
JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

p-ISSN 2301–4156 | e-ISSN 2460–5719 Rian Putra Pratama: Application of Computation Offloading …

© Jurnal Nasional Teknik Elektro dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Translation of article 10.22146/jnteti.v13i1.8795

Application of Computation Offloading in Edge
Computing-Based Level Crossing Violation Detection
Systems
Rian Putra Pratama1, Suhono Harso Supangkat2

1 Center for Smart Mechatronics, National Research and Innovation Agency, Bandung, Indonesia
2 School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia

[Received: 28 July 2023, Revised: 13 November 2023, Accepted: 18 December 2023]

Corresponding Author: Rian Putra Pratama (email: rian011@brin.go.id)

ABSTRACT — Level crossings remain a problem in several cities due to high violations. Currently, surveillance at level

crossings is still performed conventionally. Since problems at level crossings are increasingly complex and conventional

solutions are no longer effective, an intelligent video surveillance system is necessary. Intelligent video surveillance system

implementation is a complex task and requires devices with extensive computing resources. This research aims to optimize

the system for processing data in real-time by conducting computation near the data source and dividing computing tasks

across several edge devices. This research proposes a solution in the form of an edge computing-based intelligent video

surveillance system with a computation offloading method on limited devices. This research has two development stages.

The initial stage involved developing an object detection model using a dataset of level crossings in Bandung City. The

second stage was developing an edge computing-based system by applying the computation offloading method on limited

computing devices. The edge computing method extends cloud computing to the network’s edge, enabling calculations near

the data source. Conversely, the computation offloading method improves edge computing performance by dividing

computing tasks. Results showed an increase in computing speed of around 1.5 times faster, with a violation detection

accuracy rate reaching 89.4%. Additionally, GPU temperature decreased by 5.50 °C, GPU usage decreased by 44.05%,

memory usage decreased by 301 Mb, and power consumption decreased by 2.28 W. The system developed is effective and

efficient in optimizing the performance of the violation detection system in level crossings on limited computing devices.

KEYWORDS — Computation Offloading, Edge Computing, Violation Detection Systems, Level Crossings, Intelligent

Video Surveillance Systems.

I. INTRODUCTION

A level crossing is a junction between a railway line and a

highway [1]. The Directorate General of Land Transportation

of the Republic of Indonesia has emphasized the importance of

monitoring security and safety at level crossings. Problems at

level crossings are generally caused by a relatively high level

of violations and lack of surveillance, thereby elevating the

accident risk. Violations generally occur when motorists break

a crossing gate that has been closed [2]. Problems at level

crossings are increasingly complex, and conventional solutions

are no longer effective in resolving these problems. Therefore,

a technological approach to monitoring systems at level

crossings is crucial to reduce traffic violations and potential

accidents [3]. Intelligent monitoring systems at level crossings

are part of innovative city development from a safe and secure

aspect [4].

Currently, intelligent video surveillance systems utilizing

computer vision are able to integrate multiple image and video

analysis algorithms [5]. The application of intelligent video

surveillance systems in innovative city development through a

computer vision approach has grown significantly over the last

decade [6]. The application of intelligent video surveillance

system technology encompasses traffic control, road activity

detection, and behavior monitoring of road users [7]. Research

on intelligent video surveillance systems seeks to replace

human operators or conventional systems with video

processing algorithms capable of performing tasks

autonomously [8].

The current state of the art of intelligent video surveillance

systems is focused on three main tasks: detection, tracking, and

activity recognition or understanding of certain behaviors and

situations using neural networks in deep neural networks (DNN)

algorithms [9]. Detecting, tracking, and recognizing activities

using DNN is complex and requires devices with considerable

computing resources [10]. Implementing DNN in cloud

computing requires significant time and computational load.

Cloud computing receives all video data uploaded from the

Internet of things (IoT) devices in the form of camera sensors

and performs computations, resulting in increased costs for

data transmission on the network, including latency, bandwidth,

and computing resources [11].

From this, the edge computing paradigm emerged to

overcome the problem of rising data transmission costs in

networks in cloud computing [12]. Edge computing performs

the computing process closer to the data source so that

communication latency, bandwidth, and resources can be

reduced [13], [14]. Edge computing is conducted to expand

cloud computing to the network’s edge to perform

computational calculations in close proximity close to the data

source, namely on the edge device [15]. Through the utilization

of edge computing, data processing can be done locally at the

network’s edge, resulting in a reduction of computing load and

the efficient execution of activities without dependence on

cloud infrastructure.

