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ABSTRACT –– Benign and malignant cancers are the most common skin cancer types. It is essential to know skin cancer 
symptoms with an early diagnosis to provide an appropriate treatment and reduce the mortality rate. Dermoscopic image is 
one of the diagnostic media that many researchers have developed. It provides more optimal results in computational-based 
diagnosis than visual detection. Deep learning and transfer learning are two models that have been used successfully in 
computational-based analysis, although optimization is still needed. In this study, transfer learning was used to separate 
dermoscopic images of skin cancer into two categories: benign and malignant. This study used 2,000 images to increase 
previous research’s accuracy conducted on the Kaggle public dataset containing 3,297 images. Two pretrained models, 
namely VGG-16 and residual network (ResNet)-50, were compared and used as feature extractors. Fine-tuning was 
conducted by adding a flatten layer, two dense layers with the ReLU activation function, and one dense layer with the 
Softmax activation function to classify images into two categories. Hyperparameter tuning on the optimizer, batch size, 
learning rate, and epoch were performed to get each model’s best performance parameter combination. Before 
hyperparameter tuning, the model was tested by resizing the input image using different sizes. The results of model testing 
on the VGG-16 model gave the best performance at an image size of 128 × 128 pixels with a combination of Adam 
parameters as an optimizer, batch size of 64, learning rate of 0.001, and epoch of 10 with an accuracy value of 91% and loss 
of 0.2712. The ResNet-50 model yielded better accuracy of 94% and a loss of 0.2198 using the optimizer parameter 
RMSprop, batch size of 64, learning rate of 0.0001, and epoch of 100. The results indicate that the proposed method provides 
good accuracies and can assist dermatologist in the early detection of skin cancer. 
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I. INTRODUCTION 
Cancer is one of the causes of death. According to WHO 

data in 2020, nearly 10 million deaths were caused by this 
disease [1]. Various types of cancer can spread throughout the 
human body and skin cancer is one of the fastest-growing 
cancers which can cause death [2]. This type of cancer appears 
on the outermost layer of skin, namely the epidermis, which is 
visible to the naked eyes [3]. Malignant and benign cancers are 
the deadliest types of skin cancer [4]. Malignant cancer can 
spread and develop in the patient’s body by infiltrating other 
tissues and organs and uncontrollably growing and spreading. 
In comparison, benign cancer can grow but does not spread. 
However, it is crucial to understand the common signs and 
symptoms of benign cancer turning into malignant. Early 
diagnosis at the onset of symptoms can help sufferers have a 
greater chance of survival [5]. The initial stage of skin cancer 
diagnosis is done through a visual examination, followed by a 
biopsy and histopathological examination [6]. Another 
diagnostic technique currently being developed is based on 
computational analysis of dermoscopic images for automatic 
classification of skin lesions that can assist doctors in detecting 
disease and making diagnostic decisions, as well as enabling 
fast and inexpensive access [7], [8]. 

Dermoscopic image is the most popular skin imaging 
technique. This technique has proven more accurate than a 
direct visual examination by medical personnel since it allows 
visualization of various features that are unable to be directly 
seen by the eyes, enabling the structure beneath the surface of 
the skin lesion can be analyzed and different types of lesions 
can be distinguished using better visualization [9], [10]. The 

use of dermoscopic images has improved skin cancer diagnosis 
compared to direct visual examination. Research classified skin 
cancer images using two different dermoscopic image datasets, 
namely HAM10000 with 10,000 images and BCN20000 with 
19,424 images [3]. The research achieved an accuracy of 
94.92%. The same dataset (HAM10000) was used and yielded 
an accuracy of 91.43% [2]. Dermoscopic images of skin cancer 
with a total of 4,000 images were used in a classification using 
convolutional neural network (CNN) with VGG-16 and 
performing hyperparameter tuning [11]. Using this method, an 
accuracy of 99.7% was obtained. The 6,594 public datasets 
from Kaggle were trained using the VGG-16 model to generate 
an accuracy of 93.18% [4]. Research by comparing the number 
of two different datasets, namely 10,000 and 3,297 images for 
classifying skin cancer, has shown that using a dataset with a 
larger number of images does not significantly improve 
classification accuracy [6]. 

