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ABSTRACT — The maximum power point tracking (MPPT) feature in solar power plants is an essential function in 

increasing the efficiency of electricity production. The incremental conductance (InC) algorithm controls MPPT, aiming to 

maximize the output power of photovoltaic (PV) panels and increase the efficiency of the solar power plant system. Even 

though the InC algorithm is simple and practical, this algorithm tends to lack support in precise switching speeds, is sensitive 

to the measurement precision level, and is inadequate to eliminate power oscillations due to tight switching cycles. The deep 

neural network (DNN) algorithm has the potential to answer the challenges of MPPT dynamics. DNN’s learning capabilities 

enable the controller to better recognize the dynamics of shifts in maximum power values, thereby providing more 

appropriate contact actuation. The input for the DNN is the duty ratio produced by the InC algorithm. The DNN algorithm 

was implemented on three DC-to-DC power converter topologies, namely buck, boost, and buck-boost, to determine MPPT 

performance under standard tests and actual environmental conditions. DNN has demonstrated the ability to reduce 

oscillation effects, speed up steady-state time, and increase efficiency. In actual environmental conditions, the results showed 

that the buck converter consistently produced the highest power, followed by the boost and the buck-boost converters. 

Regarding performance efficiency, the buck converter achieved the highest efficiency at 94.58%, followed by the boost 

converter at 90.79%. Conversely, the buck-boost converter had the lowest performance efficiency, with an efficiency of 

79.34%. 

KEYWORDS — PLTS, MPPT, DC/DC Converter, DNN. 

I. INTRODUCTION 

Clean energy is an urgent need and significantly impacts the 

sustainability of the environment and human life in general. 

The commitment to the 2016 Paris Agreement regarding the 

United Nations (UN) framework agreement on climate change 

is proof of the urgency of every country to reduce CO2 gas 

emissions caused using fossil fuels [1]. Various efforts have 

been made, one of which is by opening access to renewable 

energy, including promoting the provision of photovoltaic 

(PV)-based electrical energy. It is evident that there is an 

increasingly growing support for using solar energy. The costs 

of PV panels, power electronic devices, and batteries have a 

tendency to decrease over time. Nevertheless, efforts to 

increase efficiency remain crucial in minimizing system losses. 

This issue becomes more prevalent when dealing with 

changing energy sources and increasingly complex PV system 

topologies. Based on these conditions, it is clear that the role of 

maximum power point tracking (MPPT) technology is essential 

to increasing PV systems’ efficiency. 

 PV performance is influenced by environmental factors, 

such as solar irradiance and air temperature. Due to their effects 

on the supply of current, voltage, and electrical power in the 

PV system, these two environmental variables will impact the 

performance of PV modules in producing electrical energy. It 

relates to the current and voltage characteristic curves or 

current-voltage (I-V) curves on PV panels, which will produce 

a different maximum power point (MPP) for each solar 

irradiance condition. Therefore, the urgency of the solar power 

plant system requires an MPPT controller device to maximize 

the output value of the PV panel and increase the efficiency of 

the solar power system in every weather condition encountered 

[2].  

The MPPT controller used in PV systems basically consists 

of a particular controller algorithm and a power converter [3]. 

The algorithms commonly used are conventional algorithms, 

such as the perturb-observe (PO) algorithm, fuzzy logic, and 

incremental conductance (InC). These algorithms are 

responsible for controlling the switching mechanism in the 

power converter to form a function called a charge controller 

or regulator of current, voltage, and electrical power. The 

power converter completes the control algorithm in order to 

achieve the target voltage or power by selecting a circuit 

topology with certain features according to needs. However, in 

the context of MPPT controllers, conventional algorithms 

cannot completely resolve nonlinearity and oscillation 

problems caused by rapid changes in environmental conditions, 

such as changes in solar irradiance and air temperature [2]. InC 

tends to be simple and practical to implement, but it is 

important to note that this method does not support precise 

switching speeds [4] and is sensitive to the level of 

measurement precision [5]. Similarly, the efficiency of PO 

tends to decrease, especially in the event of rapid changes in 

irradiance and temperature due to weather changes [6], slow 

tracking speed, and steady-state oscillation problems [7]. The 

issues of oscillation merits consideration as well. A proper 

control strategy should be able to minimize the occurrence of 

power oscillations due to tight switching cycles [8]. 

