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ABSTRACT — The conventional state of charge (SOC) estimation model has several concerns, such as accuracy and 

reliability. In order to realize robust SOC estimation for embedded applications, this study focuses on three concerns of the 

existing SOC estimation model: accuracy, robustness, and practicality. In improving the estimation accuracy and robustness, 

this study took into account the dynamic of the actual SOC caused by the dynamic charging and discharging process. In 

practice, the charging and discharging processes have characteristics that must be considered to realize robust SOC 

estimation. The model-based SOC estimation developed based on the virtual battery model causes difficulties for real-time 

applications. Additionally, model-based SOC estimation cannot be reliably extrapolated to different battery types. In 

defining the behavior of various types of batteries, the model-based SOC estimation must be updated. Hence, this study 

utilized data-driven SOC estimation based on an artificial neural network (ANN) and measurable battery data. The ANN 

model, which has excellent adaptability to nonlinear systems, is utilized to increase accuracy. Additionally, using measurable 

battery data such as voltage and current signals, the SOC estimation model is suitable for embedded applications. Results 

indicate that estimating SOC with the proposed model reduced errors with respect to actual datasets. In order to verify the 

feasibility of the proposed model, an online estimation was out on the embedded system with the use of C2000 real-time 

microcontrollers. Results show that the proposed model can be executed in an embedded system using measurable battery 

data. 
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I. INTRODUCTION 

Lithium-ion (Li-ion) battery has been widely applied in 

various electronic devices [1]. A battery must be managed 

immediately to ensure its safe operation and possibly increase 

its longevity. The task of managing and monitoring the battery 

can be done by employing a battery management system (BMS) 

[2]. The important tasks of a BMS are state of charge (SOC) 

estimation.  Battery SOC estimation is used as the main battery 

health indicator [3]. Battery SOC provides information on how 

many charge cycles remain in the battery and provides an 

estimation of how long the battery will need to be charged. 

SOC is a measure of the capacity that is still usable at the 

maximum available capacity. In practice, the SOC function is 

similar to the fuel gauge in an electric vehicle (EV) which is an 

important function in monitoring the battery state [4]. Hence, 

for electric vehicles EVs and other equipment that use batteries 

as a power source, a precise SOC estimation approach is 

necessary.  

An accurate SOC estimation is still an open issue because 

the internal dynamics of the battery are often poorly estimated. 

Moreover, various operating conditions such as battery 

temperature, dynamic capacity regeneration, and inevitable 

battery aging remain difficult tasks in achieving accurate SOC 

estimation. Several SOC estimation methods have been 

presented with various approaches [3]–[5]. SOC estimation 

methods can be classified into three groups: basic methods, 

model-based methods, and data-driven estimation methods. 

The basic methods of the SOC estimation utilize basic 

computation and simple modeling to estimate actual battery 

SOC. Basic methods include the looking-up table and ampere–

hour integral methods [5]. These methods rely on initial and 

maximum available capacity. In practice, these data are not 

always available when the battery has aged. Model-based SOC 

estimations are developed based on the virtual battery model, 

then an observer generates a set of state estimates that are 

carefully commensurate with the actual SOC of the battery. 

Model-based SOC estimation methods include electrochemical 

models (EMs) [6], and equivalent circuit models (ECMs) [7]. 

EMs consists of several partial differential equations (PDEs) 

that are used to describe electrochemical reactions [7]. 

However, some EM parameters cannot be directly retrieved 

without assistance from battery manufacturers. In terms of 

computation charges during inference, solving PDEs is also a 

costly task. Real-time applications are hampered by these 

shortcomings. Furthermore, model-based SOC estimations 

utilize observers such as the Luenberger observer [8], and the 

sliding mode observer [9] to estimate battery SOC based on the 

virtual battery models.  

A data-driven SOC estimation method has attracted 

considerable attention. This method is less susceptible to 

changes in battery characteristics and adapts well to different 

types of batteries. Data-driven estimation methods for SOC 

estimation rely on black-box models. This method includes the 

data fusion method, neural network (NN) [10], and support 

vector machine (SVM) [11]. In particular, NN models are 

known for their ability to learn complex nonlinear relationships, 

making them well-suited for accurate and robust modeling of 

battery SOC behavior [10]. NN-based and SVM-based 

methods estimate SOC using battery parameters (the signals 

measured from a Li-ion battery). These methods learn the non-

linear relationship between the measured parameter and SOC. 