Science and technological advancement supporting the 
detection of skin cancer based on image analysis has shown a 
continuous enhancement [12]. In certain skin cancer 
classifications, skin cancer image analysis using classical 
machine learning algorithms can yield good results. However, 
this algorithm is ineffective for more complex diagnostic cases 
in clinical practices as the process of feature extraction and 
feature selection requires a long time [13]. In addition, errors 
and data loss at the processing stage can significantly affect the 
classification quality [7], [14]. Various challenges from 
classical machine learning can be overcome using the deep 
learning method since this method has demonstrated significant 
performances that can analyze data from large datasets more 
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quickly and accurately [8], [13], [15]. CNN is a deep learning 
method that provides significant results with good accuracy in 
image recognition [16], [17]. It was utilized to detect melanoma 
dermoscopic images by obtaining an average sensitivity and 
specificity of 86.6% and 71.3%, respectively [18]. The 
classification of melanoma dermoscopic images using CNN 
yielded an average sensitivity value of 89.4% and an average 
specificity of 68.2% [19]. 

Research to detect breast cancer with CNN was 
implemented through three scenarios: training CNN from 
scratch (full training), using pretrained CNN for feature 
extraction, and fine-tuning the pretrained CNN model [20]. The 
best accuracy was obtained from the second and third methods, 
with the fine-tuning model’s accuracy being only 0.008 higher 
than that of the feature-extraction model. This study has 
demonstrated that the application of transfer learning on CNN 
is a promising solution in a breast cancer detection. Transfer 
learning is proven to increase accuracy and accelerate the 
training process [15]. Transfer learning was used to classify 
human facial images with the Inception-v3 pretrained model to 
obtain an average accuracy of 93% [21]. In addition, image 
classification into two classes was carried out using deep CNN 
with the pretrained VGG-16 model and fine-tuning and image 
augmentation to obtain an accuracy of 95.40% [22]. Meanwhile, 
pretrained CNN models, namely VGG-16, VGG-19, and 
residual network (ResNet)-50, were compared with two 
scenarios (training from scratch and transfer learning) [23]. The 
best accuracy was 92.60% with the transfer learning scenario 
using VGG-16, and fine-tuning was performed. Transfer 
learning with various pretrained models was compared in 
classifying white blood cells [24] and skin cancer [25]. Both 
demonstrated the best performance when ResNet-50 was used 
as a pretrained model. 

This study optimizes the classification of skin cancer into 
two categories (benign and malignant) through transfer 
learning and fine-tuning the optimizer, batch size, learning rate, 
and epoch. The pretrained models used in this study were 
VGG-16 and ResNet-50. The dataset was acquired from the 
Kaggle database as dermoscopic images of skin cancer. 

This research optimizes the classification of skin cancer 
into two categories (benign and malignant) through the use of 
transfer learning and fine-tuning the optimizer, batch size, 
learning rate, and epoch. The pretrained models used in this 
study were VGG-16 and ResNet-50. The dataset was acquired 
from the Kaggle database in the form of dermoscopic images 
of skin cancer. 

II. METHODS 
This study employed two pretained CNN models, namely 

VGG-16 and ResNet-50. Both models were implemented in the 
same dataset, which consisted of 2,000 skin cancer images. As 
for the technique, deep transfer learning was applied to classify 
dermoscopic images of skin cancer into two categories, namely 
benign and malignant. The image processing flow is shown in 
Figure 1. Beginning with image input, the process continued 
with image preprocessing through data augmentation. Then, 
feature extraction was performed on the two pretrained models, 
which were then modified by fine-tuning the fully connected 
layers. To determine the best hyperparameters in both models, 
training was carried out on the training data, followed by testing 
the hyperparameters against the testing data to obtain the best 

accuracy. The hyperparameter test was conducted using four 
scenarios with the first scenario being the optimizer. After 
getting the best type of optimizer for each model, then it was 
applied to the second scenario, namely batch size. The best 
batch size value was used for the subsequent test scenario, 
namely the learning rate. The last scenario was the epoch value 
test. 