The primary challenge in implementing intelligent video

surveillance systems on edge devices is the limitation of

EN-18

JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

Rian Putra Pratama: Application of Computation Offloading … p-ISSN 2301–4156 | e-ISSN 2460–5719

computing resources. Limited computing devices have

disadvantages in the form of limitations in terms of processing

capacity or computing power. These limitations encompass

several aspects, including processing speed, memory capacity,

and the ability to handle tasks requiring high computing power.

Optimization is required to attain ideal conditions for creating

effective and efficient solutions, one of which is the

computation offloading method [16]. Computation offloading

is a method to improve edge computing performance by

dividing computing tasks into devices with more significant

computing resources to overcome limited computing resources

on edge devices [17].

Research on intelligent video surveillance systems at level

crossings has been conducted in various countries. A study has

developed a computer vision-based level crossing monitoring

system in the State of New Jersey and the city of Ashland,

Virginia, United States. This system utilized the region of

interest (ROI) method and regions with convolutional neural

networks (R-CNN) mask object identification model [18].

Reference [19] has developed a technological solution for

monitoring and making intelligent decisions at level crossings

using MobileNet architecture and CNN algorithms for object

classification and obstacle detection. Other research in the

Czech has conducted detection and classification at level

crossings and train warnings using the YOLOv3 deep neural

network (DNN) model implemented on edge devices [20].

This research developed an edge computing-based level

crossing monitoring system that could detect violations by

developing object detection and recognition models and

optimizing computing performance using the computation

offloading method on limited computing devices. In the initial

stage, an object detection and recognition model were

established using an object detection algorithm, referring to

previous research [21], [22]. In the second stage, the results of

model formation were applied to devices with limited

computing resources using the computation offloading method

to accelerate inference time and reduce the computational load

[23]. In the third stage, evaluations and test scenarios were

conducted to measure the effectiveness and efficiency of the

system prototype [24].

II. METHODOLOGY

This research refers to previous research that designed

monitoring system technology for level crossings. Although

previous research applied the edge computing approach to the

developed system architecture, its implementation on a single-

edge device had limited resources, including limited memory

and computational processing capabilities.

The architectural design which was developed in this

research consisted of three layers, namely the end device layer,

the edge layer, and the cloud service layer. The development

process involved two stages. In the initial stage, an object

detection model was developed to recognize objects in the level

crossing environment by collecting a dataset at one of the level

crossings in Bandung City. In the second stage, an edge

computing-based system was developed by implementing

computation offloading on devices with limited computing

resources, namely dividing the computing process into two

edge devices.

Testing in this research was performed using two scenarios

in order to compare computing performance on limited

computing devices. The first scenario used a system design

from previous research, while the second scenario applied the

computation offloading method developed in this research.

A. MODEL FORMATION

The system development process in this research was

initiated by a model formation process flow, which involved

the following steps: dataset collection, model training, and

model evaluation [25]. The aim of establishing this model is to

detect and recognize violation objects in the level crossing area,

which is implemented on limited computing devices. The

model formation process began with the data preparation stage.

Raw data were converted into data in a more structured format

and ready for use. Next, the data-sharing process was divided

into three parts. The first part, namely the training data, is a

subset of the data used to train the predictive model. Second,

validation data are a subset of data used to evaluate model

performance during the training process. Meanwhile, test data

are a separate subset of data that is not used during the training

and validation process. These data are used to test the

performance of the trained model against new data that have

not been seen before. The stages of model formation in this

research are explained as follows.

1) DATASET COLLECTION

The dataset collection process began with recording a video

at one of the level crossings in Bandung City. From this process,

3,000 images were acquired. These images consisted of 21,000

annotations from six classes, with detailed annotations of 8,638

motorbikes, 6,150 cars, 2,089 trucks, 1,288 doorstops, 1,025

public transportation, and 83 trains. As shown in Figure 1, the

image dataset was divided into three parts with a ratio of 7:2:1.

Specifically, 70% of the dataset was allocated for training data,

which amounted to 2,200 data; 20% for validation data, which

amounted to 655 data; and 10% for testing data, which

amounted to 324 data. The following process is to resize the

image to sizes of 416 pixels and 640 pixels, taking into account

model training time and based on several other pixel size

configurations.