Machine learning approaches can potentially answer the 

challenges of MPPT dynamics, such as artificial neural 

networks (ANN) or deep neural networks (DNN). These 
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algorithms imitate the working mechanism of the human 

brain’s neural network, which comprises many neurons and 

nodes. The ANN algorithm is robust and efficient. It works at 

an optimal point without causing significant oscillations [9], 

despite its implementation being more complex. DNN offers 

better ways for overcoming accuracy problems due to the 

algorithm’s increased accuracy and computational speed [2]. 

The MPPT algorithm with machine learning will maintain the 

output power at the highest point by combining current and 

voltage measurements with a switching duty ratio feed [10]. In 

2020, a DNN-based MPPT controller algorithm for wind and 

combined PV/wind energy systems was successfully modeled 

and demonstrated [10]. A DNN-based MPPT algorithm using 

MATLAB to improve the quality of output power produced 

using a combined PV and fuel cell system was successfully 

developed [11]. Furthermore, in 2022, a study utilized the DNN 

algorithm in MPPT applications to reduce inappropriate power 

losses so as to obtain effective maximum power points with less 

computational error time [12]. 

This paper focuses on the development of MPPT using the 

DNN method with the aim of contributing to efforts to reducing 

converter oscillations and identifying converters with optimal 

efficiency. Additionally, the DNN structure is expected to be 

able to reduce iteration routines and computational speed. 

Writing systematics consists of four main sections: 

Introduction, Methodology, Testing and Analysis, and 

Conclusion. In the Introduction section, literature reviews on 

MPPT issues in general and the urgency of DNN in MPPT are 

presented. The Methodology section outlines various stages 

involved in data preparation, system modeling, and the 

methods used to assess system performance. The Testing and 

Analysis section explains the results and analysis of MPPT 

simulations in standard test conditions (STC) and actual 

environments, respectively, in buck, boost, and buck-boost 

modes. The Conclusion section explains the efficiency 

achievements of MPPT-DNN in these three modes. 

II. METHODOLOGY

A. DATA UNDERSTANDING AND DATA PREPARATION 

This stage seeks to understand the data configuration used 

and the data preparation process by selecting and processing 

data. Solar power plant modeling consists of a PV array model 

and MPPT system design. The PV array model used Skytech 

Solar SIM 210 PV modules. The PV module was modeled as a 

user-defined array with 2 parallel and 16 series arrays. The 

datasheet components used were adjusted to the parameter 

blocks in MATLAB, namely rated power, open circuit voltage, 

short circuit current, the voltage at MPP, current at MPP, and 

temperature coefficient. 

Meanwhile, the data processed as inputs were collected 

from the results of weather measurements around the 

measurement area, which were stored in the MySQL database 

on the phpMyAdmin page. The data used were air temperature 

and solar irradiance. 

B. MODELING 

The solar power plant system was modelled using the 

MPPT with Simulink in MATLAB. The constructed system 

was composed of a PV array, a DC-to-DC power converter, a 

control algorithm, and a constant-value resistive load, as shown 

in Figure 1. 

The system input was the processed air temperature and 

solar irradiance data. Using the air temperature and solar 

irradiance data, the PV cell temperature value can be 

approximated using (1). 

𝑇𝑐 = 𝑇𝑎 + (𝑇𝑁𝑂𝐶𝑇 − 20) (
𝐺

800
) (1) 

where 𝑇𝑐 is the cell surface temperature to be calculated; 𝑇𝑎 is 

the ambient temperature to be converted; NOCT is the nominal 

operating cell temperature, which is equal to 45 °C; and G is 

the solar irradiance at the ambient temperature to be converted 

[13], [14]. Equation (1) can be represented as a subsystem in 

the form of a function block diagram. The PV array model 

used technical specification data from Skytech Solar SIM-210, 

as shown in Table I. 

Next, the DC-to-DC power converter design was performed 

using three converter topologies: buck, boost, and buck-boost. 