A. DATASET 
This research used a public dataset derived from the Kaggle 

database. The dataset was RGB images comprising 1,800 
benign images and 1,497 malignant images with an image size 
of  224 × 224 × 3 pixels. The total number of images in the 
dataset was 3,297, but only 2,000 images were used in this 
study. Table I describes the dataset used in this study. The 
dataset was divided into training data and test data with a ratio 
of 80:20. Furthermore, 20% of the training data was used for 
validation. In contrast, the remaining data were used for model 
training. 

B. DATA PREPROCESSING 
The preprocessing stage included image resizing and image 

augmentation. Images were resized and included in 
preprocessing scenarios to determine the optimal performance. 
In image resizing, the image size shifted from the original 224 
× 224 pixels to 128 × 128 pixels and 64 × 64 pixels. Image 
augmentation aims to enlarge training data that is done 
artificially. The augmentations performed included rotation, 
zoom, horizontal flip, and translation. 

C. FEATURE EXTRACTION 
The transfer learning employed a pretrained CNN model as 

a feature extractor. Furthermore, the extracted features were 
used for training on a new layer [26]. The pretrained model was 
trained on a large dataset, namely ImageNet, consisting of 
various image categories so that the model learned the image 
representation well, and then this feature could be used for 
knowledge transfer and as a feature extractor on different 
datasets [22]. When using a pretrained model as a feature 
extractor, the lower layer is frozen, and the upper layer is 
customized. This study used two different pretrained models to 
classify skin cancer images, namely VGG-16 and ResNet-50. 

1)  VGG-16 
Visual geometry group (VGG) is an architecture proposed 

by Simonyan and Zisserman at the University of Oxford and 
won the ILSVRC 2014 competition. It was trained using the 
ImageNet ILSVRC dataset of 1.3 million data with 1,000 

 
Figure 1. Image processing flow.  

TABLE I 
DATASET DESCRIPTION 

 Training Validation Testing Total 
Benign 640 160 200 1,000 
Malignant 640 160 200 1,000 
Total 1,280 320 400 2,000 
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classes [27]. This architecture is recognized as one of the most 
advanced architecture models ever made, so the pretrained 
VGG-16 model is an excellent option for transfer learning [4], 
[28]. Figure 2 depicts the VGG-16 architecture, which consists 
of five blocks. The first and second blocks each contain two 
convolution layers and max pooling with filters of 64 and 128, 
respectively. The third to fifth blocks contain one max pooling 
layer and three convolution layers with filters of 256, 512, and 
512, respectively. In this study, VGG-16 was modified by 
adding one flatten layer, two dense layers with the ReLU 
activation function, and one dense layer with the Softmax 
activation function to improve model accuracy. 

2)  RESNET-50 
Microsoft Research Asia (MRA) in 2015 proposed a deep 

neural network model with a very deep network called ResNet, 
whose aim is to ensure that the upper layer’s performance is as 
good as that of the layer below it without any vanishing 
gradients and optimization problems [26]. ResNet won the 
2015 ILSVRC competition with the architecture on ResNet-50, 
which is a ResNet consisting of 50 layers. As the name implies, 
this network uses residual learning. In simple terms, residuals 
are a process of reducing features that have been learned from 
the input layer [24]. The ResNet-50 architecture, as depicted in 
Figure 3, consists of a series of convolution blocks with average 
pooling. There are five convolution layer blocks. After being 
inputted, the image passed through the convolution layer with 
64 filters and a kernel size of 7 × 7 (layer conv1) followed by 
max pooling. Additionally, in conv2, layers were grouped in 
pairs according to how ResNet operated. This process was 
repeated until the fifth convolution layer, after which the 
average pooling was performed. Softmax was used in the last 
layer for classification. 