2) MODEL TRAINING

At the model training stage, the collected dataset was

trained using the CSPDarknet53 CNN architecture on

YOLOv5s using the PyTorch library contained in the

custom_yolov5s.yaml file [26]. YOLOv5s is one of the most

popular algorithms in object detection. According to

researchers at AI Research, the unified architecture of

YOLOv5s is very simple. A single convolution network allows

YOLOv5s to directly detect objects by only passing through the

neural network once [27]. YOLOv5s consists of three parts,

namely backbone, neck, and head. The backbone acts as a

feature extractor, the neck acts as a feature aggregator, and the

head is responsible to perform localization and classification on

each bounding box. The backbone extracts features using

BottleNeckCSP and SPP, while the neck collects sample

features. The results are in the head. YOLOv5s performs object

classification with a convolutional network.

The training process used Python code with the train.py file

in the YOLOv5 model library using data variations in image

size, number of epochs, and batch size [28]. Training this model

involved configurations with varying image sizes of 416 pixels

and 640 pixels; epoch numbers of 50, 100, and 150; and batch

sizes of 16, 32, and 64 data. Image size affects the model’s

ability to capture details, the epoch numbers determine the

success rate of the model learning from the dataset, and batch

EN-19

JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

p-ISSN 2301–4156 | e-ISSN 2460–5719 Rian Putra Pratama: Application of Computation Offloading …

size affects training efficiency. Experiments were conducted to

find the most effective and efficient parameters to detect

violation data objects at level crossings.

3) MODEL EVALUATION

At the evaluation stage, the model training process that had

been conducted produced precision, recall, and mean average

precision (mAP) values. The mAP metric was used to measure

the average accuracy of each class. If the mAP value was not

good enough, changing the parameter configuration in the

model training process was necessary until a good mAP value

was obtained. In this research, a model with the most optimal

mAP value was obtained from the results of several variations

in the configuration of the model training process. This model

had a parameter configuration with image sizes of 640, batch

sizes of 32, and epoch numbers of 100. From the model training

results, as shown in Table I, two most optimal models were

obtained. Model 1 achieved mAP@0.5 values of 0.993, while

model 2 achieved mAP@0.5 values of 0.852. The mAP@0.5

metric is a metric that measures object detection performance

at a confidence level of 0.5, indicating the success of the system

in detecting objects with a prediction confidence value of 0.5

or higher [29].

Model 1 consisted of one class of level-crossing gate

objects, functioning to recognize the movement of level-

crossing gate objects. Model 2 comprised five classes:

motorbikes, cars, trucks, public transportation, and train. Model

2 functioned to detect objects crossing level crossings. The

results of this model training demonstrated that the model

performed well in detecting gate and vehicle objects in level-

crossing environments.

B. SYSTEM DEVELOPMENT

The flow of the system’s development for identifying and

categorizing violation objects at level crossings in this research

is shown by the sequence diagram in Figure 2. The sequence

diagram explains the process for detecting level crossing gate

objects. If the level crossing gate was detected as being closed,

node 1 sent a status message to node 2. Node 2 received the

message and accessed the end device to retrieve video data.

Next, at node 2, video data were used to perform object

detection for each violation that occurred. The detection results

were recorded and sent to the data logger or cloud service,

provided that the gate object status message from node 1

continued to indicate that the gate was closed. However, if node

1 sent a message indicating that the gate object was open, the

process on node 2 stopped. The computing process in this

system used the message queuing telemetry transport (MQTT)

communication protocol as a data communication medium

between layers. MQTT utilizes a publish and subscribe

communication model, which enables devices to subscribe to

certain topics and receive messages published on those topics.

This feature facilitates distributed communication and is

effective for delivering media, including images or videos, to

subscribed devices [30].

1) NODE 1 EDGE LAYER

As illustrated in Figure 3, The edge layer of node 1 used a

Raspberry Pi 4 to receive real-time streaming protocol (RTSP)

from video data at level crossings. The computational process

at this layer involved a gate object detection model. The system

algorithm detected the gate object, recognized the movement of

the object, and tracked it with a bounding box. The centroid

point’s coordinates were updated by the system as the gate

closed the crossing. The system marked a closed-level crossing

situation if the centroid point crosses the specified linear line.