The relationship between measured data is used to create the 

SOC estimation model. SOC can be estimated using an 

artificial neural network (ANN) at various battery aging levels 

[12]. Recently, ANN-based approaches have received more 

and more interest from the scientific community as the 
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graphics-processing unit’s computing capacity has increased. 

In recent years, researchers have explored different ANN 

architectures to improve the accuracy of the SOC estimation. 

The most feedforward neural network (FNN) have been 

employed to estimate SOC [13]. For instance, an ANN model 

with a Kalman filter [14], a recurrent neural network model 

[15], and an exogenous autoregressive with an input-based 

neural network [16] have been used to estimate SOC. Deep 

learning is a powerful technique that has been used to estimate 

SOC hybrid battery and supercapacitor [17].  

Although several aforementioned studies [12]–[17] have 

demonstrated the effectiveness of using NN for the SOC 

estimation, the practical challenges of applying an NN-based 

SOC estimation to embedded systems have not been addressed. 

Existing research has mainly focused on maximizing accuracy 

without considering practical limitations that may be 

encountered in embedded applications [18]. This can lead to 

difficulties when implementing such models in real-time 

embedded systems, which require not only high accuracy but 

also robustness, and practicality. This study aims to address the 

issue by considering the practicality of the proposed model. In 

this study, the NN model that could capture the uncertainty of 

battery SOC while prioritizing the practicality of 

implementation in embedded systems was used.  

In this paper, The ANN-based SOC estimation model is 

presented, which takes into account the concerns related to 

existing SOC estimation models. To realize a robust and 

accurate SOC estimation model, this study took into account 

the dynamic of actual SOC caused by the dynamic charging and 

discharging process that affect actual SOC. The estimation 

accuracy is often reduced due to the dynamic of actual SOC 

charging and discharging. That is, if the SOC estimation model 

assumes that charging and discharging will always be the same, 

which did not happen in actual implementation. This 

assumption would result in high errors. By incorporating this 

dynamic battery SOC behavior into the proposed model, it can 

reduce estimation errors compared to existing methods. 

Furthermore, the ANN model, which has strong adaptability to 

nonlinear systems, is used as the SOC estimation method. It 

enables complex and nonlinear relationships between inputs 

(current and voltage signals) and outputs (battery SOC) to be 

captured more accurately than model-based SOC estimation 

methods that commonly assume a simple linear relationship. 

Using ANN models also avoids the need for complex 

mathematical models and parameter tuning, which are time-

consuming and error prone. 

In terms of practicality to achieve a real-time system in an 

embedded application, the proposed model utilized measurable 

battery data and employed ANN. The measurable battery, such 

as current and voltage, was commonly measured in BMS. 

Using these signals, SOC can be estimated in real-time without 

the need for additional sensors, thus reducing cost and 

complexity. Also, this study was simulated in a real-time 

application. The experiment was carried out using an 

embedded system and given actual battery data. 

II. DATASET STRUCTURE 

This study utilized the battery dataset provided by BEXEL, 

a leading battery company, for research and development 

purposes only [19]. The dataset was collected from the battery 

testing facility at BEXEL using Li-ion batteries and consisted 

of more than 50,000 data points for each battery dataset which 

was recorded for six months. These datasets include the voltage, 

current, and capacity measurements. They consist of three 

different operating profiles charging, discharging, and breaking 

time.  This study used two different battery datasets: BEXEL 

cell #7 and #13. To identify the cells, BEXEL assigns these 

numbers as cell IDs. The charge-discharge profile of two 

battery datasets is listed in Table I. 

As listed in the table, BEXEL cell #7 and #13 have constant 

current values in the charging and discharging process. It 

occurs because the method used to measure the dataset during 

charging is the constant current constant voltage (CCCV) 

method, while during discharging is the constant current (CC) 

method. Specifically, in the charging phase, the charger will 

first start charging the battery using CC mode. When the battery 

voltage reaches an upper voltage value, the charger 

automatically shifts to constant voltage mode, and  will 

continue charging until the battery cut-off current is reached. In 

discharging phase, the battery is discharged using CC mode. 

The CCCV charging method is used to avoid overcharging [20]. 

The CCCV mode in charging phase and CC mode in the 

discharging phase are presented in Figure 1. 