D. FINE-TUNING SCENARIO 
Fine-tuning of the VGG-16 and ResNet-50 models is shown 

in Figure 4. The upper layers of the models, both VGG-16 and 
ResNet-50, which consisted of the fully connected layer and 

the classification layer, were eliminated and replaced with two 
dense layers with activation functions ReLU, each layer 
consisting of 512 and 256 neurons. The third dense layer 
consisted of two neurons with the Softmax activation function. 
The images were then classified into two different cancer 
categories: benign and malignant. The feature extraction results 
in the pretrained model were then used as input for fine-tuning. 
This scenario applied to the VGG-16 and ResNet-50 models. 
In addition, hyperparameter tuning (which included the 
optimizer scenario, batch size, learning rate, and epoch), was 
performed to achieve the best performance. 

The Softmax activation function is frequently used for 
multiclass classification. This function appears in almost all 
output layers of deep neural network architectures [29]. The 
Softmax activation function itself is a generalization of 
Sigmoid. The fundamental difference between Sigmoid and 
Softmax is that Sigmoid can only be used for binary 
classification, whereas Softmax can also be used for 
multivariate classification. Using the region-based CNN (R-
CNN) method, the Softmax and Sigmoid activation functions 
were used to do the binary classification of face detection on 
comic book characters [30]. The classification with the 
Sigmoid activation function showed slightly better 
performance than Softmax, although the results were not 
significantly different. Meanwhile, Softmax and Sigmoid 
activation functions applied to the CNN model for binary 
classification yielded scores of 97.3% and 70%, respectively 
[31].  

 
Figure 2. VGG-16 architecture. 

 
Figure 3. ResNet-50 architecture. 

 

 

Figure 4. Fine-tuning of VGG-16 and ResNet-50 models.  
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Research by comparing the activation functions of Softmax 
and Sigmoid to do the binary classification and Softmax for 
multiclass using five types of neural networks, namely 
separable CNN (SCNN), recurrent neural network (RNN), long 
short-term memory (LSTM), gated recurrent unit (GRU), and 
fully connected network (FCN) by applying three scenarios, 
revealed that Softmax achieved the highest classification 
accuracy in conducting multiclass classification [32]. In 
contrast, for the binary classification, SCNN obtained the best 
accuracy in both activation functions. In addition, for the five 
types of neural networks applied, the Softmax activation 
function obtained greater accuracy than the Sigmoid. Therefore, 
using the Softmax activation function for binary classification, 
which is considered a multiclass classification with two classes, 
can enhance the accuracy of the five types of neural networks. 
For that reason, this study proposed applying the Softmax 
activation function at the output layer to classify cancer images 
into two categories: benign and malignant. 

E. OPERATION EVALUATION 
Using the confusion matrix, the level of success was 

determined by measuring the performance of the experiments 
that were carried out. The results of the classification process 
were represented through four terms in the confusion matrix, 
namely true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN). The performance evaluation was 
calculated based on the TP, TN, FP, and FN values, from which 
the accuracy, precision, sensitivity, and f1-score of the model 
being tested could be obtained. The performance evaluation 
accuracy measures the closeness of the predicted values to the 
actual values. The accuracy value calculation was conducted 
using (1). The amount of data that are classified as TP 
compared to the total data in the positive classification category 
is called the precision and is calculated using (2). Sensitivity or 

recall compares the number of positive data classified as TP to 
the total positive data and is shown in (3). The f1-score value 
is a combination of precision and sensitivity, which can be 
obtained using (4). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"#!$
!"#!$#%"#%$

 (1) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"#%"

 (2) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = !"
!"#%$

 (3) 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = &×!"
&×(!"#%"#%$)

. (4) 

III.  RESULT AND DISCUSSION 
The experimental process involving fine-tuning was carried 

out by dividing the dataset as described in Table I. The images 
used for training had the largest proportion, with 640 images in 
each class, to ensure that the model learned the representation 
pattern properly. To test the best hyperparameters, the training 
was carried out on the training data. Furthermore, the 
hyperparameters that were applied to the training data were 
used in testing with test data. 