Once the situation was detected, the edge device of node 1

communicated with node 2 to continue the computing process.

Figure 1. Model training flowchart.

TABLE I

MODEL TRAINING RESULT

Parameter Model 1 Model 2

Object
Railroad crossing

gate

Motorbike, vehicle,

truck, public

transportation, and

train

Parameter

Configuration

img 640 batch 32

epoch of 100

img 640 batch 32

epoch of 100

Precision 0.988 0.808

Recall 0.965 0.751

mAP 0.993 0.852

Figure 2. System development sequence diagram.

EN-20

JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

Rian Putra Pratama: Application of Computation Offloading … p-ISSN 2301–4156 | e-ISSN 2460–5719

In the communication process, the edge device of node 1

acted as an MQTT client (publisher) via the local network and

offloaded it to the edge device of node 2. The process began

with connecting to the broker via IP address and port. If

connected, the system reads frames from video data. If the gate

was detected as closed, each frame was converted to byte data

type using the OpenCV imencode library, then published to the

broker with the topic and encoded data. This process was

repeated as long as the connection to the broker remained

connected.

2) NODE 2 EDGE LAYER

At the edge node layer 2, NVIDIA Jetson Nano was used as

an edge device [31]. The process is shown in Figure 3. The edge

device of node 2 received a message from the edge node 1,

indicating that the crossing gate closed since a train would pass.

When the gate was open, the edge device status of node 2

became idle, so the computing process at this layer was only

active when receiving a message from the edge device of node

1. The task involved multi-detection of vehicle objects and

tracking vehicle movements. The violation area was

determined by four coordinate points that form a polygon, and

a violation was detected if the vehicle’s centroid point was

within this area. The system recorded each violation and sent

the data in JSON format to the cloud layer via REST API.

The communication process on the edge device of node 2

initiated by making a connection to the broker. After

successfully connecting, the edge device of node 2 received the

data sent by the publisher, and then the received data were

converted back to their original data form. Next, the decoding

process was carried out to display the image. The data received

in byte form were converted with the np.frombuffer function

into ndarray and then converted back to the original data using

the cv2.imdecode function to decode the data into images. An

object detection process was conducted on the image data

received to identify violations. Object detection results

(violation data) were stored in JSON array format and ready to

be sent to the cloud layer via the application programming

interface (API). This communication flow allows edge devices

of node 2 to communicate with the broker and send detected

violation data to the cloud layer via API.

3) CLOUD SERVICE LAYER

The platform used at the cloud service layer was the Heroku

cloud platform. The process stages at the cloud service layer

are shown in Figure 3. The task of the cloud service layer was

to receive any violation data in the form of an API, which was

recorded by the system in the data logger. Within a certain

period, all violation data in the logger were sent and stored on

the cloud storage platform. Subsequently, violation data were

analyzed for the purpose of monitoring the level of violations

at level crossings. This information was used for decision-

making related to the process of monitoring and controlling

potential accidents and traffic violations at level crossings.

Apart from that, the data were also used for planning the

construction of nonlevel crossings [32].

C. SYSTEM IMPLEMENTATION

The implementation of this research used several devices

that support the application of edge computing technology.

Edge node 1 used a Raspberry Pi 4 device with a 64-bit Quad-

Core Cortex-A72 1.5 GHz CPU specification and 4 GB

memory. In contrast, edge node 2 used an NVIDIA Jetson Nano

device with a Quad-Core ARM Cortex A57 processor

specification and memory of 4 GB 128-core Maxwell.

Meanwhile, the cloud server used was the Heroku cloud

platform. The implementation of system development in this

research was carried out using video data of the crossing

conditions at JPL 156 km 152 Andir Station, Bandung City.

The process of capturing the video data used a USB camera

with a resolution of 1,028 × 780, which was placed in the side

corner of the level crossing on a tripod at a height of around 3

m so that the camera could record the entire area of the level

crossing.

Figure 4(a) shows the situation when the level crossing gate

is still open. The system succeeded in detecting the crossing

gate object, which was marked with a bounding box, and the

position of the centroid point and the violation area were still

green. This green color indicates that the passing vehicle was

not detected as having committed a violation. Furthermore, in

Figure 4(b), the level crossing gate bars are closed. The system

detected the movement of the gate object via the centroid point.

