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ABSTRACT — The rise of deep reinforcement learning in recent years has led to its usage in solving various challenging 

problems, such as chess and Go games. However, despite its recent success in solving highly complex problems, a question 

arises on whether this class of method is best employed to solve control problems in general, such as driverless cars, mobile 

robot control, or industrial manipulator control. This paper presents a comparative study between various classes of control 

algorithms and reinforcement learning in controlling an inverted pendulum system to evaluate the performance of 

reinforcement learning in a control problem. A test was performed to test the performance of root locus-based control, state 

compensator control, proportional-derivative (PD) control, and a reinforcement learning method, namely the proximal policy 

optimization (PPO), to control an inverted pendulum on a cart. The performances of the transient responses (such as 

overshoot, peak time, and settling time) and the steady-state responses (namely steady-state error and the total energy) were 

compared. It is found that when given a sufficient amount of training, the reinforcement learning algorithm was able to 

produce a comparable solution to its control algorithm counterparts despite not knowing anything about the system’s 

properties. Therefore, it is best used to control plants with little to no information regarding the model where testing a 

particular policy is easy and safe. It is also recommended for a system with a clear objective function.  

KEYWORDS — Reinforcement Learning, Inverted Pendulum, Root Locus, State Feedback, PD Control.

I. INTRODUCTION 
The field of reinforcement learning has gained interest in 

recent years. Although its first development started in the 1990s 

[1], it has only recently come to prominence with the growth of 

deep learning in 2012 [2]. This merger brings forth deep 

reinforcement learning, combining the deep neural network 

capable of approximating complex functions with a 

reinforcement learning framework capable of solving a specific 

type of problem known as a control problem. This kind of 

problem is where a decision or action must be made for a 

particular system (also known as the environment). Since its 

huge success in solving games called Atari [3], [4], deep 

reinforcement learning has been applied successfully to solving 

various games such as chess, Go, and Dota2 [5]–[7]. 

Among the problems that deep reinforcement learning tried 

to solve are traditional control and robotics problems such as 

driverless car control [8], mobile robot navigation [9], legged 

robot control [10], and industrial manipulator control [11]. 

Despite its success, there are still challenges in applying deep 

reinforcement learning to general control problems in 

comparison to the game problem. 

One of the main challenges is the lack of a clear reward 

function [12]. While a game environment normally provides a 

clear success criterion (such as a scoring system or a win 

condition), it is not generally the case in control problems. As 

has been extensively studied, the choice of reward is critical to 

the performance of deep reinforcement learning [12]. 

Therefore, solving a general control problem using 

reinforcement learning creates a new problem of designing a 

reward function that reflects the success criteria of the control 

problem. Another challenge in applying reinforcement learning 

to control problems is the non-episodic nature of the problem 

[13].  

Apart from the aforementioned problems, there is also a 

challenge in performing training in control problems, as has 

been reported in [12]. While it is straightforward to perform 

training for the game problem, training a real control system 

proves to be complicated. Since reinforcement learning 

requires a considerable amount of training data to find the 

desirable policy, there is no guarantee that the policy being 

applied at one particular moment does not lead to catastrophic 

performance. Many researchers tried to overcome this problem 

by training the policy in the simulation prior to implementing 

the policy in a real system, a technique called sim-to-real [12]. 

It has been particularly successful in complex cases, such as 

training a quadruped robot to perform running tasks. However, 

this method depends on the availability of a physics-based 

simulator which needs to be sophisticated enough to mimic the 

performance of the real system.  

Finally, some works reported the phenomena of unstable 

performance of deep reinforcement learning when applied to 

some control problems [12]. It is in contrast to conventional 

control methods in which stability can usually be analyzed and 

guaranteed if possible. Moreover, in most control problems, the 

goal is not only simply “solving the problem” but also 

producing a performance with a certain specification.   

