specific intricacies of the 

task.  

This approach for training has some benefits, as elucidated 

in Table I. The pretrained models yielded not only high 

accuracy, but also swiftness and compactness, making them 

highly favorable options for the present study’s objectives. By 

building upon the foundations laid by these models, the study 

achieved a synthesis of existing knowledge and new insights, 

culminating in an efficient and effective pain recognition 

framework. 

The process of transfer learning within this study was 

meticulously executed through the utilization of MATLAB’s 

advanced Deep Learning Toolbox™. This specialized toolbox 

offers a robust framework that empowers researchers and 

practitioners to seamlessly design and deploy deep neural 

networks (DNNs), leveraging a repertoire of algorithms, 

pretrained networks, and model application methodologies. 

The symbiotic integration of these resources streamlines the 

transfer learning process and optimizes its implementation. 

The study leveraged the prowess of pretrained networks as 

a cornerstone of the transfer learning journey. These pretrained 

networks served as foundational building blocks, upon which 

the study’s specific pain recognition task was constructed. The 

agility and efficiency offered by these pretrained networks 

significantly expedite the learning process, allowing the model 

to swiftly adapt to the intricacies of the new dataset. Transfer 

learning is commonly used in deep learning applications. A 

pretrained network can be taken and used as a starting point for 

learning a new task. Perfecting a network with transfer learning 

is much faster and easier than practicing from scratch. The 

advantage of transfer learning is that the pretrained network has 

already learned a rich set of features that can be applied to a 

wide range of other similar tasks. Transfer learning offers 

several advantages: it enables to transfer the learned features of 

a pretrained network to a new problem, it is faster and easier 

than training a new network, it reduces training time and dataset 

size, and it perform deep learning without needing to learn how 

to create a whole new network [20]. 

To pave the way for the deployment of these pretrained 

models within the MATLAB environment, an essential 

preliminary step involves the installation of the respective 

pretrained model via the add-ons command [21]. This 

installation procedure is crucial for facilitating a seamless 

integration of the model into the MATLAB framework, thereby 

enabling its application in the subsequent phases of the study. 

The meticulous orchestration of this transfer learning process 

within the MATLAB’s Deep Learning Toolbox™ underscores 

the study’s commitment to leveraging cutting-edge tools and 

techniques for the attainment of its research objectives. 

In addition, fine-tuning was done by adjusting the 

hyperparameter values consisting of initial learning rate (ILR), 

maximum number of epochs, minibatch size, momentum, and 

optimizer, taking into account the minimum duration and 

maximum accuracy values. The parameters used in designing 

the DenseNet201, MobileNetV2, ResNet101, and 

EfficientNetb0 models are shown in Table II. The model was 

trained with epochs of 100, using a momentum of 0.9 with a 

minibatch size of 24. WeighLearnRateFactor and 

BiasLearnRateFactor parameters were set at 10, using the 

stochastic gradient descent (SGD) optimizer with an initial 

learning rate set of 10-1, 10-2, 10-3, 10-4, and 10-5 [21]. Learning 

rate is one of the training parameters to calculate weight 

correction values during the training process [18]. The most 

ideal learning rate value is the value that produces the optimal 

level of accuracy and does not require a long training time. 

D. DATA TESTING 

The evaluation of data testing within this study adhered to 

the outcomes generated during the training process, leveraging 

the optimal deep learning models, and learning rates that 

exhibited the highest degree of accuracy. The assessment of 

testing results involved a comprehensive analysis, 

encompassing accuracy, recall, precision, and F1-score critical 

evaluation metrics computed through the following equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (4) 

Equations (1) through (4) are instrumental in the calculation 

of the accuracy value, a pivotal indicator of the model’s 

prowess in categorizing images. Within this context, each 

equation encapsulates distinct aspects of the model’s 

performance, providing a holistic view of its classification 

capabilities. 

The true positive (TP) component signifies the accurate 

classification of a positive sample, denoting the successful 

identification of an image depicting pain. Conversely, the true 

negative (TN) component indicates the correct classification of 

a negative sample, symbolizing an image devoid of pain. The 

false positive (FP) scenario transpires when a negative sample 

is erroneously categorized as positive, while the false negative 

(FN) arises when a positive sample is mistakenly labeled as 

negative. These four elements illuminate the intricate interplay 

of classification outcomes. 