Assuming the centroid point was below the line, the gate status

would be changed to "closed", and the violation area would turn

to red, indicating that every passing vehicle object would be

identified as having committed a violation. Finally, Figure 4(c)

shows the situation when a violation occurs. The system

succeeded in detecting and identifying violation objects in the

violation area when the level crossing gate was closed.

Figure 3. Flow of the computation offloading process.

EN-21

JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

p-ISSN 2301–4156 | e-ISSN 2460–5719 Rian Putra Pratama: Application of Computation Offloading …

III. RESULTS AND DISCUSSION

Testing in this research was conducted using two scenarios.

The aim is to compare computing performance in each scenario

so that the results of system development can be known,

whether it can improve computing performance on limited

computing devices in terms of accuracy, computing speed, and

computing performance or not [33]. Scenario 1 referred to the

system design that had been carried out in previous research

[20], whereas scenario 2 implemented the computation

offloading method to develop the system in the present study.

A. ACCURACY TESTING RESULTS

Accuracy testing was conducted using video data of level-

crossing situations. The amount of video data used in testing

was ten videos, with varying times and weather conditions.

From the two accuracy testing scenarios, the results of the

confusion matrix were used to measure the level of accuracy of

the violation detection model at level crossings. True positive

(TP) is a condition when the system detects an object that has

committed a violation. The system should detect that the object

has not committed a violation. False positive (FP) is a condition

where the system incorrectly detects an object as a violation.

False negative (FN) is where the object has committed a

violation, but the system does not record it as a violation.

Figure 5 shows a graph comparing the accuracy values of

the violation detection models. Scenario 2 obtained better

results than Scenario 1. The recall value in scenario 2 was 3%

better, the precision value in scenario 2 is 1% better, the F-score

value in scenario 2 is 2.8% better, and the test accuracy level in

scenario 2 was better by around 3.40%. The accuracy of the

implemented violation object detection model was notably high

at 89.4%. This finding suggests that the detection system has

succeeded in recognizing and classifying the object of the

violation well and successfully recorded it as a violation.

B. INFERENCE SPEED TESTING RESULTS

Inference speed refers to the speed of a system or model to

produce predicted results or outputs after receiving input.

Inference speed testing with ten tests using ten video data

produced an average speed of 5.95 fps in scenario 1 and 8.95

fps in scenario 2. Based on this data, a comparison of test

results is depicted in Figure 6. The graph comparing the

average inference speed shows that Scenario 2 produces a

higher average inference speed compared to scenario 1.

C. COMPUTING PERFORMANCE TESTING RESULTS

Computing performance refers to the ability of hardware to

carry out given tasks with high efficiency and effectiveness

[34]. Figure 7 shows the performance of the graphics

processing unit (GPU) in the form of temperature. It is evident

that the GPU temperature on the NVIDIA Jetson Nano device

was impacted by the computation process when the violation

detection process was run on the NVIDIA Jetson Nano device.

As seen in the graph, GPU in scenario 2 had a lower

temperature value compared to the GPU temperature in

scenario 1. It happened because the computing process was

performed only when the crossing gate was closed. The average

GPU temperature was 36.85 °C in scenario 1 and 31.34 °C in

scenario 2, or an average decrease of 5.50 °C. Figure 8 shows

a graph of test results from using the GPU. The average value

of GPU usage was obtained at 50.58% in scenario 1 and 6.53%

in scenario 2, or a decrease of around 44.05%. The computing

process in scenario 2 was more effective because the GPU was

only used when the level crossing was closed. In Figure 9,

memory usage data are displayed. The memory usage test

results show that scenario 1 used 3,790 Mb of memory on

average, while scenario 2 used 3,489 Mb. In other words, there

was a decrease in memory usage of around 301 Mb. Meanwhile,

a comparison graph of power consumption is shown in Figure

10. In scenario 1, the Jetson Nano device used an average

power consumption of 5.83 W. Meanwhile, in scenario 2, the

Jetson Nano used a power consumption of 3.55 W. There is a

 (a) (b)

(c)

Figure 4. System implementation, (a) the gate is open, (b) the gate is closed and
(c) the system detects a violation

Figure 5. Comparison of accuracy models.

Figure 6. Comparison of computing speed.