Schottky diodes and MOSFETs were selected as switch 

regulators. The determination of converter inductance and 

capacitance parameter values for each topology is described in 

the following equations [8], [15], [16]. 

buck converter inductance: 

𝐿min_𝑏𝑢𝑐𝑘 =
𝐷𝑚𝑝𝑝(1−𝐷𝑚𝑝𝑝)𝑉𝑚𝑝𝑝

𝑓𝑠𝛥𝐼𝐿
(2) 

boost converter inductance: 

𝐿𝑚𝑖𝑛_𝑏𝑜𝑜𝑠𝑡 =
𝐷𝑚𝑝𝑝𝑉𝑚𝑝𝑝

2𝑓𝑠𝛥𝐼𝐿
(3) 

buck-boost converter inductance: 

𝐿𝑚𝑖𝑛_𝑏𝑢𝑐𝑘−𝑏𝑜𝑜𝑠𝑡 =
𝐷𝑚𝑝𝑝𝑉𝑚𝑝𝑝

𝑓𝑠Δ𝐼𝐿
(4) 

buck converter capacitance: 

𝐶𝑚𝑖𝑛_𝑏𝑢𝑐𝑘 =
𝐷𝑚𝑝𝑝(1−𝐷𝑚𝑝𝑝)𝑉𝑚𝑝𝑝

8𝑓𝑠
2𝐿𝛥𝑉𝑐

(5) 

boost converter capacitance: 

𝐶𝑚𝑖𝑛_𝑏𝑜𝑜𝑠𝑡 =
𝐷𝑚𝑝𝑝𝑉𝑜𝑢𝑡

2𝑓𝑠𝑅𝛥𝑉𝑐
(6) 

buck-boost converter capacitance: 

𝐶𝑚𝑖𝑛_𝑏𝑢𝑐𝑘−𝑏𝑜𝑜𝑠𝑡 =
𝐷𝑚𝑝𝑝𝑉𝑜𝑢𝑡

𝑓𝑠𝑅𝛥𝑉𝑐
(7) 

Figure 1. System configuration. 

TABLE I 

SKYTECH SOLAR SIM-210 SPECIFICATION 

Property Value 

Maximum power 210 W 

Open-circuit voltage (Voc) 30.58 V 

Short circuit current (Isc) 8.8 A 

Voltage at MPP 25.58 V 

Current at MPP 8.26 A 

Temperature coefficient of Voc -0.16%/oC 

Temperature coefficient of Isc 0.065%/oC 
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where 𝐿𝑚𝑖𝑛 is the minimum inductance, 𝐶𝑚𝑖𝑛 is the minimum

capacitance, 𝐷𝑚𝑝𝑝 is the duty ratio value at MPP, 𝑉𝑜𝑢𝑡  is the

converter output voltage, 𝑓𝑠 is the switching frequency, R is the

resistor resistance, 𝛥𝑉𝑐 is the capacitor voltage ripple, and Δ𝐼𝐿

is the inductor current ripple. 

The capacitance and inductance parameters of each 

converter topology were obtained using (2) until (7), as shown 

in Table II. After designing the PV array model and DC-to-DC 

converter, the subsequent step was to build the MPPT control 

algorithm model. Two control algorithms, namely the InC and 

DNN algorithms, were compared. The InC algorithm with the 

hill climbing (HC) method was combined with a simple 

moving average (SMA) filter function block to generate the 

training data matrix used in modeling the machine learning 

algorithm [17]. The training data generated by the InC 

algorithm are depicted in Figure 2 and Figure 3 as data plots. 

These data were solar irradiance (W/m2) and ambient 

temperature (oC) on the PV modules that were connected to the 

InC controller. Next, InC formed the duty ratio and PWM as 

the switching signal required by the converter to reach the 

maximum power point. 

Figure 4 shows the DNN architecture. It is evident that the 

input data served as input for neurons in the first layer, which 

provided output for other neurons in subsequent layers until 

producing a final output. The output was a prediction 

represented by probability (yes or no). Each layer could consist 

of one or more neurons. Each neuron computed a particular 

function, such as an activation function. The activation function 

would imitate the signal to be passed on as input to the neurons 

connected to the next layer. The relationship between neurons 

and successive layers is referred to as weight. This weight 

terminology defines an input’s influence on subsequent 

neurons’ output and, ultimately, on the final output as a whole. 