A comparative study between the reinforcement learning 

algorithm (namely the proximal policy optimization (PPO)) 

and several conventional control algorithms (namely the root 

locus-based compensator, the state compensator, and the 

proportional-derivative (PD) control for inverted pendulum 

control) is performed in this paper to evaluate the performance 

of reinforcement learning in control problems. The problem of 

controlling the inverted pendulum was chosen since it is one of 

the standard problems used to test various control algorithms 

[14]. It is due to the fact that an inverted pendulum is a 

nonlinear system with unstable equilibrium; however, at the 

same time, it can be easily linearized in the locality of the 

equilibrium. It is found that by providing sufficient training, the 

PPO algorithm can achieve a comparable transient and steady-
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state performance compared to conventional control methods 

despite not knowing anything about the pendulum model. The 

result confirms that reinforcement learning has a huge potential 

to produce a performance that satisfies a certain specification 

similar to conventional control algorithms. 

This paper comprises several sections. Section II presents 

the mathematical model of the inverted pendulum, including 

the strategy to modify the control problem into the 

reinforcement learning formulation. Subsequently, the 

description of control algorithms is presented in Section III, 

followed by a description of the testing scenario in Section IV. 

Results and discussion are presented in Section V, and finally 

the conclusion and future works are presented in Section VI. 

II. INVERTED PENDULUM MODEL 

A. MODEL DERIVATION 

The inverted pendulum on a cart system is shown in Figure 

1. The input given to the system is the horizontal force 𝑢 = 𝐹. 

The state of the system is written as following. 

 𝑥𝑠 = [𝑥𝑐 �̇�𝑐 𝜃 �̇�]𝑇. (1) 

Here, 𝑥𝑐 refers to the cart’s displacement, while 𝜃 refers to the 

pendulum’s angle with respect to the vertical axis. 

The output of the system depends on the available sensor. 

For some of the controllers analyzed in this paper, it is assumed 

that all the state information is known, in that case: 

 𝑦 = 𝑥𝑠. (2) 

Others only require the main parameter to be controlled, which, 

in this case, is the inverted pendulum angle 𝜃. 

 𝑦 = 𝜃. (3) 

To model the inverted pendulum, its dynamics are analyzed 

using the Newton’s 2nd law of motion. The system is divided 

into two components to simplify the analysis: the pendulum 

and the cart. Assuming an environment without friction, the 

cart’s dynamics in the horizontal direction can be written as 

follows: 

 𝐹 − 𝑁 = 𝑚𝑐𝑥�̈� (4) 

where 𝑁 refers to the horizontal contact force between the 

pendulum and the cart and 𝑚𝑐 refers to the cart’s mass. 

The pendulum’s dynamics in the horizontal direction can be 

written as follows: 

 𝑁 = 𝑚𝑝�̈�𝑝. (5) 

The pendulum’s acceleration, in this case, is a combination of 

the cart acceleration �̈�𝑐 and the rotation of the pole. Suppose 

the pole has an angular velocity �̇� and an angular acceleration 

�̈�. The combined cart acceleration and rotating pendulum 

movement cause the following acceleration in the horizontal 

direction: 

 �̈�𝑝 = �̈�𝑐 + �̈�𝑙 cos 𝜃 − �̇�2𝑙 sin 𝜃. (6) 

Next, the following equation is obtained by analyzing the 

rotational dynamics of the pendulum: 

 𝜏 = 𝐼�̈� + 𝜏𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 . (7) 

Here, 𝜏𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 refers to the torque produced by the inertial force 

due to the cart’s acceleration. Slotting in the pendulum’s 

moment of inertia 𝐼 =
4

3
𝑚𝑝𝑙2 and the torque due to the 

pendulum’s weight 𝜏 = 𝑚𝑝𝑔𝑙 sin 𝜃, the equation can be 

rewritten as 

 𝑚𝑝𝑔𝑙 sin 𝜃 =
4

3
𝑚𝑝𝑙2�̈� + 𝑚𝑝�̈�𝑐𝑙 cos 𝜃. (8) 

Finally, combining three dynamics equations, the nonlinear 

model of the inverted pendulum is obtained as follows: 

 𝐹 = (𝑚𝑐 + 𝑚𝑝)𝑥�̈� + 𝑚𝑝(�̈�𝑙 cos 𝜃 − �̇�2𝑙 sin 𝜃 (9) 

 𝑚𝑝𝑔𝑙 sin 𝜃 =
4

3
𝑚𝑝𝑙2�̈� + 𝑚𝑝�̈�𝑐𝑙 cos 𝜃 . (10) 