5.85 6.07 6.04 5.95 5.95 5.81 5.94 5.71 6.02 6.13

9.39
8.88 8.64 8.89 8.95 8.86 8.83 8.98

9.72
9.02

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Scenario 1 Scenario 2

EN-22

JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

Rian Putra Pratama: Application of Computation Offloading … p-ISSN 2301–4156 | e-ISSN 2460–5719

decrease in average consumption power of 2.28 W on the

Jetson Nano device. In scenario 2, with the Raspberry Pi 4

device implemented as node 1, the average power consumption

was 2.61 W, which was smaller than that on the Jetson Nano.

It happened because the computing process on the Raspberry

Pi 4 device only used the CPU and not the GPU.

The test results in Table II show that the application of

computation offloading to the prototype edge computing-based

violation detection system at level crossings yielded better

results, as evidenced by the increase in computing performance.

The application of computation offloading succeeded in

increasing computing performance on the Jetson Nano limited

computing devices. The average computing speed increases by

about 1.5 times, demonstrating the efficiency of the computing

load-sharing strategy. The accuracy of the implemented

violation object detection model reached 89.4%, which is

considered high. It indicates that the detection system has

succeeded in recognizing and classifying violation objects.

Apart from increasing speed, the application of computation

offloading had succeeded in reducing the burden on the

computing process on the Jetson Nano device. Reducing GPU

temperature, GPU usage rate, memory usage rate, and power

consumption provides an overview of resource usage

efficiency. The system developed in this research proves the

effectiveness and efficiency of implementing computation

offloading in optimizing the performance of violation detection

systems at level crossings on limited computing devices.

IV. CONCLUSION

The prototype violation detection system at level crossings

based on edge computing, developed in this research, has

succeeded in increasing computing performance by dividing

the computing load by implementing computation offloading.

From the developments carried out, the implementation of

computation offloading succeeded in increasing the average

computing speed by around 1.5 times faster on the Jetson Nano

limited computing devices. Apart from that, the violation object

detection model attained an accuracy rate of 89.4%. Apart from

increasing speed, the application of computation offloading has

also succeeded in reducing the burden on the computing

process on the limited Jetson Nano computing device. It is

evidenced from a decrease in GPU temperature of around

5.50 °C, a decrease in GPU usage of 44.05%, a decrease in

memory use of 301 Mb, and a decrease in power consumption

of 2.28 W. The data shows that the application of computation

offloading to an edge computing-based level crossing violation

detection system provides good results. Significant

improvements in inference accuracy and speed, as well as

reductions in GPU temperature, GPU usage, memory usage,

and power consumption, demonstrate efficient use of resources

on limited computing devices.

CONFLICTS OF INTEREST

The authors state that in the research entitled “Application

of Computation Offloading in Edge Computing-Based Level

Crossing Violation Detection Systems” has no conflict of

interest.

AUTHORS’ CONTRIBUTIONS

Conceptualization and methodology, Rian Putra Pratama;

software, Rian Putra Pratama; data acquisition, Rian Putra

Pratama; data analysis, Rian Putra Pratama; writing—

Figure 7. GPU temperature comparison results.

Figure 8. GPU utilization comparison results.

Figure 9. Memory utilization comparison results.

Figure 10. Power Consumption Comparison Results

TABLE II

COMPARISON OF TEST RESULTS

Testing Scenario 1 Scenario 2 Delta

Accuracy 86.0 % 89.4 % +3.4 %

Inference Speed 5.95 fps 8.95 fps +3 fps

GPU

Temperature
36.85 °C 31.34 °C -5.50 °C

GPU Utilization 50.58 % 6.53 % -44.05 %

Memory

Utilization
3,790 Mb 3,489 Mb -301 Mb

Power

Consumption
5.83 W 3.55 W -2.28 W

Information: Delta = scenario 2 – scenario 1

EN-23

JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

p-ISSN 2301–4156 | e-ISSN 2460–5719 Rian Putra Pratama: Application of Computation Offloading …

preparation of the original draft, Rian Putra Pratama;

supervision and review, Suhono Harso Supangkat.

ACKNOWLEDGMENT

Thanks are expressed to the parties who have supported the

author in carrying out this research, including the Center for

Smart Mechatronics of the National Research and Innovation

Agency, School of Electrical Engineering and Informatics of

Institut Teknologi Bandung, and the domestic scholarship

program of the Ministry of Communication and Information of

the Republic of Indonesia.

