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ABSTRACT — Level crossings remain a problem in several cities due to high violations. Currently, surveillance at level 

crossings is still performed conventionally. Since problems at level crossings are increasingly complex and conventional 

solutions are no longer effective, an intelligent video surveillance system is necessary. Intelligent video surveillance system 

implementation is a complex task and requires devices with extensive computing resources. This research aims to optimize 

the system for processing data in real-time by conducting computation near the data source and dividing computing tasks 

across several edge devices. This research proposes a solution in the form of an edge computing-based intelligent video 

surveillance system with a computation offloading method on limited devices. This research has two development stages. 

The initial stage involved developing an object detection model using a dataset of level crossings in Bandung City. The 

second stage was developing an edge computing-based system by applying the computation offloading method on limited 

computing devices. The edge computing method extends cloud computing to the network’s edge, enabling calculations near 

the data source. Conversely, the computation offloading method improves edge computing performance by dividing 

computing tasks. Results showed an increase in computing speed of around 1.5 times faster, with a violation detection 

accuracy rate reaching 89.4%. Additionally, GPU temperature decreased by 5.50 °C, GPU usage decreased by 44.05%, 

memory usage decreased by 301 Mb, and power consumption decreased by 2.28 W. The system developed is effective and 

efficient in optimizing the performance of the violation detection system in level crossings on limited computing devices. 

KEYWORDS — Computation Offloading, Edge Computing, Violation Detection Systems, Level Crossings, Intelligent 

Video Surveillance Systems. 

I. INTRODUCTION 

A level crossing is a junction between a railway line and a 

highway [1]. The Directorate General of Land Transportation 

of the Republic of Indonesia has emphasized the importance of 

monitoring security and safety at level crossings. Problems at 

level crossings are generally caused by a relatively high level 

of violations and lack of surveillance, thereby elevating the 

accident risk. Violations generally occur when motorists break 

a crossing gate that has been closed [2]. Problems at level 

crossings are increasingly complex, and conventional solutions 

are no longer effective in resolving these problems. Therefore, 

a technological approach to monitoring systems at level 

crossings is crucial to reduce traffic violations and potential 

accidents [3]. Intelligent monitoring systems at level crossings 

are part of innovative city development from a safe and secure 

aspect [4].  

Currently, intelligent video surveillance systems utilizing 

computer vision are able to integrate multiple image and video 

analysis algorithms [5]. The application of intelligent video 

surveillance systems in innovative city development through a 

computer vision approach has grown significantly over the last 

decade [6]. The application of intelligent video surveillance 

system technology encompasses traffic control, road activity 

detection, and behavior monitoring of road users [7]. Research 

on intelligent video surveillance systems seeks to replace 

human operators or conventional systems with video 

processing algorithms capable of performing tasks 

autonomously [8].  

The current state of the art of intelligent video surveillance 

systems is focused on three main tasks: detection, tracking, and 

activity recognition or understanding of certain behaviors and 

situations using neural networks in deep neural networks (DNN) 

algorithms [9]. Detecting, tracking, and recognizing activities 

using DNN is complex and requires devices with considerable 

computing resources [10]. Implementing DNN in cloud 

computing requires significant time and computational load. 

Cloud computing receives all video data uploaded from the 

Internet of things (IoT) devices in the form of camera sensors 

and performs computations, resulting in increased costs for 

data transmission on the network, including latency, bandwidth, 

and computing resources [11]. 

From this, the edge computing paradigm emerged to 

overcome the problem of rising data transmission costs in 

networks in cloud computing [12]. Edge computing performs 

the computing process closer to the data source so that 

communication latency, bandwidth, and resources can be 

reduced [13], [14]. Edge computing is conducted to expand 

cloud computing to the network’s edge to perform 

computational calculations in close proximity close to the data 

source, namely on the edge device [15]. Through the utilization 

of edge computing, data processing can be done locally at the 

network’s edge, resulting in a reduction of computing load and 

the efficient execution of activities without dependence on 

cloud infrastructure.  