B. LINEARIZATION 

To implement linear control, the model of the inverted 

pendulum needs to be linearized near its equilibrium point (𝜃 =
0). A simple linearization can be performed simply by the 

following modification: 

 sin 𝜃 ≈ 𝜃, (11) 

 cos 𝜃 ≈ 1, (12) 

 �̇�2 ≈ 0. (13) 

Therefore, the model can be written in the following form: 

 𝐹 = (𝑚𝑐 + 𝑚𝑝)𝑥�̈� + 𝑚𝑝𝑙�̈�, (14) 

 𝑚𝑝𝑔𝑙𝜃 =
4

3
𝑚𝑝𝑙2�̈� + 𝑚𝑝𝑙�̈�𝑐 , (15) 

which can be written as: 

 𝐹 = (𝑚𝑐 + 𝑚𝑝)𝑥�̈� + 𝑚𝑝𝑙
(𝑚𝑝𝑔𝑙𝜃−𝑚𝑝𝑙�̈�𝑐)

4

3
𝑚𝑝𝑙2

 (16) 

 𝐹 = (𝑚𝑐 +
𝑚𝑝

4
) 𝑥�̈� +

3

4
𝑚𝑝𝑔𝜃 (17) 

and 

 𝑚𝑝𝑔𝑙𝜃 =
4

3
𝑚𝑝𝑙2�̈� +

𝑚𝑝𝑙(𝐹−𝑚𝑝𝑙�̈�)

(𝑚𝑐+𝑚𝑝)
 (18) 

 𝑔𝜃 = (
4

3
−

𝑚𝑝

𝑚𝑐+𝑚𝑝
) 𝑙�̈� +

1

(𝑚𝑐+𝑚𝑝)
𝐹 (19) 

 𝑔𝜃 = (
4𝑚𝑐+3𝑚𝑝

3(𝑚𝑐+𝑚𝑝)
) 𝑙�̈� +

1

(𝑚𝑐+𝑚𝑝)
𝐹. (20) 

Then, the equation can be modified into a state equation as 

follows: 

 
Figure 1. Free-body diagram of inverted pendulum on a cart, also known as 
cartpole. 
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 �̇�𝑠 = 𝐴𝑥𝑠 + 𝐵𝑢, (21) 

where, 

 𝐴 = [

0 1
0 0

0 0
𝑎 0

0 0
0 0

0 1
𝑏 0

] (22) 

 𝑎 = −
3𝑚𝑝𝑔

4𝑚𝑐+𝑚𝑝
 (23) 

 𝑏 =
3(𝑚𝑐+𝑚𝑝)

4𝑚𝑐+3𝑚𝑝

𝑔

𝑙
 (24) 

 𝐵 = [0
1

𝑚𝑐+
𝑚𝑝

4

0 −
3

𝑙(4𝑚𝑐+3𝑚𝑝)]
𝑇

. (25) 

The linearized system can also be transformed into a 

complex-frequency domain: 

 𝐹(𝑠) = (𝑚𝑐 + 𝑚𝑝)𝑠2𝑋𝑐(𝑠) + 𝑚𝑝𝑙𝑠2𝜃(𝑠), (26) 

 𝑚𝑝𝑔𝑙𝜃(𝑠) =
4

3
𝑚𝑝𝑙2𝑠2𝜃(𝑠) + 𝑚𝑝𝑙𝑠2𝑋𝑐(𝑠). (27) 

So, the transfer function can be written as follows: 

 𝐺(𝑠) =
𝜃(𝑠)

𝐹(𝑠)
=

𝑐

𝑠2−𝑑
, (28) 

where 𝑐 =
𝑑

(𝑚𝑝+𝑚𝑐)𝑔
, 𝑑 =

𝑔

𝑙(
4

3
−

𝑚𝑝
𝑚𝑝+𝑚𝑐

)
. 

From the transfer function, it can be seen that the pole of 

the linearized system is located at: 

 𝑠1 = √𝑑, 𝑠2 = −√𝑑. (29) 

The first pole is what makes the system unstable. 