In terms of dataset configuration during model training, 

149,278 samples of BEXEL cell #7 are used, which was 

randomly divided into three sets: 70% (104,494 samples) for 

training, 15% (22,392 samples) for validating, and 15% (22392 

samples) for testing. The remaining data of BEXEL cell #7 data 

were used for testing in the online SOC estimation process. 

This scheme was carried out again using BEXEL cell #13. 

III.  ANN-BASED SOC ESTIMATION MODEL 

This study aims to develop the SOC estimation for 

embedded applications using only current and voltage 

measurements without relying on direct SOC measurements. 

This is because direct measurement of SOC can be expensive 

and difficult to obtain in embedded applications. Therefore, in 

embedded applications, it is advantageous to estimate SOC 

using indirect measurements such as current and voltage 

signals that are easy to obtain using an embedded application.   

TABLE I 

CHARGE-DISCHARGE PROFILE OF BEXEL DATASET 

Dataset 

Charging  Discharging 

Constant 

Current 

(A) 

Upper 

Voltage 

(V) 

Cut-Off 

Current 

(mA) 

Constant 

Current 

(A) 

Cut-Off 

Voltage 

(V) 

Cell #7 8 4.2 4.0 8 3.85 

Cell 

#13 
8 4.2 4.2 8 3.81 

 

 

Figure 1. The CCCV charging method is used to avoid over charging. 
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In developing the SOC estimation model, a mathematical-

based model with lower computational complexity was tested 

to model the signal of SOC following. The charging and 

discharging process were tested using exponential growth and 

linear decay. Results show that the mathematical solution was 

only suitable for a specific time period. However, as the battery 

ages, the SOC signal may change periodically, making it 

difficult to find a closed-form mathematical model for this kind 

of signal.  Hence, the mathematical-based SOC estimation 

would not be applicable for other time periods or battery 

conditions, and a different mathematical model would need to 

be developed for those scenarios.  

In contrast to mathematical models, an ANN model is a 

more flexible approach that can be adapted to different 

scenarios and conditions. This study used the ANN model to 

estimate the SOC. The overall process is illustrated in Figure 2. 

The proposed model is divided into two main processes: 1) 

offline processes which focus on training the SOC estimation 

model and 2) online processes which forecast the SOC using 

the trained model and embedded system. The offline processes 

include data gathering, data preprocessing, and model training. 

All steps in the offline processes were carried out only one time. 

At the same time, the online processes include the SOC 

forecasting with new actual battery data and performance 

evaluation. To validate the accuracy and reliability of the 

proposed SOC estimation, the measured SOC values from the 

BEXEL dataset were used as the ground truth (y) and compared 

with the SOC values predicted from the model. 

A. DATA PREPROCESSING 

The collected raw data such as voltage, current, and 

capacity are transformed into a useful and efficient data format. 

To do preprocessing, collected capacity data were first used to 

compute the actual SOC. The actual SOC is defined as the ratio 

of the remaining capacity over the maximum capacity or initial 

capacity [21], that is expressed as in (1). 

 𝑆𝑂𝐶 =  [
𝑄(𝑡)−𝑚𝑖𝑛𝑄

𝑚𝑎𝑥𝑄−𝑚𝑖𝑛𝑄
] × 100% (1) 

where 𝑄 is the capacity (Ah), 𝑚𝑖𝑛𝑄 is the minimum capacity 

(Ah), 𝑚𝑎𝑥𝑄  is the maximum capacity (Ah), and 𝑡 is time (s). 

The total number of cycles obtained in this process is 434 

cycles. The obtained actual SOC was used in training and 

testing the SOC estimation. Voltage, current, and actual SOC 

were used in data cleansing and normalization. To avoid 

underfitting, outliers were removed from the data using data 

cleansing, and the data were scaled to values between 0 and 1 

through normalization [22]. Thus, the result of data 

preprocessing is an efficient format of voltage, current, and 

actual SOC data. That is, there are no outliers within these data 

and their values are between 0 and 1. 

The input and target data must be defined to train the SOC 

estimation model. In this study, current and voltage data were 

chosen as input training data while actual SOC data were 

chosen as target data. Unlike actual SOC data, voltage and 

current are directly measurable during inference. To improve 

accuracy, the SOC estimation model was trained with charging 

and discharging separately. The training process of the SOC 

estimation model was conducted for two SOC estimation 

models, namely the SOC estimation during charging and 

discharging. At the end of the process, the result of charging 

and discharging was combined to have a full cycle result. 