The primary challenge in implementing intelligent video 

surveillance systems on edge devices is the limitation of 
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computing resources. Limited computing devices have 

disadvantages in the form of limitations in terms of processing 

capacity or computing power. These limitations encompass 

several aspects, including processing speed, memory capacity, 

and the ability to handle tasks requiring high computing power. 

Optimization is required to attain ideal conditions for creating 

effective and efficient solutions, one of which is the 

computation offloading method [16]. Computation offloading 

is a method to improve edge computing performance by 

dividing computing tasks into devices with more significant 

computing resources to overcome limited computing resources 

on edge devices [17]. 

Research on intelligent video surveillance systems at level 

crossings has been conducted in various countries. A study has 

developed a computer vision-based level crossing monitoring 

system in the State of New Jersey and the city of Ashland, 

Virginia, United States. This system utilized the region of 

interest (ROI) method and regions with convolutional neural 

networks (R-CNN) mask object identification model [18]. 

Reference [19] has developed a technological solution for 

monitoring and making intelligent decisions at level crossings 

using MobileNet architecture and CNN algorithms for object 

classification and obstacle detection. Other research in the 

Czech has conducted detection and classification at level 

crossings and train warnings using the YOLOv3 deep neural 

network (DNN) model implemented on edge devices [20]. 

This research developed an edge computing-based level 

crossing monitoring system that could detect violations by 

developing object detection and recognition models and 

optimizing computing performance using the computation 

offloading method on limited computing devices. In the initial 

stage, an object detection and recognition model were 

established using an object detection algorithm, referring to 

previous research [21], [22]. In the second stage, the results of 

model formation were applied to devices with limited 

computing resources using the computation offloading method 

to accelerate inference time and reduce the computational load 

[23]. In the third stage, evaluations and test scenarios were 

conducted to measure the effectiveness and efficiency of the 

system prototype [24]. 

II. METHODOLOGY 

This research refers to previous research that designed 

monitoring system technology for level crossings. Although 

previous research applied the edge computing approach to the 

developed system architecture, its implementation on a single-

edge device had limited resources, including limited memory 

and computational processing capabilities. 

The architectural design which was developed in this 

research consisted of three layers, namely the end device layer, 

the edge layer, and the cloud service layer. The development 

process involved two stages. In the initial stage, an object 

detection model was developed to recognize objects in the level 

crossing environment by collecting a dataset at one of the level 

crossings in Bandung City. In the second stage, an edge 

computing-based system was developed by implementing 

computation offloading on devices with limited computing 

resources, namely dividing the computing process into two 

edge devices.  

Testing in this research was performed using two scenarios 

in order to compare computing performance on limited 

computing devices. The first scenario used a system design 

from previous research, while the second scenario applied the 

computation offloading method developed in this research. 

A. MODEL FORMATION 

The system development process in this research was 

initiated by a model formation process flow, which involved 

the following steps: dataset collection, model training, and 

model evaluation [25]. The aim of establishing this model is to 

detect and recognize violation objects in the level crossing area, 

which is implemented on limited computing devices. The 

model formation process began with the data preparation stage. 

Raw data were converted into data in a more structured format 

and ready for use. Next, the data-sharing process was divided 

into three parts. The first part, namely the training data, is a 

subset of the data used to train the predictive model. Second, 

validation data are a subset of data used to evaluate model 

performance during the training process. Meanwhile, test data 

are a separate subset of data that is not used during the training 

and validation process. These data are used to test the 

performance of the trained model against new data that have 

not been seen before. The stages of model formation in this 

research are explained as follows. 

1)  DATASET COLLECTION  

The dataset collection process began with recording a video 

at one of the level crossings in Bandung City. From this process, 

3,000 images were acquired. These images consisted of 21,000 

annotations from six classes, with detailed annotations of 8,638 

motorbikes, 6,150 cars, 2,089 trucks, 1,288 doorstops, 1,025 

public transportation, and 83 trains. As shown in Figure 1, the 

image dataset was divided into three parts with a ratio of 7:2:1. 