C. INVERTED PENDULUM AS A REINFORCEMENT 
LEARNING PROBLEM 

The reinforcement learning problem deals with a system 

with unknown state update dynamics 𝑠𝑘+1 = 𝐹(𝑠𝑘, 𝑎𝑘). Here, 

𝑠𝑘 and 𝑎𝑘 refers to the state of the system and the action at 

iteration-k. Apart from that, the system also returns a reward 

value 𝑟𝑘. The reinforcement learning problem aims to find the 

set of actions 𝑎𝑘 that maximize the expected return over M 

steps defined as: 

 𝑅 = ∑ 𝑟𝑘
𝑀
𝑘=0 . (30) 

The inverted pendulum control can be seen as a 

reinforcement learning problem as shown in Figure 2. Here, the 

state of the system 𝑠𝑘 from the perspective of the reinforcement 

learning problem is equal to the state 𝑥𝑠 from the perspective 

of modern control, albeit in the discrete form. Similarly, the 

action 𝑎𝑘 is the control signal 𝑢. The only parameter left is the 

reward function which should be designed in such a way that it 

represents the performance of the inverted pendulum system in 

trying to stay in a vertical position. A reward function used by 

OpenAI in their CartPole Gym environment is employed here. 

The reward 𝑟𝑘 = 1 if the cartpole’s position satisfies −𝑥𝑡ℎ <
𝑥𝑐 < 𝑥𝑡ℎ and the cartpole’s angle satisfies −𝜃𝑡ℎ < 𝜃 < 𝜃𝑡ℎ, 

where 𝑥𝑡ℎ and 𝜃𝑡ℎ represent the position and angle threshold. 

Then, the maximum number of steps 𝑀 is chosen. In other 

words, a good reinforcement learning algorithm will produce 

action 𝑎𝑘 over 𝑀 steps which leads to a maximum return of 

𝑀 𝑟𝑘. 

III.  CONTROL ALGORITHMS  

There are four control algorithms considered in this paper. 

The first three methods are chosen because they are widely 

used in the control literature especially for linear or linearized 

systems. A method based on the classical control approach (i.e., 

employing a transfer function) is chosen, namely the root locus 

method, and another method based on modern control approach 

(i.e., employing a state equation), namely the state 

compensator. The third control method is the PD control 

because of its popular usage in industry. Finally, the PPO 

algorithm is selected as one of the state-of-the-art 

reinforcement learning algorithms for systems with continuous 

action. 

A. ROOT LOCUS-BASED COMPENSATOR 

In this method, a compensator is added to modify the 

system’s root locus so that the new root locus passes through 

the desired poles based on the requirement specifications. The 

compensator 𝐺𝑐(𝑠) is fed the error between the target output 

and the real output 𝑒 = 𝜃𝑡 − 𝜃 and produce control signal 𝑢 to 

the system. The block diagram of the proposed controller can 

be seen in Figure 3. 

Before designing the compensator, a root locus analysis of 

the pendulum’s transfer function is required. The root locus of 

the linearized inverted pendulum system can be observed in 

Figure 4(a). From the root locus, it can be seen that a simple 

gain controller does not make the inverted pendulum stable 

because there is always at least one pole of the system which is 

located in the right half of the complex-frequency plane or 

exactly on the imaginary axis. 

To stabilize the system, a zero of the compensators can be 

added into the place of pole 𝑠2, i.e., 𝑧𝑐𝑜𝑚𝑝 = 𝑠2. Then, to attract 

the root locus towards the left-half plane, a pole of the 

compensator can be added into a location 𝑠𝑐𝑜𝑚𝑝 = 10𝑠2. This 

method is more effective than trying to cancel the positive pole 

𝑠1 directly because in reality the positive pole is not exactly 

canceled, causing the system to stay unstable. The new root 

locus is shown in Figure 4(b). 

Finally, a 𝐾𝑐𝑜𝑚𝑝 = 300 compensator gain is chosen to 

ensure that the new closed-loop poles of the system are both 

located in the left-half plane as shown in Figure 5. The final 

transfer function of the compensator is written as: 

 

Figure 2. Inverted pendulum control as a reinforcement learning problem. 