Before performing hyperparameter tuning, an image 
resizing test was carried out to obtain the best image size of the 
VGG-16 and ResNet-50 models to achieve optimal accuracy. 
Testing was conducted using predetermined hyperparameters, 
namely the Adam optimizer, batch size of 64, learning rate of 
0.001, and epoch of 10. The image sizes tested were 64 × 64, 
128 × 128, and 224 × 224 pixels. Based on the results of the 
image resizing test, the best accuracy for the VGG-16 model 
was at an image size of 128 × 128 pixels with an accuracy level 
of 0.9100. On the other hand, the best size of the ResNet-50 
was at an image size of 224 × 224 pixels with an accuracy value 
of 0.9050. Comparatively, the VGG-16 model with an image 
size of 224 × 224 pixels yielded a lower accuracy value of 
0.8850, while the ResNet-50 model was tested with an image 
size of 128 × 128 pixels and yielded an accuracy value of 
0.8975. For an image size of 64 × 64 pixels, both VGG-16 and 
ResNet-50 produced the lowest accuracy among the other 
image sizes tested: 0.8875 for VGG-16 and 0.8875 for ResNet-
50. Based on the results of image size testing, it can be said that 
the accuracy of VGG-16 is better than the ResNet-50 with 
various predetermined factors. 

Table II shows the parameters of the proposed VGG-16 
model after fine-tuning. The output image size after the VGG-
16 model with an input image size of 128 × 128 pixels was 4 × 
4, and the resulting number of parameters was 14,714,468. 
After that, a flatten layer with an output size of 8.192 was added. 
Lastly, Dense_1, Dense_2, and Dense_3 was added and yielded 
4,194,816; 131,328; and 514 parameters. The parameters 
generated by ResNet-50 with an input image size of 224 × 224 
pixels were significantly greater than those generated by VGG-
16. The parameters of the proposed ResNet-50 model are 
displayed in Table III. The size of the image after feature 
extraction was 7 × 7 with 23,587,712 parameters. Using the 
same additional layers as the VGG-16 model, parameters 
produced by ResNet-50 for each dense layer were 51,380,736; 
131,328; and 514. 

After testing the image size and performing fine-tuning, 
hyperparameter testing with four scenarios was conducted, 
namely optimizers (Adam, SGD, and RMSprop), batch sizes 
(32, 64, and 128), learning rates (0.01, 0.001, and 0.0001), and 

TABLE II 
PARAMETER OF THE PROPOSED VGG-16 MODEL 

Layer Shape of Output Parameters 
VGG-16 4, 4, 512 14,714,688 
Flatten 8,192 0 
Dense_1 512 4,194,816 
ReLU_1 512 0 
Dense_2 256 131,328 
ReLU_2 256 0 
Dense_3 2 514 
Total parameters 19,041,346 
Trainable parameters 4,326,658 
Nontrainable parameters 14,714,688 

TABLE III 
PARAMETER OF THE PROPOSED RESNET-50 MODEL 

Layer Shape of Output Parameters 
ResNet-50 7, 7, 2048 23,587,712 
Flatten 100,352 0 
Dense_1 512 51,380,736 
ReLU_1 512 0 
Dense_2 256 131,328 
ReLU_2 256 0 
Dense_3 2 514 
Total parameters 75,100,290 
Trainable parameters 51,512,578 
Nontrainable parameters 23,587,712 
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epochs (10, 50, and 100). The first scenario involved an 
optimizer with other predetermined hyperparameters: the batch 
size of 64, the learning rate of 0.001, and the epoch of 10. Table 
IV summarizes the results of testing the VGG-16 and ResNet-
50 models in the four scenarios. The first scenario on the VGG-
16 Adam optimizer model had better performance than SGD 
and RMSprop on the VGG-16 model. It differs from the 
ResNet-50 model, which obtained the best performance, which 
was equal to 0.9075, when using the RMSprop optimizer. 

The results of testing the second scenario, namely the batch 
size with a different optimizer, revealed that the performance 
of the two models did not improve from the first scenario. It 
indicates that the best accuracy in both models is from the same 
batch size as determined at the beginning of the test, namely 64. 
The following scenario was learning rate testing, with the 
learning rate values tested being 0.01, 0.001, and 0.0001. This 
scenario resulted in different learning rate values for the two 
models. The ResNet-50 model obtained better accuracy than 
the VGG-16 model, with a learning rate of 0.0001 and an 
accuracy value of 0.9150. In contrast, the accuracy of the VGG-
16 model remained unchanged from the previous scenario, with 
a learning rate of 0.001 and an accuracy of 0.91100. 