Specifically, 70% of the dataset was allocated for training data, 

which amounted to 2,200 data; 20% for validation data, which 

amounted to 655 data; and 10% for testing data, which 

amounted to 324 data. The following process is to resize the 

image to sizes of 416 pixels and 640 pixels, taking into account 

model training time and based on several other pixel size 

configurations. 

2)  MODEL TRAINING 

At the model training stage, the collected dataset was 

trained using the CSPDarknet53 CNN architecture on 

YOLOv5s using the PyTorch library contained in the 

custom_yolov5s.yaml file [26]. YOLOv5s is one of the most 

popular algorithms in object detection. According to 

researchers at AI Research, the unified architecture of 

YOLOv5s is very simple. A single convolution network allows 

YOLOv5s to directly detect objects by only passing through the 

neural network once [27]. YOLOv5s consists of three parts, 

namely backbone, neck, and head. The backbone acts as a 

feature extractor, the neck acts as a feature aggregator, and the 

head is responsible to perform localization and classification on 

each bounding box. The backbone extracts features using 

BottleNeckCSP and SPP, while the neck collects sample 

features. The results are in the head. YOLOv5s performs object 

classification with a convolutional network. 

The training process used Python code with the train.py file 

in the YOLOv5 model library using data variations in image 

size, number of epochs, and batch size [28]. Training this model 

involved configurations with varying image sizes of 416 pixels 

and 640 pixels; epoch numbers of 50, 100, and 150; and batch 

sizes of 16, 32, and 64 data. Image size affects the model’s 

ability to capture details, the epoch numbers determine the 

success rate of the model learning from the dataset, and batch 
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size affects training efficiency. Experiments were conducted to 

find the most effective and efficient parameters to detect 

violation data objects at level crossings. 

3)  MODEL EVALUATION 

At the evaluation stage, the model training process that had 

been conducted produced precision, recall, and mean average 

precision (mAP) values. The mAP metric was used to measure 

the average accuracy of each class. If the mAP value was not 

good enough, changing the parameter configuration in the 

model training process was necessary until a good mAP value 

was obtained. In this research, a model with the most optimal 

mAP value was obtained from the results of several variations 

in the configuration of the model training process. This model 

had a parameter configuration with image sizes of 640, batch 

sizes of 32, and epoch numbers of 100. From the model training 

results, as shown in Table I, two most optimal models were 

obtained. Model 1 achieved mAP@0.5 values of 0.993, while 

model 2 achieved mAP@0.5 values of 0.852. The mAP@0.5 

metric is a metric that measures object detection performance 

at a confidence level of 0.5, indicating the success of the system 

in detecting objects with a prediction confidence value of 0.5 

or higher [29].  

Model 1 consisted of one class of level-crossing gate 

objects, functioning to recognize the movement of level-

crossing gate objects. Model 2 comprised five classes: 

motorbikes, cars, trucks, public transportation, and train. Model 

2 functioned to detect objects crossing level crossings. The 

results of this model training demonstrated that the model 

performed well in detecting gate and vehicle objects in level-

crossing environments. 

B. SYSTEM DEVELOPMENT  

The flow of the system’s development for identifying and 

categorizing violation objects at level crossings in this research 

is shown by the sequence diagram in Figure 2. The sequence 

diagram explains the process for detecting level crossing gate 

objects. If the level crossing gate was detected as being closed, 

node 1 sent a status message to node 2. Node 2 received the 

message and accessed the end device to retrieve video data. 

Next, at node 2, video data were used to perform object 

detection for each violation that occurred. The detection results 

were recorded and sent to the data logger or cloud service, 

provided that the gate object status message from node 1 

continued to indicate that the gate was closed. However, if node 

1 sent a message indicating that the gate object was open, the 

process on node 2 stopped. The computing process in this 

system used the message queuing telemetry transport (MQTT) 

communication protocol as a data communication medium 

between layers. MQTT utilizes a publish and subscribe 

communication model, which enables devices to subscribe to 

certain topics and receive messages published on those topics. 

This feature facilitates distributed communication and is 

effective for delivering media, including images or videos, to 

subscribed devices [30]. 