 

 

Figure 3. Block diagram of root locus-based compensator. 
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 𝐺𝑐(𝑠) = 300
𝑠+√𝑑

𝑠+10√𝑑
. (31) 

B. STATE COMPENSATOR 

In this method, a state feedback controller and state 

estimator based on a linearized model of an inverted pendulum 

is developed. The state feedback control signal is given by: 

 𝑢 = −𝐾 �̂�𝑠 (32) 

where 𝐾 stands for the state feedback constant and  �̂� stands 

for the estimate of state 𝑥. The feedback gain is chosen in 

such a way that the following equation holds: 

 det(𝑠𝐼 − (𝐴 − 𝐵𝐾)) = 𝑓(𝑠) = 0. (33) 

Here, 𝑓(𝑠) stands for the 4th order polynomial which 

represents the target characteristic equation of the closed-loop 

systems from which the poles 𝑠𝑐1, 𝑠𝑐2, 𝑠𝑐3, 𝑠𝑐4 can be found as 

follows: 

𝑓(𝑠) = (𝑠 − 𝑠𝑐1)(𝑠 − 𝑠𝑐2)(𝑠 − 𝑠𝑐3)(𝑠 − 𝑠𝑐4) = 0. 

Here, the following values as the target poles are chosen: 

𝑠𝑐1 = −1, 𝑠𝑐2 = −2, 𝑠𝑐3 = −3, 𝑠𝑐4 = −4. 

The value of the state estimate can be updated using the 

following estimator equation:  

 �̇̂�𝑠 = 𝐴�̂�𝑠 + 𝐵𝑢 + 𝐿(𝑦 − 𝐶�̂�𝑠). (34) 

𝐿 stands for the estimator gain which is chosen in such a way 

that the following equation holds:  

 det(𝑠𝐼 − (𝐴 − 𝐿𝐶)) = 𝑔(𝑠) = 0. (35) 

Here, 𝑔(𝑠) stands for the 4th order polynomial which 

represents the target characteristic equation of the error 

estimator dynamics from which the poles 𝑠𝑒1, 𝑠𝑒2, 𝑠𝑒3, 𝑠𝑒4 can 

be found as follows: 

 𝑔(𝑠) = (𝑠 − 𝑠𝑒1)(𝑠 − 𝑠𝑒2)(𝑠 − 𝑠𝑒3)(𝑠 − 𝑠𝑒4) = 0. (36) 

Here, the following values as the target poles are chosen, which 

are ten times greater than the poles of the controller to ensure 

that the state estimation error dynamics converge faster: 

𝑠𝑒1 = −10, 𝑠𝑒2 = −20, 𝑠𝑒3 = −30, 𝑠𝑒4 = −40. 

The block diagram of the state compensator is provided in 

Figure 6. 

C. PD CONTROL 

In this method, the following PD controller is used to 

produce the control signal: 

 𝑢 = 𝐾𝑝 (𝑒 + 𝑇𝑑
𝑑𝑒

𝑑𝑡
). (37) 

 

(a) 

 

(b) 

Figure 4. Root locus of (a) the inverted pendulum and (b) the modified system. 

 

 

Figure 5. The pole-zero maps of the closed-loop system using root locus-based 
controller. 

 

Figure 6. Block diagram of the state compensator. 
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The following equation is obtained when transforming the 

control signal to the complex-frequency space: 

 𝑈(𝑠) = 𝐾𝑝(1 + 𝑇𝑑𝑠)𝐸(𝑠). (38) 

So, the zero of the PD control is located at: 𝑠𝑃𝐷 = −
1

𝑇𝑑
. 

The zero of the PD control is chosen to be located at the 

negative pole of the inverted pendulum: 𝑠𝑃𝐷 = 𝑠2 = −√𝑑. 

Therefore, the new root locus of the system moves toward the 

left-half plane of the complex-frequency space instead of 

moving toward the imaginary axis, as illustrated in Figure 7. 

Finally, the gain of the controller can be chosen to ensure that 

the pole of the closed-loop system is located in the left-half 

plane. To this end, the gain of 𝐾𝑝 = 30 is employed.  

D. REINFORCEMENT LEARNING 

The reinforcement learning algorithm employed here is the 

PPO [15]. This algorithm falls under the category of policy-

based reinforcement learning focusing on finding the best 

policy 𝜋(𝑎|𝑠), which represents the likelihood of a particular 

action 𝑎 for a particular state 𝑠. It employs an actor-critic 

approach, where the actor estimates the policy while the critic 

measures how well the action is being performed.  