REFERENCES

[1] “Lalu Lintas dan Angkutan Jalan,” Undang-Undang Republik Indonesia

No. 22, 2009.

[2] “Buku Statistik Bidang Perkeretaapian Tahun 2020,” The Directorate

General of Railway, 2020.

[3] A. Sianipar, “Kajian penerapan teknologi pintu dengan pagar otomatis

dan yellow box di perlintasan sebidang,” J. Penelit. Transp. Darat., vol.

22, no. 1, pp. 91–102, Jun. 2020, doi: 10.25104/jptd.v22i1.1603.

[4] S.H. Supangkat, A.A. Arman, R.A. Nugraha, and Y.A. Fatimah, “The

implementation of Garuda Smart City Framework for smart city readiness

mapping in Indonesia,” J. Asia-Pac. Stud., vol. 32, pp. 169–176, Mar.

2018, doi: 10.57278/wiapstokyu.32.0_169.

[5] V. Tsakanikas and T. Dagiuklas, “Video surveillance systems-current

status and future trends,” Comput. Elect. Eng., vol. 70, pp. 736–753, Aug.

2018, doi: 10.1016/j.compeleceng.2017.11.011.

[6] R.P. Pratama and S.H. Supangkat, “Smart video surveillance system for

level crossing: A systematic literature review,” 2021 Int. Conf. ICT Smart

Soc. (ICISS), 2021, pp. 1–5, doi: 10.1109/ICISS53185.2021.9533222.

[7] M.H. Kolekar, Intelligent Video Surveillance Systems An Algorithmic

Approach. New York, NY, USA: CRC Press, 2017, doi:

10.1201/9781315153865.

[8] A. Hampapur et al., “Smart video surveillance: Exploring the concept of

multiscale spatiotemporal tracking,” IEEE Signal Process. Mag., vol. 22,

no. 2, pp. 38–51, Mar. 2005, doi: 10.1109/MSP.2005.1406476.

[9] G.F. Shidik et al., “A systematic review of intelligence video surveillance:

Trends, techniques, frameworks, and datasets,” IEEE Access, vol. 7, pp.

170457–170473, Nov. 2019, doi: 10.1109/ACCESS.2019.2955387.

[10] H. Sun, Y. Yu, K. Sha, and B. Lou, “mVideo: Edge computing based

mobile video processing systems,” IEEE Access, vol. 8, pp. 11615–11623,

Dec. 2020, doi: 10.1109/ACCESS.2019.2963159.

[11] W. Yu et al., “A survey on the edge computing for the internet of things,”

IEEE Access, vol. 6, pp. 6900–6919, Nov. 2018, doi:

10.1109/ACCESS.2017.2778504.

[12] W. Shi et al., “Edge computing: Vision and challenges,” IEEE Internet

Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016, doi:

10.1109/JIOT.2016.2579198.

[13] F. Wang et al., “Deep learning for edge computing applications: A state-

of-the-art survey,” IEEE Access, vol. 8, pp. 58322–58336, Mar. 2020, doi:

10.1109/ACCESS.2020.2982411.

[14] D.R. Patrikar and M.R. Parate, “Anomaly detection using edge

computing in video surveillance system: Review,” Int. J. Multimed. Inf.

Retr., vol. 11, no. 2, pp. 85–110, Jun. 2022, doi: 10.1007/s13735-022-

00227-8.

[15] A.C. Cob-Parro et al., “Smart video surveillance system based on edge

computing,” Sensors, vol. 21, no. 9, pp. 1–20, May 2021, doi:

10.3390/s21092958.

[16] A. Gupta and P. Prabhat, “Towards a resource efficient and privacy-

preserving framework for campus-wide video analytics-based

applications,” Complex Intell. Syst., vol. 9, no. 1, pp. 161–176, Feb. 2023,

doi: 10.1007/s40747-022-00783-w.

[17] M. Aazam, S. Zeadally, and K.A. Harras, “Offloading in fog computing

for IoT: Review, enabling technologies, and research opportunities,”

Future Gener. Comput. Syst., vol. 87, pp. 278–289, Oct. 2018, doi:

10.1016/j.future.2018.04.057.

[18] A. Zaman, B. Ren, and X. Liu, “Artificial intelligence-aided automated

detection of railroad trespassing,” Transp. Res. Rec., J. Transp. Res.