1)  NODE 1 EDGE LAYER 

As illustrated in Figure 3, The edge layer of node 1 used a 

Raspberry Pi 4 to receive real-time streaming protocol (RTSP) 

from video data at level crossings. The computational process 

at this layer involved a gate object detection model. The system 

algorithm detected the gate object, recognized the movement of 

the object, and tracked it with a bounding box. The centroid 

point’s coordinates were updated by the system as the gate 

closed the crossing. The system marked a closed-level crossing 

situation if the centroid point crosses the specified linear line. 

Once the situation was detected, the edge device of node 1 

communicated with node 2 to continue the computing process. 

 

Figure 1. Model training flowchart. 

TABLE I 

MODEL TRAINING RESULT 

Parameter Model 1 Model 2 

Object 
Railroad crossing 

gate 

Motorbike, vehicle, 

truck, public 

transportation, and 

train 

Parameter 

Configuration 

img 640 batch 32 

epoch of 100 

img 640 batch 32  

epoch of 100 

Precision 0.988 0.808 

Recall 0.965 0.751 

mAP 0.993 0.852 

 

Figure 2. System development sequence diagram. 
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In the communication process, the edge device of node 1 

acted as an MQTT client (publisher) via the local network and 

offloaded it to the edge device of node 2. The process began 

with connecting to the broker via IP address and port. If 

connected, the system reads frames from video data. If the gate 

was detected as closed, each frame was converted to byte data 

type using the OpenCV imencode library, then published to the 

broker with the topic and encoded data. This process was 

repeated as long as the connection to the broker remained 

connected. 

2)  NODE 2 EDGE LAYER 

At the edge node layer 2, NVIDIA Jetson Nano was used as 

an edge device [31]. The process is shown in Figure 3. The edge 

device of node 2 received a message from the edge node 1, 

indicating that the crossing gate closed since a train would pass. 

When the gate was open, the edge device status of node 2 

became idle, so the computing process at this layer was only 

active when receiving a message from the edge device of node 

1. The task involved multi-detection of vehicle objects and 

tracking vehicle movements. The violation area was 

determined by four coordinate points that form a polygon, and 

a violation was detected if the vehicle’s centroid point was 

within this area. The system recorded each violation and sent 

the data in JSON format to the cloud layer via REST API. 

The communication process on the edge device of node 2 

initiated by making a connection to the broker. After 

successfully connecting, the edge device of node 2 received the 

data sent by the publisher, and then the received data were 

converted back to their original data form. Next, the decoding 

process was carried out to display the image. The data received 

in byte form were converted with the np.frombuffer function 

into ndarray and then converted back to the original data using 

the cv2.imdecode function to decode the data into images. An 

object detection process was conducted on the image data 

received to identify violations. Object detection results 

(violation data) were stored in JSON array format and ready to 

be sent to the cloud layer via the application programming 

interface (API). This communication flow allows edge devices 

of node 2 to communicate with the broker and send detected 

violation data to the cloud layer via API. 

3)  CLOUD SERVICE LAYER 

The platform used at the cloud service layer was the Heroku 

cloud platform. The process stages at the cloud service layer 

are shown in Figure 3. The task of the cloud service layer was 

to receive any violation data in the form of an API, which was 

recorded by the system in the data logger. Within a certain 

period, all violation data in the logger were sent and stored on 

the cloud storage platform. Subsequently, violation data were 

analyzed for the purpose of monitoring the level of violations 

at level crossings. This information was used for decision-

making related to the process of monitoring and controlling 

potential accidents and traffic violations at level crossings. 

Apart from that, the data were also used for planning the 

construction of nonlevel crossings [32].  

C. SYSTEM IMPLEMENTATION 

The implementation of this research used several devices 

that support the application of edge computing technology. 

Edge node 1 used a Raspberry Pi 4 device with a 64-bit Quad-

Core Cortex-A72 1.5 GHz CPU specification and 4 GB 

memory. In contrast, edge node 2 used an NVIDIA Jetson Nano 

device with a Quad-Core ARM Cortex A57 processor 

specification and memory of 4 GB 128-core Maxwell. 