After testing the optimizer, batch size, and learning rate, 
tests were carried out with the last scenario, namely the epoch 
test. The fourth scenario tested the epoch values of 10, 50, and 
100.  As shown in Table IV, the results derived from the two 
models are different. Based on the epoch test, it can be 
concluded that the effect of the epoch on the VGG-16 model is 
that as the epoch value increases, the model’s accuracy 
decreases, with the best accuracy being achieved at epoch 10. 
It differs from the ResNet-50, which had the best performance 
at epoch 100, with an accuracy value of 0.9400 and loss of 
0.2198. The accuracy of the ResNet-50 model obtained was 
more optimal than previous research, which applied the same 
image size, batch size, and epoch to obtain an accuracy of 0.87 
[33]. 

The hyperparameters with the best performance for each 
model were obtained after running the tests with the previously 
specified scenarios. For the VGG-16 model, the best 

performance was provided by an image of 128 × 128 pixels 
with the Adam optimizer, the batch size of 64, the learning rate 
of 0.001, and epoch of 10. The results of testing accuracy and 
loss using training data and validation with the best 
hyperparameters on VGG- 16 revealed that the difference in the 
accuracy of the training and validation data was insignificant. 
Meanwhile, the loss graphs can be interpreted that the losses 
from the training and validation data not overfitting because, at 
the end of the epoch, the loss graphs hardly make a significant 
difference. For the ResNet-50 model, the best performance was 
an image of 224 × 224 pixels. The hyperparameters with the 
best combination for the ResNet-50 model were the RMSprop 
optimizer, the batch of size 64, the learning rate of 0.0001, and 
epoch of 100. The test results on training and validation data on 
the validation accuracy graph for each epoch were relatively 
stable. The loss graph, on the other hand, is considered a good 
fit because it does not show a significant difference between 
the training data and the validation.  

After the two models were trained using training and 
validation data, tests were carried out on the new dataset, 
namely test data, which comprised 400 images. Testing the 
model using the test dataset yielded values used to measure the 
model performance. Using the VGG-16 model, the number of 
benign images correctly classified as the benign category was 
177. Meanwhile, there were 187 malignant images that were 

TABLE IV 
RESULTS OF SCENARIO TESTING ON THE VGG-16 DAN RESNET-50 MODELS 

Model 
Scenario 1: Optimizer 

(batch size of 64, learning rate of 0.001, epoch of 10) 

Scenario 2: Batch Size 
(optimizer: Adam–VGG-16; RMSProp–ResNet-50, 

learning rate of 0.001, epoch of 10) 
Optimizer Test Accuracy Test Loss Batch Size Test Accuracy Test Loss 

VGG-16 
Adam 0.9100 0.2712 32 0.8975 0.3029 
SGD 0.8875 0.2933 64 0.9100 0.2712 

RMSprop 0.8875 0.2448 128 0.8900 0.2931 

ResNet-50 
Adam 0.9050 0.2548 32 0.8825 0.2785 
SGD 0.8925 0.2629 64 0.9075 0.2420 

RMSprop 0.9075 0.2420 128 0.8725 0.3031 

 

Scenario 3: Learning Rate 
(optimizer: Adam–VGG-16; RMSProp–ResNet-50, 

batch size of 64, epoch of 10) 

Scenario 4: Epoch 
(optimizer: Adam–VGG-16; RMSProp–ResNet-50, batch 

size of 64, learning rate: 0.001–VGG-16; 0.0001–ResNet-50) 
Learning rate Test Accuracy Test Loss Epochs Test Accuracy Test Loss 

VGG-16 
0.01 0.8975 0.2811 10 0.9100 0.2712 
0.001 0.9100 0.2712 50 0.9025 0.2261 
0.0001 0.8700 0.2982 100 0.8975 0.2641 

ResNet-50 
0.01 0.8925 0.2494 10 0.9150 0.2342 
0.001 0.9075 0.2420 50 0.9075 0.2255 
0.0001 0.9150 0.2342 100 0.9400 0.2198 

 

 
Figure 5. Graph of the best accuracy in each scenario. 
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correctly classified as a malignant category. The number of 
benign images that the model incorrectly predicted as 
malignant was 23. Conversely, the number of malignant images 
that the model incorrectly predicted as benign category was 13. 
Not much different from the VGG-16 model, the ResNet-50 
model correctly classified 185 benign images and 191 
malignant images.  Then, there were 15 benign images that 
were incorrectly identified as malignant category and 9 
malignant images that were incorrectly identified as benign 
category. Thus, most test images can be classified according to 
their categories.  