From the structural arrangement of DNNs, starting from 

neurons, layers, weights, input, and output, as well as activation 

functions, there is also a learning mechanism or optimizer that 

helps the neural network (NN) gradually update the weights so 

that they are suitable for making accurate predictions based on 

the final output produced. 

Following the training data collection, the next stage was to 

design the machine learning algorithm model. The machine 

learning algorithm used was an NN-based algorithm with the 

Levenberg-Marquardt (LM) method [18]. In the algorithm 

training process, the training dataset was divided into three 

categories based on the rule of thumb: 70% for training, 15% 

for validation, and 15% for testing. The sum square error (SSE) 

value was calculated during the training process with the 

following equation. 

𝐸(𝑥, 𝑤) =
1

2
∑ ∑ 𝑒𝑝,𝑚

2𝑀
𝑚=1

𝑃
𝑝=1 (8) 

where x is the input vector; w is the weight vector; p is the 

pattern index, from 1 to P, in which P is the number of patterns; 

TABLE II 

PV ARRAY AND CONVERTER PARAMETERS ON THE SIMULATION 

PV Arrays Buck Converter Boost Converter Buck-Boost Converter 

𝑉𝑚𝑝𝑝

(V) 

𝐼𝑚𝑝𝑝

(A) 

𝑃𝑚𝑝𝑝

(kW) 

𝑅 

() 

𝑓𝑠

(kHz) 

𝐿 

(mH) 

𝐶 

(μF) 

𝐷𝑚𝑝𝑝

(-) 

𝐿 

(mH) 

𝐶 

(μF) 

𝐷𝑚𝑝𝑝

(-) 

𝐿 

(mH) 

𝐶 

(μF) 

𝐷𝑚𝑝𝑝

(-) 

409.3 16.52 6.761 200 30 0.5 20 0.898 2 30 0.648 4 62 0.739 

Figure 2. Input set of solar irradiance training data used for machine learning 
algorithm training data. 

Figure 3. Input set of environmental temperature training data used for machine 
learning algorithm training data. 

Figure 4. DNN architecture. 
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m is the output index, from 1 to M, in which M is the number 

of outputs; and 𝒆𝑝,𝑚 is the training error at output m when using 

pattern p defined by (9). 

 𝑒𝑝,𝑚 = 𝑑𝑝,𝑚 − 𝑜𝑝,𝑚 (9) 

where d is a vector of expected output and o is a vector of actual 

output. 

SSE values were used in the steepest descent algorithm, 

which is a first-order algorithm that functions to find the 

minimum value in the error space. In modeling the NN 

algorithm with the LM method, the update rule in (10) was used. 

 𝑤𝑘+1 =  𝑤𝑘 − (𝐽𝑘
𝑇𝐽𝑘 + 𝜇𝐼)−1𝐽𝑘𝑒𝑘  (10) 

where 𝑤𝑘  is the current weight, 𝑤𝑘+1 is the net weight, 𝑒𝑘  is 

the last overall error, 𝐽𝑘 is the Jacobian matrix, 𝐼 is the identity 

matrix, and 𝜇  is called the combination coefficient which is 

always positive. The updating rule of the LM method used 

Jacobian matrix computation with the training block diagram 

shown in Figure 4. 

Figure 5 depicts the training process utilizing the LM 

algorithm, beginning with providing random weight values and 

then using an update rule to obtain the desired SSE. The LM 

algorithm was combined with a bipolar sigmoid activation 

function (tansig), which accepted a matrix containing an input 

vector and then returned it to a matrix whose inputs had been 

previously suppressed to [-1 1] [19]. 

Mathematically, this function is not much different from the 

tanh transfer function. This tansig function can work faster than 

the tanh function, but the numerical difference between the two 

functions is negligible. This tansig function is best used in the 

case of NN, where computational speed is more important than 

the exact form of the transfer function [20]. 