Meanwhile, the cloud server used was the Heroku cloud 

platform. The implementation of system development in this 

research was carried out using video data of the crossing 

conditions at JPL 156 km 152 Andir Station, Bandung City. 

The process of capturing the video data used a USB camera 

with a resolution of 1,028 × 780, which was placed in the side 

corner of the level crossing on a tripod at a height of around 3 

m so that the camera could record the entire area of the level 

crossing. 

Figure 4(a) shows the situation when the level crossing gate 

is still open. The system succeeded in detecting the crossing 

gate object, which was marked with a bounding box, and the 

position of the centroid point and the violation area were still 

green. This green color indicates that the passing vehicle was 

not detected as having committed a violation. Furthermore, in 

Figure 4(b), the level crossing gate bars are closed. The system 

detected the movement of the gate object via the centroid point. 

Assuming the centroid point was below the line, the gate status 

would be changed to "closed", and the violation area would turn 

to red, indicating that every passing vehicle object would be 

identified as having committed a violation. Finally, Figure 4(c) 

shows the situation when a violation occurs. The system 

succeeded in detecting and identifying violation objects in the 

violation area when the level crossing gate was closed. 

 

Figure 3. Flow of the computation offloading process. 
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III. RESULTS AND DISCUSSION 

Testing in this research was conducted using two scenarios. 

The aim is to compare computing performance in each scenario 

so that the results of system development can be known, 

whether it can improve computing performance on limited 

computing devices in terms of accuracy, computing speed, and 

computing performance or not [33]. Scenario 1 referred to the 

system design that had been carried out in previous research 

[20], whereas scenario 2 implemented the computation 

offloading method to develop the system in the present study.  

A. ACCURACY TESTING RESULTS 

Accuracy testing was conducted using video data of level-

crossing situations. The amount of video data used in testing 

was ten videos, with varying times and weather conditions. 

From the two accuracy testing scenarios, the results of the 

confusion matrix were used to measure the level of accuracy of 

the violation detection model at level crossings. True positive 

(TP) is a condition when the system detects an object that has 

committed a violation. The system should detect that the object 

has not committed a violation. False positive (FP) is a condition 

where the system incorrectly detects an object as a violation. 

False negative (FN) is where the object has committed a 

violation, but the system does not record it as a violation. 

Figure 5 shows a graph comparing the accuracy values of 

the violation detection models. Scenario 2 obtained better 

results than Scenario 1. The recall value in scenario 2 was 3% 

better, the precision value in scenario 2 is 1% better, the F-score 

value in scenario 2 is 2.8% better, and the test accuracy level in 

scenario 2 was better by around 3.40%. The accuracy of the 

implemented violation object detection model was notably high 

at 89.4%. This finding suggests that the detection system has 

succeeded in recognizing and classifying the object of the 

violation well and successfully recorded it as a violation.  

B. INFERENCE SPEED TESTING RESULTS 

Inference speed refers to the speed of a system or model to 

produce predicted results or outputs after receiving input. 

Inference speed testing with ten tests using ten video data 

produced an average speed of 5.95 fps in scenario 1 and 8.95 

fps in scenario 2. Based on this data, a comparison of test 

results is depicted in Figure 6. The graph comparing the 

average inference speed shows that Scenario 2 produces a 

higher average inference speed compared to scenario 1. 

C. COMPUTING PERFORMANCE TESTING RESULTS 

Computing performance refers to the ability of hardware to 

carry out given tasks with high efficiency and effectiveness 

[34]. Figure 7 shows the performance of the graphics 

processing unit (GPU) in the form of temperature. It is evident 

that the GPU temperature on the NVIDIA Jetson Nano device 

was impacted by the computation process when the violation 

detection process was run on the NVIDIA Jetson Nano device. 