The algorithm starts with two networks: one is for the 

policy with parameter 𝜃 and the second one is for the value 

function 𝑉 with parameter 𝜙. The algorithm starts from 

iteration 𝑘 = 0 by collecting a set of trajectories 𝐷𝑘 = {𝜏} from 

𝑡 = 0 to 𝑡 = 𝑇, where each trajectory consists of 𝜏 =
(𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑇). The algorithm runs using the current 

policy 𝜋𝑘 = 𝜋(𝜃𝑘). From the trajectory, the reward-to-go is 

calculated:  �̂�𝑡 = ∑ 𝑟𝑡′ 
𝑇
𝑡′=𝑡 . The next step is to calculate the 

advantage estimate  �̂�𝑡 defined as how much better it is to 

choose an action based on current policy 𝜋𝑘 compared to 

randomly sampling an action. The advantage function is 

estimated based on the current value function 𝑉𝑘 = 𝑉(𝜙𝑘). 

Then, the policy network parameter is updated using 

stochastic gradient ascent by maximizing a PPO objective 

function as follows: 

𝜃𝑘+1 =

arg max
𝜃

1

|𝐷𝑘|𝑇
∑ ∑ min (

𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑘
(𝑎𝑡|𝑠𝑡)

�̂�𝑡 , 𝑔(𝜖, �̂�𝑡))𝑇
𝑡=0𝜏∈𝐷𝑘

. (39) 

Here, the function 𝑔(𝜖, 𝐴) is defined as:  

 𝑔(𝜖, 𝐴) = {
(1 + 𝜖)𝐴;    𝐴 ≥ 0
(1 − 𝜖)𝐴;    𝐴 < 0

 (40) 

𝜖 stands for a hyperparameter. 

The next step is to update the value function network 

parameter by minimizing the mean squared error objective 

function using gradient descent. The mean squared error is 

given by 

 𝜙𝑘+1 = arg min
𝜙

1

|𝐷𝑘|𝑇
∑ ∑ (𝑉𝑘(𝑠𝑡) − �̂�𝑡)2𝑇

𝑡=0𝜏∈𝐷𝑘
. (41) 

IV. TESTING SCENARIOS 

 As shown in Figure 8, a modified Gym Environment 

simulation, called CartPole, developed by OpenAI was 

employed to test the performance of the control algorithms in a 

 

Figure 7. Root locus of the modified system after adding a PD control.  

 

Figure 8. CartPole screenshot. 

TABLE I 

PARAMETERS’ VALUES  

Parameter Value Parameter Value 

𝑚𝑐 1 kg 𝑥𝑡ℎ 2.4 m 

𝑚𝑝 0.1 kg 𝜃𝑡ℎ 3𝜋/45 rad 

𝑙 0.5 m 𝑀 200 steps 

 

 

Figure 9. Plot of angle versus time produced by four algorithms.  

 

Figure 10. Plot of force versus time produced by four algorithms.  
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model of an inverted pendulum on a cart [16]. This Python-

based environment is widely used in the reinforcement learning 

community because of its simplicity and the fact that it directly 

provides a reward function for training. The simulation used 

the nonlinear model of an inverted pendulum as described in 

Section IIA with the parameters shown in Table I. The original 

Python library was modified to support continuous control or 

action. The original state of the pendulum was randomly 

chosen to be 𝑥𝑐0 = 0.025, �̇�𝑐0 = 0.009, 𝜃0 = 0.043, �̇�0 =
0.009. Among the four algorithms, the PPO algorithm was the 

only one which relied on training. It was trained for 250,000 

epochs in this experiment because at this number, the average 

reward seems to converge to a specific high value. Therefore, 

it can be assumed that the reinforcement learning algorithm has 

sufficient epochs to learn the most optimal policy.  
The performance of the control algorithms in terms of the 

transient responses and the steady-state responses were 

compared. The transient responses under consideration include 

[17]. 