 Voltage data during discharging were used to estimate 

SOC during discharging, while voltage data during charging 

were used to estimate SOC charging. The voltage data are not 

the only feature used in the charging phase. The current data 

are also used as a feature along with voltage data since the 

actual battery dataset used the CCCV charging method which 

varies current and voltage data in the charging process. While 

in the charging process, only voltage data change over time. 

This scheme enables the model to reduce the error estimation 

due to the different profiles of charging and discharging. It also 

reduces memory consumption by utilizing only the important 

features. 

This study computes the Pearson correlation coefficient of 

these variables to highlight the relationship between the 

separating input voltage and the target SOC. The Pearson 

correlation coefficient represents the linear correlation between 

two feature voltage and target SOC data. It is obtained using 

the ratio between the covariance of both voltage and SOC data 

and the product of their standard deviations. In other words, it 

is generally a normalized measurement of the covariance. The 

Pearson correlation coefficient between voltage and SOC data 

is presented in Table II. As stated in the table, the correlation 

coefficient of all SOC and all voltage is 0.3703. At the same 

time, the Pearson correlation coefficient result of separating the 

SOC and voltage was 0.8891 and 0.7276 for charging and 

discharging, respectively. It shows that the feature quality can 

be improved by dividing SOC and voltage into two phases in 

the whole cycle, namely charging and discharging. The 

improved features can positively impact the performance of the 

ANN model used in this study. By incorporating these high-

quality features into the model, the models are able to more 

accurately predict SOC values during each phase of the battery 

cycle, leading to an improved overall performance.   

B. MODEL TRAINING 

ANN model was used to model actual SOC trajectories and 

to predict the actual SOC given voltage and current as input 

data. In selecting input and target data, voltage data served as 

input while SOC data served as output for the SOC estimation 

model during discharge. At the same time, voltage and current 

data served as input and SOC data served as output for the SOC 

estimation model during charging. Since using a high number 

of hidden neurons increases the model’s complexity, one 

hidden neuron of ANN was used to build the SOC estimation 

model considering real-time application requirements.  

The network architecture of the ANN model is shown in 

Figure 3. The table shows that a two-layer feedforward network 

 

Figure 2. Flowchart of ANN based SOC estimation. 

 

TABLE II  

CORRELATION COEFFICIENTS BETWEEN SOC AND VOLTAGE 

SOC Voltage 
Correlation 

Coefficients 

All All 0.3703 

Charging only Charging only 0.8891 

Discharging only Discharging only 0.7276 
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with a sigmoid transfer function in the hidden layer and a linear 

transfer function in the output layer builds the ANN’s network 

design. The layer weight matrix and input weight matrix were 

used to connect each 𝐿𝑊  layer. The 𝑋  input represents the 

voltage and current, while b1 and b2 represent values of bias 

for layer 1 in the (Nx1) array and layer 2 in the (11) array. N 

is the number of hidden layers. The output value (a2) represents 

the estimated SOC. Equations (2), (3), and (4) represents the 

network architecture of the ANN. 

 𝑎1 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝐼𝑊 ∗ 𝑋 + 𝑏1) (2) 

 𝑦 = 𝐿𝑊 ∗ (𝑡𝑎𝑛𝑠𝑖𝑔(𝐼𝑊 ∗ 𝑋 + 𝑏1)) + 𝑏2 (3) 

 𝑎2 = 𝑦 = ((
2

1+𝑒𝑥𝑝(−2∗(𝐵∗𝑋+𝑏1))
) − 1) + 𝑏2. (4) 

The model parameters in (4) were obtained during the 

training process, where the input data 𝑋 represents the voltage 

and current data while the target data 𝑦 represents the actual 

SOC. During the training process, the proposed model learnt to 

map the input data to the target data by adjusting its parameters 

to minimize the prediction error on a training set. Once trained, 

the proposed model could be used to estimate the SOC in real-

time by simply inputting the voltage and current measurements.  

In the SOC estimation model training, the Levenberg-

Marquardt training algorithm was utilized. This training 

algorithm considers the generalization results in the training 

process [23]. Specifically, when generalization reaches a 

plateau, the training process ends automatically. The rise in 

mean square error (MSE) of the validation samples can be used 

to illustrate a generalization improvement. A rise in MSE on 

the validation set during training can be a sign that the model is 

becoming more generalizable and less prone to overfitting. The 

sum of squared differences between the actual and projected 

SOC is known as MSE, and it is defined as in (5). 