As seen in the graph, GPU in scenario 2 had a lower 

temperature value compared to the GPU temperature in 

scenario 1. It happened because the computing process was 

performed only when the crossing gate was closed. The average 

GPU temperature was 36.85 °C in scenario 1 and 31.34 °C in 

scenario 2, or an average decrease of 5.50 °C. Figure 8 shows 

a graph of test results from using the GPU. The average value 

of GPU usage was obtained at 50.58% in scenario 1 and 6.53% 

in scenario 2, or a decrease of around 44.05%. The computing 

process in scenario 2 was more effective because the GPU was 

only used when the level crossing was closed. In Figure 9, 

memory usage data are displayed. The memory usage test 

results show that scenario 1 used 3,790 Mb of memory on 

average, while scenario 2 used 3,489 Mb. In other words, there 

was a decrease in memory usage of around 301 Mb. Meanwhile, 

a comparison graph of power consumption is shown in Figure 

10. In scenario 1, the Jetson Nano device used an average 

power consumption of 5.83 W. Meanwhile, in scenario 2, the 

Jetson Nano used a power consumption of 3.55 W. There is a 

 

 (a) (b) 

 

(c) 

Figure 4. System implementation, (a) the gate is open, (b) the gate is closed and 
(c) the system detects a violation 

 

 

Figure 5. Comparison of accuracy models. 

 

Figure 6. Comparison of computing speed. 
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decrease in average consumption power of 2.28 W on the 

Jetson Nano device. In scenario 2, with the Raspberry Pi 4 

device implemented as node 1, the average power consumption 

was 2.61 W, which was smaller than that on the Jetson Nano. 

It happened because the computing process on the Raspberry 

Pi 4 device only used the CPU and not the GPU.  

The test results in Table II show that the application of 

computation offloading to the prototype edge computing-based 

violation detection system at level crossings yielded better 

results, as evidenced by the increase in computing performance. 

The application of computation offloading succeeded in 

increasing computing performance on the Jetson Nano limited 

computing devices. The average computing speed increases by 

about 1.5 times, demonstrating the efficiency of the computing 

load-sharing strategy. The accuracy of the implemented 

violation object detection model reached 89.4%, which is 

considered high. It indicates that the detection system has 

succeeded in recognizing and classifying violation objects. 

Apart from increasing speed, the application of computation 

offloading had succeeded in reducing the burden on the 

computing process on the Jetson Nano device. Reducing GPU 

temperature, GPU usage rate, memory usage rate, and power 

consumption provides an overview of resource usage 

efficiency. The system developed in this research proves the 

effectiveness and efficiency of implementing computation 

offloading in optimizing the performance of violation detection 

systems at level crossings on limited computing devices. 

IV. CONCLUSION 

The prototype violation detection system at level crossings 

based on edge computing, developed in this research, has 

succeeded in increasing computing performance by dividing 

the computing load by implementing computation offloading. 

From the developments carried out, the implementation of 

computation offloading succeeded in increasing the average 

computing speed by around 1.5 times faster on the Jetson Nano 

limited computing devices. Apart from that, the violation object 

detection model attained an accuracy rate of 89.4%. Apart from 

increasing speed, the application of computation offloading has 

also succeeded in reducing the burden on the computing 

process on the limited Jetson Nano computing device. It is 

evidenced from a decrease in GPU temperature of around 

5.50 °C, a decrease in GPU usage of 44.05%, a decrease in 

memory use of 301 Mb, and a decrease in power consumption 

of 2.28 W. The data shows that the application of computation 

offloading to an edge computing-based level crossing violation 

detection system provides good results. Significant 

improvements in inference accuracy and speed, as well as 

reductions in GPU temperature, GPU usage, memory usage, 

and power consumption, demonstrate efficient use of resources 

on limited computing devices. 
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Figure 9. Memory utilization comparison results. 

 

 

Figure 10. Power Consumption Comparison Results 

TABLE II 

COMPARISON OF TEST RESULTS 

Testing Scenario 1 Scenario 2 Delta 

Accuracy 86.0 % 89.4 % +3.4 % 

Inference Speed 5.95 fps 8.95 fps +3 fps 
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Temperature 
36.85 °C 31.34 °C -5.50 °C 

GPU Utilization 50.58 % 6.53 % -44.05 % 

Memory 

Utilization 
3,790 Mb 3,489 Mb -301 Mb 

Power 

Consumption 
5.83 W 3.55 W -2.28 W 

Information: Delta = scenario 2 – scenario 1 
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