• Overshoot, which is defined as: 

%𝑂𝑉 =
𝜃𝑚𝑎𝑥 − 𝜃𝑠𝑠

𝜃𝑠𝑠
× 100%.   

Here, 𝜃𝑚𝑎𝑥 and 𝜃𝑠𝑠 specify the peak value of the output 

and the steady-state value of the output. 

• Peak time is defined as the amount of time required to 

reach the first peak of the overshoot. 

• Settling time is defined as the amount of time required 

to reach and stay within a range of 2% about the steady-

state value. 

The steady-state responses, on the other hand, include the 

followings. 

• Steady-state error, which is defined as: 

𝑒𝑠𝑠 = 𝜃𝑡 − 𝜃𝑠𝑠. 

• Total energy over a particular time step M, defined as: 

𝑊 = ∑ 𝑢𝑘
2

𝑀

𝑘=0

. 

V. RESULT AND DISCUSSION 

A. CONTROL PERFORMANCE 

The plot of angle and force as a function of time can be 

observed in Figure 9 and Figure 10. The blue, red, green, and 

black lines represent the performance of the state compensator, 

PD controller, root-locus-based compensator, and 

reinforcement learning based on the PPO algorithm. The values 

of the transient response parameters (overshoot, peak time, and 

settling time) as well as the steady-state response parameters 

(steady-state error and total energy) are all summarized in 

Table II. 

Figure 9 shows that the state compensator, root locus-based 

compensator, and PPO could control the inverted pendulum 

towards a vertical position (i.e., 𝜃𝑡 = 0) in a stable manner. The 

PD control, however, seems to produce an oscillation that fails 

to converge to zero. It can be observed in Table II that all the 

algorithms except the root locus-based compensator failed to 

settle the output value within a range of 2% about the steady-

state value before 𝑀 = 200 steps (which is equal to 𝑇 = 4 s). 

It is indicated by a dash mark on the settling time part for the 

three algorithms except for the root locus-based compensator. 

From Figure 9 and Table II, among the three successful 

methods, the root locus-based compensator was able to quickly 

guide the pendulum’s angle towards zero without considerable 

overshoot and it performed with quick settling time. Despite 

having a quick peak time, the state compensator performed 

worse in terms of overshoot and settling time compared to the 

root locus-based compensator. The PPO performed better than 

the state compensator in terms of overshoot, but they performed 

worse in terms of settling time and peak time compared to the 

two other methods. The reason for this performance is the fact 

that the reward function being used to guide the learning 

process focuses only on the aspect of the pendulum not falling. 

Recall that the reward of +1 is provided every time the 

pendulum’s angle falls within a certain range. It means that the 

performance being reinforced does not cover the aspect of peak 

time (how quickly the angle moves towards the target setpoint), 

settling time (how quickly it converges), or overshoot.  

From the perspective of steady-state response, especially in 

terms of the steady-state error, the root locus-based 

compensator once again performed better than two other 

successful methods. It is indicated by a very small value of 

error, as shown in Table II. PPO once again comes second 

followed by the state compensator. However, a different 

performance was observed in terms of total energy. Figure 10 

demonstrates that the force produced by the PPO quickly 

settled down without much overshoot as compared to the force 

produced by the state compensator and the root locus-based 

compensator. This advantage of PPO is caused by the fact that 

it focuses only on not falling. It more relaxed target enables the 

algorithm to produce less energy, as shown in Table II, 

compared to the other methods. 

B. DISCUSSION 

From the previous results, it is now possible to compare 

how the reinforcement learning method, in this case the PPO 

algorithm, performs in comparison to the conventional control 

methods such as state compensator, PD, and root locus-based 

compensator in a broader sense. In terms of the background 

knowledge required to produce a control policy, it is clear that 

the reinforcement learning method does not require any 

knowledge regarding the pendulum’s model. It is not the case 

for the other methods, especially the state compensator and the 

root locus-based compensator. Both rely heavily on the 

TABLE II 

PERFORMANCE COMPARISON 

Parameter State Compensator PD Root Locus Compensator PPO 

Overshoot (%) 70.74 122.15 6.11 61.17 

Peak time (s) 3.20×10-1 2.98 3.40×10-1 8.00×10-1 

Settling time (s) - - 7.00×10-1 - 

Steady-state error (rad) 8.21×10-4 1.14×10-2 -5.48×10-7 5.60×10-3 

Total energy (N2) 1.53×102 3.49×102 1.27×102 5.24×101 
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mechanical property and the dynamics model of the inverted 