C. PERFORMANCE TESTING SCENARIO 

In the validation and evaluation stage of the modeling and 

simulation performed, it is essential to observe the proximity 

between the power value generated by the PV array using 

DNN-based MPPT and the power value at MPP. The efficiency 

of an MPPT can be calculated by evaluating the ratio between 

the output power value to the MPP power [21], which can be 

mathematically written as follows. 

 𝜂 =  
𝑃𝑙𝑜𝑎𝑑

𝑉𝑚𝑝𝑝×𝐼𝑚𝑝𝑝
 (11) 

where 𝜂 is the efficiency, 𝑃𝑙𝑜𝑎𝑑  is the load power, 𝑉𝑚𝑝𝑝 is the 

voltage at MPP, and 𝐼𝑚𝑝𝑝 is the current at MPP. The higher the 

efficiency, the better the MPPT that is built. High efficiency 

indicates low loses that occur when the MPPT regulates voltage.  

Other evaluation parameters that need to be considered 

besides efficiency are the accuracy of the algorithm in tracking 

the MPP, the computing speed of the MPPT algorithm, the 

speed at which the converter reaches a steady state, the 

presence or absence of oscillations in a steady-state condition, 

and the amount of undershoot or overshoot that occurs when 

there is a change in input [22]. The algorithm’s accuracy can be 

calculated by comparing the amount of regulated PV voltage to 

the MPP voltage. Hence, the error can be calculated using (12). 

 

Figure 5. Flowchart of the training of NN algorithm with the LM method. 
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 𝑒𝑟𝑟𝑜𝑟 =  
|𝑉𝑝𝑣−𝑉𝑚𝑝𝑝|

𝑉𝑚𝑝𝑝
 (12) 

where 𝑉𝑝𝑣 is the PV voltage. 

The computational speed of the MPPT algorithm can be 

determined by examining the computation time required until 

the MPPT obtains the reference duty ratio so that the voltage 

can be maintained at a particular value. Unlike the 

computational speed, the speed at which the converter reaches 

a steady state is not dependent on the MPPT algorithm but 

rather on the type of topology. 

After constructing the model and determining the 

evaluation parameters, the next step was to test the PV array 

model and MPPT. The test was divided into two cases by 

applying the three built DC-to-DC power converter topologies: 

buck converter, boost converter, and buck-boost converter. The 

two cases are described below. 

• Tests were conducted under standardized testing 

conditions (STC) at a solar irradiance of 1,000 W/m2 

and a cell temperature of 25°C. 

• Testing of solar irradiance and ambient temperature was 

conducted in Bandung on Saturday, 11 June 2022 from 

07:00 to 14:30. 

III. RESULT AND DISCUSSION 

A. DUTY RATIO CALCULATION RESULTS 

Before performing a DNN-based MPPT simulation, it is 

necessary to simulate using the HC method with the InC 

algorithm to acquire the duty ratio value as training data output. 

However, the InC algorithm-based MPPT provides a 

fluctuating duty ratio calculation. A simple filter in the form of 

SMA was utilized to eliminate the fluctuations and obtain a 

single duty ratio value that could be used as output in the 

training data. Figure 4 illustrates the simulation results in the 

form of duty ratio calculation for a PV array with InC 

algorithm-based MPPT and buck power converter under solar 

irradiance of 320 W/m2 and ambient temperature of 28.1 °C 

that was simulated for 1 s. 

Figure 6 demonstrates that the InC algorithm based MPPT 

produced a fluctuating duty ratio calculation with values 

ranging from 0.47 to 0.53. In order to train the DNN-based 

MPPT, one output value in the form of duty ratio was required 

under specific conditions of solar irradiance and cell 

temperature. So long as the duty ratio calculation is performed 

in the simulation, the SMA filter calculates the average duty 

ratio with a window of 12,000 until the filtered duty ratio 

calculation results are obtained, allowing a stable final value to 

be used as the output training data. After the filter process, the 

duty ratio value in the case of solar irradiance of 320 W/m2 and 

cell temperature of 28.1 °C was found to be 0.491. 