TABLE II 

PARAMETERS USED IN THE DESIGN OF DENSENET201, MOBILENETV2, 

RESNET101 AND EFFICIENTNETB0 MODELS 

Parameter 

DenseNet201, MobileNetV2, 

ResNet101, and EfficientNetb0 

Models 

Epoch 100 

Minibatch 24 

Optimizer Stochastic gradient descent (SGD) 

Initial Learning Rate 10-1, 10-2, 10-3, 10-4, and 10-5 

Momentum Optimizer 0.9 

WeightLearnRateFactor 10 

BiasLearnRateFactor 10 

 

TABLE I 

PRETRAINED NETWORK 

Network Depth 
Size 

(MB) 

Parameter 

(millions) 

Image 

Input Size 

DenseNet201 201 77 20.0 224-by-224 

EfficientNetb0 82 20 5.3 224-by-224 

MobileNetV2 53 13 3.5 224-by-224 

ResNet101 101 167 44.6 224-by-224 
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The overarching metric of accuracy encapsulates the 

system’s comprehensive performance across all data points, 

underscoring its capacity to correctly categorize both positive 

and negative instances. Sensitivity (also known as true positive 

rate or recall), a parameter entailing the accurate classification 

of positive data, quantifies the system’s adeptness at 

identifying individuals exhibiting positive attributes (in this 

case, experiencing pain). 

Positive predictive value (PPV) is a statistical measure that 

indicates how likely it is that a positive test result is correct. It 

is calculated by dividing the number of TP by the total number 

of positive test results. PPV played a pivotal role in assessing 

the model’s precision in identifying pain-related images within 

the realm of total positive class predictions. This metric 

provides insights into the system’s accuracy in pinpointing 

instances of pain within the broader context of positive 

predictions [13], [22]. Through the integration of these 

equations and metrics, the study not only gauged the model’s 

effectiveness but also fostered a comprehension of its 

capabilities and limitations in pain recognition tasks. 

III. RESEARCH RESULTS  

 The ultimate outcome of deep learning endeavors is 

intricately influenced by a multitude of factors, and one such 

significant determinant is the learning rate. Within the training 

phase, the study harnessed a meticulously designed deep 

learning model, subjecting it to a rigorous analysis that hinged 

upon a range of learning rates 10-1, 10-2, 10-3, 10-4, and 10-5. The 

training process was iterated across 100 epochs, encompassing 

numerous cycles of learning and adaptation. 

During this training stage, the model was immersed in a 

process of gradual refinement through exposure to the available 

training data. Following the training stage, the model’s efficacy 

was scrutinized by assessing its performance on test data. The 

assessment was conducted using validation accuracy 

parameters and elapsed time, both integral facets that offer 

valuable insights into the model’s efficiency and effectiveness. 

The validation methodology employed the cross-validation, 

a technique characterized by the orchestration of multiple 

training iterations to derive the optimal value. This 

multifaceted approach ensures that the model’s performance is 

meticulously evaluated, culminating in the extraction of the 

most optimal validation accuracy value from this iterative 

process. 

The primary objective of this learning rate comparison is to 

ascertain the most optimal configuration that yields exceptional 

performance outcomes, characterized by increased accuracy 

and efficient training times. Through a comprehensive analysis 

and evaluation of the interplay between learning rates, 

validation accuracy, and elapsed time, the study aims to unlock 

the best possible amalgamation, equipping researchers and 

practitioners to conduct effective deep learning endeavors in 

the domain of pain recognition. 

The training outcomes stemming from the interplay of deep 

learning models and varying learning rates are 

comprehensively detailed in Table III. During the training 

phase, a learning rate of 10-2 emerged as particularly impactful, 

yielding remarkable validation accuracy results across 

DenseNet201, EfficientNetb0, and MobileNetV2 models. 

Specifically, these models exhibited an impressive accuracy of 

99.60%, coupled with swift elapsed times of 2,000 min and 52 

s for DenseNet201, 578 min and 25 s for EfficientNetb0, and 

312 min and 28 s for MobileNetV2. 

However, ResNet101 model demonstrated an exceptional 

performance, attaining the highest accuracy of 99.60%. This 

performance was achieved at a learning rate of 10-3, an elapsed 

time of 3,501 min, and 14 s. 

From these insights, it becomes evident that the optimal 

learning rate for the deep learning model, specifically 

MobileNetV2, is 10-2. This meticulous analysis underscores the 

interplay between learning rates, model architectures, and 

performance metrics, ultimately unveiling the ideal 

configuration for the task of pain classification through facial 

expressions. 

Furthermore, as the study transitions to the data testing 

phase, a new dataset distinct from the training data was 

employed. This stage stands as a crucial juncture for evaluating 

the pain classification model’s performance via facial 

expressions. The evaluation process leveraged a confusion 

matrix to gauge the model’s sensitivity, precision, and F1-score 

values. 