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)

2𝑁
𝑖=1  (5) 

where 𝑦𝑖  and �̂�𝑖  are the actual SOC and the predicted SOC, 

respectively, and 𝑁 is the total number of samples.  MSE and 

regression R values are the performance metrics used to 

evaluate training results. Calculating the average squared 

difference between outputs and targets yields MSE, as seen in 

(5). Regression R values refer to the correlation between 

outputs and targets. 

Regression R values show the proportionate amount of 

variation in the response’s real SOC that is explained by the 

provided input voltage and current data. The amount of 

variability between the given input and the actual SOC that the 

linear regression model can explain increases as regression R 

values increase. In other words, an R value of 1 indicates a 

strong association, whereas 0 indicates a random relationship. 

R values for the regression are defined as follow. 

 𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
 (6) 

where 𝑅2  is regression R values, 𝑆𝑆𝐸  is the sum of squared 

error, 𝑆𝑆𝑅 is the sum of squared regression, and 𝑆𝑆𝑇 is the sum 

of squared total. The MSE and R values between the given 

input and actual SOC (target) for training, validation, and 

testing were less than 2.2 and 0.9, respectively. It demonstrates 

that the trained SOC estimate model is generally accurate for 

all datasets, with R values of 0.9 in each case. The final output 

of the training process is a function along with parameters that 

are used to estimate SOC. The generated ANN constants of the 

proposed SOC estimation model are shown in Table III. These 

parameters include the bias value for layer 1 and layer 2, the 

input weight, and the layer weight for both charging and 

discharging. These optimized values of these parameters were 

used as a function to estimate the SOC of the battery. 

IV.  PERFORMANCE EVALUATION 

The proposed model was performed in simulation-based 

(offline) and online estimation. The offline SOC estimation 

was carried on MATLAB and online SOC estimation was 

executed on MATLAB Simulink and edge device C2000 

F28379D.  

The C2000 is a microcontroller board that can be used for a 

variety of applications. The C2000 board is used to perform two 

tasks, namely data acquisition and processing. The data 

acquisition is the process of sampling an analog signal that 

attempts to measure the actual physical form of the battery and 

it also converts the sample of analog signal into digital 

numerical values that can be processed by a computer. In this 

study, the data acquisition was performed to measure and 

gather voltage and current values for the charging and 

discharging process. Another task of the C2000 board is data 

processing which includes SOC estimation. 

A. SIMULATION-BASED MODEL TESTING RESULTS 

The result of the proposed SOC estimation during charging 

is shown in Figure 4(a). The x-axis represents time, and the y-

axis represents the SOC percentage. As shown in Figure 4(a), 

the black line is the actual SOC, while the red line is the 

estimated SOC. The figure shows that the proposed model can 

capture the actual SOC during charging. The proposed model 

was able to estimate the actual SOC with high accuracy at the 

beginning of the charging process. The accuracy is reduced 

when the battery is almost fully charged. The decreasing 

accuracy is caused by the dynamic SOC curve in the near-end 

charging process. 

Furthermore, the SOC estimation results during discharging 

are shown in Figure 4(b). The proposed model was able to 

estimate the trajectory of the actual SOC. The accuracies of the 

proposed model at the beginning of discharging were smaller 

than those in the middle of discharging. It occurs because the 

battery is discharged with a dynamic constant current profile, 

unlike the result of the SOC estimation during charging (which 

has the highest accuracy at the beginning of charging). 

In the experiment, this study also performed the SOC 

estimation based on ANN with combined input charging and 

 

Figure 3. Network architecture of ANN model. 

 

 

TABLE III 

ANN CONSTANTS PARAMETERS OF THE PROPOSED SOC ESTIMATION MODEL 

Parameters Charging Discharging 

b1 3.0559 -2.1176 

IW_1 [0.1775 -2.9987] 2.7579 

b2 0.7396 0.2770 

LW2_1 -2.1208 1.2974 
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discharging, which was denoted as a combined input-based 

SOC estimation. The result of the proposed method was 

compared with the combined input-based method. The 

combined input-based method and the proposed model’s 

sample results are shown in Figure 5(a) and Figure 5(b) using 

BEXEL cells #7 and #13, respectively. As shown in the figures, 

the actual SOC, results of combined input, and proposed 

methods (separated input) are represented using a black dot, red 

dash, and yellow triangle, respectively. The figures show that 

the combined input results are far from the actual SOC. At the 

same time, the proposed model result could estimate the actual 

SOC for both charging and discharging. It also shows that the 

proposed method reduces the estimation error, indicating that it 

is more robust and accurate. 