Board,, vol. 2673, no. 7, pp. 25–37, Jul. 2019, doi:

10.1177/0361198119846468.

[19] M.A.B. Fayyaz and C. Johnson, “Object detection at level crossing using

deep learning,” Micromachines, vol. 11, no. 12, pp. 1–16, Dec. 2020, doi:

10.3390/mi11121055.

[20] P. Sikora et al., “Artificial intelligence-based surveillance system for

railway crossing traffic,” IEEE Sens. J., vol. 21, no. 14, pp. 15515–15526,

Jul. 2021, doi: 10.1109/jsen.2020.3031861.

[21] C. Sun et al., “MCA-YOLOV5-light: A faster, stronger and lighter

algorithm for helmet-wearing detection,” Appl. Sci., vol. 12, no. 19, pp.

1-19, Oct. 2022, doi: 10.3390/app12199697.

[22] X. Xu, X. Zhang, and T. Zhang, “Lite-YOLOv5: A lightweight deep

learning detector for on-board ship detection in large-scene Sentinel-1

SAR images,” Remote Sens., vol. 14, no. 4, pp. 1–27, Feb. 2022, doi:

10.3390/rs14041018.

[23] M. Ali et al., “RES: Real-time video stream analytics using edge

enhanced clouds,” IEEE Trans. Cloud Comput., vol. 10, no. 2, pp. 792–

804, Apr.–Jun. 2022, doi: 10.1109/TCC.2020.2991748.

[24] X. Xia et al., “Cost-effective app data distribution in edge computing,”

IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 31–44, Jan. 2021,

doi: 10.1109/TPDS.2020.3010521.

[25] H. Alawad, S. Kaewunruen, and M. An, “Learning from accidents:

Machine learning for safety at railway stations,” IEEE Access, vol. 8, pp.

633–648, Dec. 2020, doi: 10.1109/ACCESS.2019.2962072.

[26] U. Nepal and H. Eslamiat, “Comparing YOLOv3, YOLOv4 and

YOLOv5 for autonomous landing spot detection in faulty UAVs,”

Sensors, vol. 22, no. 2, pp. 1–15, Jan. 2022, doi: 10.3390/s22020464.

[27] P. Sikora, M. Kiac, and M.K. Dutta, “Classification of railway level

crossing barrier and light signalling system using YOLOv3,” 2020 43rd

Int. Conf. Telecommun. Signal Process. (TSP), 2020, pp. 528–532, doi:

10.1109/TSP49548.2020.9163535.

[28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” 2016 IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), 2016, pp. 779–788, doi:

10.1109/CVPR.2016.91.

[29] J. Solawetz (2020) “What is Mean Average Precision (mAP) in Object

Detection?,” [Online], https://blog.roboflow.com/mean-average-

precision/, access date: 15-Jul-2023.

[30] M. Veeramanikandan and S. Sankaranarayanan, “Publish/subscribe

based multi-tier edge computational model in internet of things for

latency reduction,” J. Parallel Distrib. Comput., vol. 127, pp. 18–27, May

2019, doi: 10.1016/j.jpdc.2019.01.004.

[31] D.J. Shin and J.J. Kim, “A deep learning framework performance

evaluation to use YOLO in Nvidia Jetson platform,” Appl. Sci., vol. 12,

no. 8, pp. 1–19, Apr. 2022, doi: 10.3390/app12083734.

[32] I. Resmadi, “Kajian moralitas teknologi pintu perlintasan kereta api

(Studi kasus: Pintu perlintasan kereta api Cikudapateuh Bandung),” J.

Sosioteknol. vol. 13, no. 2, pp. 84–90, Aug. 2014, doi:

10.5614/sostek.itbj.2014.13.2.2.

[33] S. Valladares et al., “Performance evaluation of the Nvidia Jetson Nano

through a real-time machine learning application,” Int. Conf. Intell. Hum.

Syst. Integr., 2021, pp. 343–349, doi: 10.1007/978-3-030-68017-6_51.

[34] A. Al-Qamash, I. Soliman, R. Abulibdeh, and M. Saleh, “Cloud, fog, and

edge computing: A software engineering perspective,” 2018 Int. Conf.

Comput. Appl. (ICCA), 2018, pp. 276–284, doi:

10.1109/COMAPP.2018.8460443.

EN-24