The accuracy of the calculated duty ratio value significantly 

affects the accuracy of the constructed DNN model. The greater 

the number and more precise the collected data, the better the 

trained DNN model. The three converter topologies were 

trained to obtain specific DNN models. Using the HC method 

with the InC algorithm, 1,228 training data were collected, and 

DNN-based MPPT was formed based on the training data. The 

training data were 1,228 × 3 matrices containing solar 

irradiance, ambient temperature, and duty ratio values. 

The construction of the DNN’s architecture required the 

inclusion of three layers: the input layer, hidden layer, and 

output layer.   Prior to determining the number of hidden layers, 

the DNN model underwent testing with a range of hidden layer 

spanning from 2 to 12. 

Good training results have the smallest mean square error 

(MSE) value and a regression value close to 1. The smallest 

MSE values for training, validation, and testing were 2.25 × 10-

5, 2.27 × 10-5, and 2,08×10-5, respectively. The three smallest 

MSE values were obtained from the test results of ten hidden 

layers. Meanwhile, the regression results, which is quite near to 

1, for training were 0.9984. For validation, the results were 

0.9885. These results were derived from test results with ten 

hidden layers. However, the best regression value for testing 

was 0.9987, which was acquired by testing three hidden layers. 

Thus, a DNN with ten hidden layers was selected. Each 

converter’s topology was trained in order to get a specific DNN 

model for each of the three converters. 

Table III presents the MSE calculation results, showing the 

validation performance of DNN and overall regression models 

for each converter. Buck converter has the best performance. 

B. SIMULATION ON STC CONDITION 

This simulation was performed by providing the PV array 

model with input values in the form of a constant value of solar 

irradiance of 1,000 W/m2 and a constant cell temperature of 

25 ℃. Figure 7 and Figure 8 display the output power 

measurement results using MPPT with InC and DNN 

algorithms. 

Figure 7 shows considerable oscillation in MPPT with the 

InC algorithm, which can be reduced by changing the algorithm 

to DNN, as depicted in Figure 8. In addition to eliminating 

oscillation, the time required for MPPT to attain a steady state 

can also be reduced. It can be seen that after reaching a steady 

state, the buck converter was able to keep the PV to provide the 

amount of power maintained at MPP, which was approximately 

6,761 W. In the InC algorithm, the converter took longer than 

the DNN algorithm. It is due to the InC algorithm that must first 

evaluate the 
𝑑𝑃

𝑑𝑉
 value to determine the correct duty ratio value. 

 

Figure 6. Comparison of duty ratio calculation before and after the filter process. 

TABLE III 

MSE VALUES AND TRAINING REGRESSION OF EACH CONVERTER TOPOLOGY 

Topology MSE (× 10-5) Regression 

Buck converter 0.22 0.9999 

Boost converter 2.27 0.9985 

Buck-boost converter 0.48 0.9997 
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Since the DNN algorithm only provides one duty ratio value to 

the converter, the occurred oscillations can be significantly loss. 

After attaining a steady state, the boost converter, like the 

buck converter, could maintain the PV so that it always 

supplied a large amount of power to the MPP, which was 

approximately 6,761 W. In quite extreme changes in solar 

irradiance, such as in the case of this STC test, allowing a 

change in solar irradiance from 0 W/m2 to 1,000 W/m2, the 

boost converter provided quite large ripples before reaching a 

steady state until finally the existing ripples were significantly 

reduced. 

More detailed calculation and evaluation results are 

presented in Table IV. This table gives a comparison of 

efficiency, voltage error, occurred oscillations, algorithm 

computation time, and settling time. It can be observed that by 

using the DNN algorithm, the efficiency of the buck converter 

at STC could be increased by 1%, and the time required to reach 

a steady state could be reduced by 88.17%. In addition, 

oscillations caused by the InC algorithm could also be 

eradicated by 1.5%, resulting in a reduction in losses. 

Meanwhile, in the boost converter, the efficiency could be 

increased by 0.2%, and the time required to reach a steady state 

could be reduced by 38.64%. The oscillations that occurred did 

not change significantly, but they were already relatively 

smaller. When compared to the buck converter, the boost 

converter had better accuracy, resulting in a high PV power 

supply and small oscillations. However, the efficiency of this 

topology is not the best, as it only reduced output power by 

8.8%. 