The combined input-based method considers both charging 

and discharging signals as a single input to the model, which 

can result in a more complex and less accurate SOC estimation 

model. On the other hand, the proposed SOC estimation model 

separates the charging and discharging signals and uses them 

as separate inputs to the model, which allows for a simpler and 

more accurate model. Furthermore, the results show that the 

proposed method can accurately estimate the actual SOC for 

both the charging and discharging processes. It is important for 

real-time SOC estimation in embedded applications, as it 

allows for accurate and reliable SOC estimation during both 

charging and discharging cycles. 

To evaluate the accuracy of the proposed model, this study 

used mean absolute error (MAE) as the main performance 

metric, which is commonly used in regression analysis. 

Additionally, two other widely-used metrics: the root mean 

square error (RMSE) and mean absolute percentage error 

(MAPE), are also employed to evaluate the accuracy of the 

proposed model. RMSE and MAPE are frequently used to 

evaluate the accuracy of forecasting models [24]. These metrics 

can provide further insights into the performance of the model 

[24]. The formulas for MAE, RMSE, and MAPE are as follows. 

 𝑀𝐴𝐸 =
1

𝑁
∑ |(𝑦𝑖 − �̂�𝑖)|𝑁

𝑖=1  (10) 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑

(𝑦𝑖 − �̂�𝑖)
2 𝑁

𝑖=1  (11) 

 𝑀𝐴𝑃𝐸 =
100

𝑁
∑

|𝑦𝑖−�̂�𝑖|

𝑦𝑖

 
𝑁
𝑖=1  (12) 

where 𝑦𝑖, �̂�𝑖, 𝑁 denote the actual SOC, the predicted SOC, and 

the total number of samples, respectively. 

This study took into account the dynamic charging and 

discharging process, which are unique characteristics of each 

battery type. By incorporating these dynamic characteristics, 

the proposed SOC estimation model can more accurately 

estimate the SOC of the battery, which in turn increases the 

robustness of the SOC estimation. Additionally, the proposed 

SOC estimation model utilized data-driven SOC estimation 

 

 (a) 

 

(b) 

Figure 4.  Results of SOC estimation left (zoom out), right (zoom in) during (a) 

charging and (b) discharging. 

 

(a) 

 

(b) 

Figure 5.  Results of SOC estimation comparison during (a) BEXEL#7 and (b) 

BEXEL #13. 
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with measurable battery data and ANN, which also contributes 

to the increased robustness of the model. Data-driven methods 

are less sensitive to changes in the battery characteristics and 

are more adaptable to different battery types. In general, the 

proposed method increases the robustness of SOC estimation 

by incorporating dynamic characteristics of the battery and 

using ANN model, which can handle nonlinear relationships 

and adapt to different battery types. 

The result of the computing estimation error using BEXEL 

cells #7 and #13 is shown in Table IV. The proposed model 

separating charging and discharging shows substantially better 

performance than the combined input. The MAE, RMSE, and 

MAPE values for the combined input method for cell #7 were 

18.10, 21.82, and 43.03, respectively; meanwhile, the proposed 

model reduced these values to 1.45, 2.83, and 9.90. The 

proposed model has better performance because it has been 

developed considering the dynamic of charging and 

discharging. Specifically, the approach ensured that the model 

relied only on the most relevant features to estimate the SOC. 

The strong relationship between input and target allows for 

increased estimation accuracy. The performance comparison 

using cell #13 shows the same trend as cell #7. The proposed 

method had lower error than the combined input for all 

performance metrics MSE, RMSE, and MAPE  

This study selected the SOC model suggested in [12] 

(baseline model) as a benchmark to showcase the accuracy and 

robustness improvement achieved by the proposed model. The 

reason behind selecting this model as a baseline is that it also 

uses an ANN-based model for estimating SOC, which is similar 

to the proposed model. In contrast to the proposed model, the 

baseline model disregards the dynamic of charging and 

discharging profiles and does not emphasize the development 

of SOC estimation for embedded applications. Furthermore, 

the baseline model consists of two input layer neurons, nine 

hidden layer neurons, and one output layer neuron. The input 

and output layers use the terminal voltage, discharge current, 

and battery SOC. According to the results presented in Table 

IV, it can be inferred that the proposed model outperforms the 

baseline model regarding MAE, RMSE, and MAPE, with 

lower values indicating an improved accuracy. In particular, the 

proposed model yields lower MAE, RMSE, and MAPE values 

for cell #7 (1.45, 2.83, and 9.90) than the combined input 

method (5.49, 6.82, and 16.5). The performance comparison 

using cell #13 shows the same trend as cell #7. 