To conduct this evaluation, the learning rate of 10-2 was 

uniformly employed across DenseNet201, EfficientNetb0, and 

TABLE III 

COMPARISON OF DEEP LEARNING MODEL TO LEARNING RATE 

  

Deep Learning Model 

DenseNet201 EfficientNetb0 MobileNetV2 ResNet101 

Learning 

Rate of 

10-1 

VA 

(%) 
93.00 96.20 99.00 97.00 

ET 2,039 min and 28 s 558 min and 20 s 325 min and 32 s 2,219 min and 37 s 

Learning 

Rate of 

10-2 

VA 

(%) 
99.60 99.60 99.60 99.00 

ET 2,000 min and 52 s 578 min and 25 s 312 min and 28 s 3,508 min and 2 s 

Learning 

Rate of 

10-3 

VA 

(%) 
99.60 99.40 99.60 99.60 

ET 2,138 min and 18 s 579 min and 41 s 336 min and 27 s 3,501 min and 14 s 

Learning 

Rate of 

10-4 

VA 

(%) 
99.40 99.20 99.20  99.00 

ET 2,132 min and 25 s 585 min and 44 s 342 min and 31 s  3,524 min and 27 s 

Learning 

Rate of 

10-5 

VA 

(%) 
99.40 85.60 99.00  99.00 

ET 2,100 min and 42 s 558 min and 37 s 330 min and 13 s  3,529 min and 15 s 
Notes: 

VA = Validation accuracy (100%) 

ET = Elapsed time 
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MobileNetV2 models. In contrast, the ResNet101 model used 

a learning rate of 10-3. This decision was done considering the 

model’s ability to achieve the highest accuracy during the 

training phase. By meticulously fine-tuning the learning rate 

parameter, the study aims to optimize the model’s full potential 

and achieve optimal performance outcomes in the domain of 

pain classification. 

The outcomes of the confusion matrix analysis, as 

manifested in Table IV, provide an essential insight on the 

performance of the DenseNet201, EfficientNetb0, 

MobileNetV2, and ResNet101 models. These models, each 

representing distinct architectural approaches, were subjected 

to rigorous testing with the dataset, yielding insights into their 

classification capabilities. 

The results in Table IV demonstrates that the DenseNet201 

architecture achieved the highest accuracy of 81.1% among the 

models analyzed, making it the top-performing model. 

Moreover, it exhibited remarkable sensitivity, precision, and 

F1-score values of 81.06, 81.52, and 81.29, respectively. This 

comprehensive display of high metrics underscores the 

DenseNet201’s efficacy in pain classification through facial 

expressions. 

Although DenseNet201 took the lead, the MobileNetV2, 

EfficientNetb0, and ResNet101 models also contributed 

significantly to the domain. Their respective accuracies of 

78.2%, 79.4%, and 78.2% highlight their competence in the 

task of pain classification. These models, while not surpassing 

the DenseNet201 architecture, remain competitive with 

performances that are notably close to each other. 

The nuanced insights gleaned from these results not only 

corroborate the effectiveness of various architectural choices 

but also provide a foundation for making informed decisions 

about model selection based on specific use cases and 

requirements. The comprehensive evaluation of these 

architectures elucidates the strengths and areas for 

improvement of each model, ultimately guiding the broader 

landscape of pain classification research.  

IV. CONCLUSION 

The study presents a comprehensive exploration of pain 

recognition methodologies, successfully combining the Viola-

Jones technique and an array of four advanced deep learning 

models, namely MobileNetV2, EfficientNetb0, ResNet101, 

and DenseNet201. The process encompasses a meticulous 

calibration of learning rate values spanning from 10-1 to 10-5. 

A prominent pattern was attained from analyzing the 

training data. A learning rate of 10-2 served as a catalyst for 

heightened accuracy validation across the DenseNet201, 

EfficientNetb0, and MobileNetV2 models, each attaining an 

impressive accuracy level of 99.60%. Importantly, these 

models achieved this remarkable performance without 

compromising on elapsed time, with processing times of 2,000 

min and 52 s, 578 min and 25 s, and 312 min and 28 s, 

respectively. 

Concurrently, the ResNet101 yielded the highest accuracy 

of 99.60%, achieved at a learning rate of 10-3. This achievement, 

however, entailed an extended elapsed time of 3,501 min and 

14 s, showcasing a trade-off between accuracy and processing 

efficiency. 

Subsequent examination of the test results on a different 

dataset sheds light on the practical implications of the models’ 

performance. Within this evaluation framework, the 

DenseNet201 model demonstrated superior performance, 

securing an accuracy of 81.1%. The results of the confusion 

matrix accentuated this achievement, with impressive 

sensitivity, precision, and F1-score values of 81.06, 81.52, and 

81.29, respectively. Notably, the MobileNetV2, EfficientNetb0, 

and ResNet101 models also contributed significantly, yielding 

accuracies of 78.2%, 79.4%, and 78.2%, respectively. 

In synthesis, this multifaceted investigation underscores the 

paramount importance of selecting an optimal learning rate for 

deep learning models. The findings underscore the efficiency 

of a learning rate of 10-2 when coupled with the MobileNetV2 

model, yielding a harmonious blend of accuracy and 

operational efficiency. By harnessing a strategic amalgamation 

of methodologies and models, the study propels the field of 

pain recognition through facial expressions, carving a path 

toward increasingly effective and efficient methodologies. 
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