After testing, it is known that the buck-boost converter did 

not operate well enough when MPPT was simulated using the 

InC algorithm. Because the duty ratio range of this topology is 

smaller than the other two topologies, using the InC algorithm 

by taking a low step result in an error in finding the MPP duty 

ratio. Conversely, taking a high step result in irregular voltage 

oscillations, making it difficult to determine the duty ratio. The 

DNN algorithm only provided one duty ratio value upon 

evaluating the environmental conditions. This result can be 

seen from the large ripple during the missing steady state. 

Therefore, the DNN algorithm is better suited for the buck-

boost converter.         

It can be observed that the buck-boost converter provided a 

fairly stable output power, but it was not greater than the other 

two topologies. Due to the incompatibility of the buck-boost 

converter with the InC algorithm, the use of the DNN algorithm 

resulted in a 7.8% increase in high efficiency and a 4.6% 

reduction in the error of the regulated voltage value. The 

oscillations could be reduced by 3%, resulting in more stable 

power output, but the time taken by the buck-boost converter 

required the longest time compared to other topologies.    

It can be concluded that the buck converter is the most 

efficient of the three converters, followed by the boost 

converter and then the buck-boost converter. Not only is the 

buck converter the most efficient, but it also reaches a steady 

state the fastest, whereas the buck-boost converter achieves the 

slowest speed. The accuracy and computational speed of the 

algorithm are not affected by the difference in converter 

topology. The three topologies also make no difference to the 

stability or oscillations present. 

C. SIMULATION IN THE ACTUAL ENVIRONMENT 
CONDITION 

The simulation was performed by inputting two signals, 

namely solar irradiance and ambient temperature, which were 

measured based on weather conditions on Saturday, 11 June 

2022, from 07:00 to 14:30 Indonesia western standard time 

(waktu Indonesia barat, WIB) at Labtek VI, Institut Teknologi 

Bandung. The measured environmental conditions exhibited a 

solar irradiance range of 42 W/m2 to 622 W/m2 and an ambient 

temperature range of 20.4 °C to 29.2 °C. 

 

Figure 7. MPPT output power measurement graph of buck converter with InC 
algorithm. 

 

Figure 8. MPPT output power measurement graph of buck converter with DNN 
algorithm. 

 

TABLE IV 

EVALUATION RESULTS IN STC CONDITIONS 

 Buck Boost Buck-Boost 

 InC DNN InC DNN InC DNN 

Efficiency (%) 98.4 98.5 90.8 91 78.3 86.1 
Voltage error 

(%) 1.6 1.8 1.1 0.8 6.4 1.8 

Oscillation (%) 1.8 0.3 0.4 0.3 3.3 0.3 
Computation 

time (ms) 347 3 269 3 327 3 

Settling time 

(ms) 361 42.7 295 181 384 316 
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Simulation results at 07:00 until 08:30 WIB showed that the 

power generated by the PV array with buck-boost MPPT had 

the lowest efficiency, while the buck MPPT consistently 

generated high efficiency. Unlike the others, the boost-

topology MPPT exhibited both the highest and the lowest 

efficiencies. Under conditions of solar irradiance below 120 

W/m2, the efficiency of the boost topology was observed to be 

at its lowest. This is owing to the limited operating range of the 

boost converter.  The low irradiance prevents the converter 

from increasing the voltage to the maximum power point. On 

the contrary, when the received solar irradiance was greater 

than 120 W/m2, the boost converter could operate according to 

its capabilities and regulate the voltage at the maximum power 

point. 

When measuring power by simulating environmental 

conditions between 8:30 to 10:00 WIB, the same result was 

discovered. Within the solar irradiance range of 100 W/m2 to 

230 W/m2, the buck-boost MPPT exhibited the lowest 

efficiency, whereas the boost and buck MPPT achieved the best 

efficiency. 