B. ONLINE-BASED MODEL TESTING RESULTS 

In order to validate the practicality of the proposed model, 

The online estimation process was run on the target platform 

C2000. Specifically, the proposed model that had been 

converted to the Simulink platform, as shown in Figure 6(a), 

was uploaded to C2000. The online estimation experimental 

setup is shown in Figure 6(b). The process started with voltage 

and current data acquisition. The voltage and current as input 

were collected every second. The C2000 is a microcontroller 

board that can be used for various applications. It is used to 

perform two tasks: data acquisition and processing. 

The data acquisition is the process of sampling analog 

signals in attempt to measure the actual physical battery form. 

Additionally, it also converts the sample of analog signal into 

digital numeric values that can be processed by a computer. In 

this case, the data acquisition is performed to measure and 

gather voltage and current value for charging and discharging 

process. Another task of C2000 board is data processing. 

The online estimation commenced with voltage and current 

data acquisition. The voltage and current as input were 

collected every second. After that, these input data were used 

to estimate the SOC. To evaluate the performance of the 

proposed model, the result of online estimation was compared 

with actual SOC. The online estimation results of the proposed 

method are shown in Figure 7(a) and Figure 7(b). These figures 

show samples of the estimated SOC and the actual SOC during 

charging and discharging. The x-axis and y-axis of the figures 

represent the time measurement in second and SOC in 

percentage. As shown in the figures, the proposed model can 

capture the actual SOC start from the beginning to the end of 

charging and discharging process. 

The results reveal that the proposed model is suitable for 

real-time application. It is because the proposed method used 

lower computational complexity model and measurable data, 

such as current and voltage. The inference time happened every 

second. It provides evidence that the proposed model can 

address two main challenges in real-time SOC estimation. First, 

it eliminates the need for computationally expensive and 

complex features by using easily measurable battery 

parameters.  

TABLE IV 

PERFORMANCE COMPARISON OF COMBINED INPUT AND PROPOSED SOC 

ESTIMATION MODEL  

Performance 

Metric 

Cell 

# 

Combined 

Input 

Baseline 

[12] 

Proposed 

Method 

MAE 
7 18.10 

5.49 
1.45 

13 28.10 2.23 

RMSE 
7 21.82 

6.87 
2.83 

13 22.29 1.49 

MAPE 
7 43.03 

16.5 
9.90 

13 32.73 8.87 

 

 
(a) 

 
(b) 

Figure 6. Experimental set-up for online estimation using (a) MATLAB Simulink 
model and (b) C2000 real-time microcontrollers. 
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Second, it reduces the dependence on specific software. The 

proposed ANN-based SOC estimation model, which originally 

relied on MATLAB software, was successfully transformed 

into a standalone model that only requires the operating system 

to operate. This accomplishment is particularly essential 

because it enables the proposed model to be easily implemented 

on any embedded system without the need for additional 

software. By eliminating the requirement for specific software, 

the proposed model becomes more practical and user-friendly. 

This conversion does not compromise the accuracy and 

performance of the proposed model as demonstrated by the 

experiment results. The success of this conversion process 

confirms the feasibility and practicality of the proposed model 

for real-time SOC estimation in embedded systems. 

V. CONCLUSION 

This study proposed an alternative approach to improve the 

accuracy, robustness, and practicality of SOC estimation for 

embedded applications. This study shows that taking into 

account the dynamic charging and discharging process has 

enhanced estimation accuracy and robustness. Results suggest 

that the proposed model successfully reduces the values of MSE, 

RMSE, and MAPE. It indicates that the model has higher 

accuracy and better performance predicting SOC. An advanced 

DL algorithm can further employ it to achieve higher accuracy. 

Regarding practicality, the proposed model utilizes a low 

computational complexity ANN model and measurable data. 

This scheme ensures that the proposed system is suitable for real-

time application. 
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