Performance was also evaluated based on the precision, 
sensitivity, and f1-score. Using (2), (3), and (4), the average 
value of precision, sensitivity, and f1-score for VGG-16 was 
0.91. It demonstrates that the proposed VGG-16 model can 
provide good performance in classifying dermoscopic images 
of skin cancer. Meanwhile, it is evident that the ResNet-50 
model could classify images better than the VGG-16 model. 
Performance measurement of the proposed ResNet-50 model 
showed that the average value of precision, sensitivity, and f1-
score generated by the ResNet-50 model was 0.94. 

The best results for each scenario that has been tested are 
modeled in a graph in Figure 5. After implementing the resize 
scenario, the following scenarios are implemented: scenario 1, 
namely optimizer; scenario 2, namely batch size; scenario 3, 
namely learning rate; and scenario 4, namely epoch. As can be 
seen in Figure 5, the accuracy of the VGG-16 model does not 
increase in any scenario. It suggests that the resize scenario 
with an image size of 128 × 128 pixels and the hyperparameter 
tuning that was determined at the beginning of the tests yields 
the best results. It is different from the ResNet-50 model, which 
almost always experienced an increase in accuracy in every 
given scenario, except for scenario 1 (optimizer) and scenario 
2 (batch size), where the optimizer and batch size both had the 
same best accuracy value. Therefore, the last scenario in the 
ResNet-50 model was the scenario that yielded optimal 
accuracy. Meanwhile, for the VGG-16 model, the best 
accuracy was obtained since the resize scenario. 

A comparison of the performance results of the proposed 
model with other models is presented in Table V. Based on the 
accuracy value, the proposed model provided better accuracy 
than other models using the same dataset, namely skin cancer 
dermoscopic images from Kaggle classifying images into two 
categories (benign and malignant categories). Using the same 
model, namely VGG-16, this study demonstrated better 
performance based on the accuracy results, which was 91%, 
compared to previous research with 89.09% [12]. The same 
datasets, namely Kaggle and the HAM10000 datasets, that 
were tested using pretrained VGG-16 and ResNet-50 models 

yielded a not-significantly-different accuracy, namely 88% for 
the VGG-16 model and 87% for the ResNet-50 model [6]. 
Despite the fact that these accuracy results were from two 
different datasets, the accuracies yielded were alike. It means 
that both the proposed VGG-16 and ResNet-50 models provide 
better performance. In addition, applying the ResNet-50 model 
and the same fine-tuning scenario, except for Dense_3, in 
which the Sigmoid activation function was used, generated an 
accuracy of  87.87% at epoch 150 [33]. The ResNet-50 model 
proposed in this study applied a smaller epoch, namely 100, and 
attained the best performance, namely 94%, among other 
models listed in Table V. 

IV. CONCLUSION 
This study employed deep transfer learning techniques with 

pretrained deep CNN VGG-16 and ResNet-50. The training, 
validation, and test data used were derived from the Kaggle 
dataset. The model was tested using various hyperparameters, 
namely the optimizer consisting of Adam, SGD, and RMSprop. 
In addition, the model was also tested with batch size 
parameters of 32, 64, and 128; learning rates of 0.01, 0.001, and 
0.0001; and epochs of 10, 50, and 100. The proposed model 
generated the best performance, with 91% accuracy for the 
VGG-16 model and 94% for the ResNet-50 model. There are 
still many gaps in improving accuracy in classifying skin 
cancer images. Using different pretrained models, fine-tuning 
scenarios, and other hyperparameter tuning does not rule out 
the possibility of increasing the model’s accuracy in classifying 
skin cancer images. 
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