pendulum. The PD control, in some respect, is theoretically 

able to perform well despite not knowing the model of the 

system. As has been extensively covered in literature [18], it is 

possible via the process of parameter tuning, such as the well-

known Ziegler-Nichols method. However, there is no 

guarantee that optimal (or even reasonable) performance can be 

achieved by this kind of approach. The fact that it always relies 

on three parameters, for the case of proportional–integral–

derivative (PID), also limits the possibility of the control 

policy. The reinforcement learning method, on the other hand, 

relies on a policy function represented by a neural network in 

this case. As has been covered in the literature, the neural 

network is a reliable function approximation that works for a 

wide range of functions [19].  

However, despite not requiring any prior model, 

reinforcement learning relies on trial and error, i.e., it requires 

applying the current policy 𝜋(𝑠) to the pendulum and learn 

from the reward function. First of all, it can be a cumbersome 

process, requiring a lot of time and computation before the 

algorithm is able to produce the best policy  𝜋∗(𝑠) to produce 

a reasonable performance. Secondly, performing a trial and 

error on a plant might not be practical in some cases. Because 

the policy in action tends to be nonoptimal at first, the policy 

can produce an unpredictable or even dangerous movement. 

To avoid this problem, a line of research has focused on 

performing the training in a simulation scenario prior to 

implementation [20]. It can be possible in some cases, 

including the inverted pendulum in this study’s case. However, 

a good simulator in general, relies on a physics-based model 

which also requires a lot of computation. 

Despite this challenge, one could also argue that the 

conventional control methods similarly have the same problem. 

It is due to the fact that methods such as a state compensator or 

a root locus-based compensator require a model of the system 

which needs to be retrieved from some sorts of system 

identification experiments. This type of experiment similarly 

requires some sort of “trial and error”. 

Another important point is the fact that the performance of 

the reinforcement learning algorithm depends on the reward 

function. The challenge in robotics, where the reward function 

is not readily available in general, is to define the reward 

function which best reflects the desired performance. In theory, 

there are infinite possibilities here. For our inverted pendulum 

case, the target of making the pendulum stays in the vertical 

position can be achieved by a variety of reward function. This 

can be a simple reward employed here, providing a flat positive 

reward every time the angle falls under some values. However, 

this reward type does not really care about transient 

performance or steady-state performance like other 

conventional control methods. To truly achieve performance 

based on specific considerations, it is necessary to employ a 

more complex reward function using a process known as 

reward shaping [12], [21].  

Therefore, from the previous important points, several 

important considerations that can be drawn on when to employ 

reinforcement learning in general control applications. When 

the plant that is being controlled only provides little to no 

information regarding its model but testing a control policy is 

quite easy, reinforcement learning can be a good candidate to 

work on. The fact that it does not rely on any prior model and 

its use of a neural network as a control policy approximation is 

powerful compared to conventional control methods, even the 

PID control which has been popular in the industry, due to its 

capability to perform without an explicit model of the plant. If 

testing a control policy is easy and safe, it is also favorable to 

employ reinforcement learning because it requires extensive 

trial and error on the controlled plant. It is even more favorable 

to use reinforcement learning if some sorts of objective 

functions are available so that they can be modified into a 

reward function to guide the learning process. 

VI. CONCLUSION 

In this paper, a comparative study is performed between a 

reinforcement learning algorithm (namely the PPO) and several 

conventional control algorithms (namely the root-locus-based 

compensator, the state compensator, and the PD control) for 

inverted pendulum control. It was found that given a sufficient 

amount of training, the PPO algorithm was able to achieve a 

comparable transient and steady-state performance compared 

to conventional control methods despite not knowing anything 

about the model of the pendulum. The performance of the 

algorithm could be further improved by performing reward 

shaping techniques to include the performance specifications in 

the reward function. From the result analysis, it can be 

concluded that reinforcement learning is best suited for control 

problems especially if no prior model of the plant is available 

and performing trial and error to the model is feasible. 
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