Figure 9 depicts the test conducted between 10:00 and 

11:30 WIB with a range of changes in sunlight irradiance 

between 180 W/m2 to 600 W/m2. On the basis of observations 

on the converter output power against the incoming power in 

MPPT active mode, it can be determined that the buck topology 

was able to produce higher efficiency. At times, there was a 

sudden decrease in irradiance, such as at 10:45 WIB, when the 

buck converter briefly experienced a power decrease below that 

of the boost converter, followed by a gradual increase to a 

similar or slightly higher level. This condition stands in stark 

contrast to the buck-boost converter. 

Furthermore, observations were conducted from 11:30 to 

13:00 WIB. This observation range is intriguing, considering 

that the solar irradiance was at its peak during this time interval. 

The highest solar irradiance was reached at approximately 622 

W/m2 at 12:13 WIB, as shown in Figure 10. The output power 

measurement for each converter indicated that the buck 

converter was able to produce power closer to the MPP 

reference. In fact, it can be asserted that the output power in this 

condition is more consistent than the output power in the 

preceding time interval. 

The solar irradiance gradually dropped significantly and did 

not peak again after 13:00 WIB. Figure 11 shows that this low 

solar irradiance impacted the efficiency of the boost-topology 

MPPT, which was unable to operate at low irradiance. 

Based on the descriptions from Figure 9 to Figure 11 

presented above, performance testing of the three converters 

was conducted in the time window of 10:00 to 14:30 WIB, 

under irradiance and temperature conditions. The buck 

converter demonstrated higher performance than the boost and 

buck-boost. The buck converter voltage produced a lower value 

than the input, so intrinsically, the converter operated with 

lower voltage stress and lower switching losses. Boost and 

buck-boot converters tend to require voltage inversion, so the 

transfer of energy from the input to the larger output voltage 

results in increased losses and decreased efficiency. 

D. MPPT EFFICIENCY 

The efficiency value of the MPPT was quantitatively 

calculated for each topology operating under actual 

environmental conditions. The efficiency value was 

determined using (12), which was the comparison of the load 

power to the power attained at the maximum point or the 

amount of converter output power to its input power that should 

be achieved when activating the MPPT feature. The three 

converter topologies tested managed to reach the highest value 

in the time interval of 11:30 WIB to 13:00 WIB, which was 

94.58% for the buck converter. On the other hand, the boost 

converter had a lesser efficiency of 90.79%. At the same time, 

 

Figure 10. Power measurement from 11:30 to 13:00 WIB. 

 

Figure 11. Power measurement from 13:00 to 14:30 WIB. 

 

 

Figure 9. Measurement of power at 10:00–11:30 WIB. 
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the buck-boost converter could only reach an efficiency of 

79.34%. 

It is worth noting that the difference in converter efficiency 

values is purely based on the performance alone. From a 

function standpoint, each converter possesses its own benefits. 

For instance, raising the voltage in the boost converter is a 

function the buck converter does not have. On the other hand, 

buck-boost converters exhibit lower efficiency. However, they 

functionally may be considered more favorable when dealing 

with cases necessitating voltage step-up and step-down tasks in 

a single converter. 

IV. CONCLUSION 

MPPT is a system that aids PV in tracking the maximum 

power point. The purpose of MPPT is realized through DC-to-

DC power converters by applying the DNN algorithm. DC-to-

DC power converter devices include buck, boost, and buck-

boost converters. InC conventional algorithm was used to 

obtain 1,228 training data in the form of duty ratio, which was 

obtained by providing input signals in the form of solar 

irradiance and ambient temperature. The training data were 

utilized to build DNN machine learning models for each 

modeled converter topology. The performance of the DNN 

model was validated using the MSE value criterion in buck, 

boost, and buck-boost converters, achieving values of 2.20 × 

10-6, 2.27 × 10-5, and 4.80 × 10-6, respectively. The DNN 

algorithm could reduce oscillation effects, accelerate steady 

state time, and increase efficiency. The PV array using DNN-

based MPPT was simulated under standard test conditions and 

actual conditions. The buck converter with the DNN algorithm 

achieved the best MPPT efficiency, amounting to 95.47%. The 

MPPT can consistently provide high efficiency under low and 

high solar irradiance. Meanwhile, MPPT with the boost 

converter and buck-boost converter yielded efficiencies of 

90.97% and 79.34%. 
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