A Microstrip Antenna with Two U-Slots for Wi-Fi and 5G Applications

Dian Widi Astuti¹, Alya Patrakomala², Muslim Muslim³, Said Attamimi⁴, Dwi Astuti Cahyasiwi⁵

Abstract—The development of telecommunication on wireless networks is advancing very rapidly. This rapid development is caused by the need for rapid information accessibility from anywhere. One of the devices on wireless networks is an antenna. antennas that can work on multiple wireless network frequencies on telecommunication systems such as Wi-Fi and the fifth-generation mobile network (5G). Moreover, wireless networks provide ease of information dissemination. Therefore, it takes an antenna device to establish such a wireless network. The multi-band antenna has two or more resonant frequencies so that the effectiveness of a single antenna device can be maximized. Another advantage of multifrequency antennas is reducing the cost and dimensions of a device system because one antenna can be used for various applications.

An antenna is a device that can operate as a transmitter and receiver of electromagnetic waves emitted through a transmission medium in the form of free air. Therefore, the antenna is also called a transceiver component placed at the end or beginning (front-end) of the wireless telecommunication system. Realization of the antenna can be carried out using a substrate material known as a microstrip antenna [2]-[4], a metal material such as a waveguide antenna [5], a wire material such as a dipole antenna [6], and others.

Microstrip antennas are easily fabricated compared to other materials [7]. In addition, multifrequency-microstrip antennas provide simpler dimensions compared to single-frequency antennas. Various studies on methods for generating antennas with two or more resonant frequencies have been conducted. Reference [4] has conducted multi-band antenna research using two substrates stacked into one and input with one port. The lower substrate had a branched unification structure as well as the addition of stub channels for the matching process. On the upper layer of the substrate, there was a tooth-shaped radiation element. The antenna design was applied to Wi-Fi, 5G, and other wireless applications. This study provides fairly suitable results between simulation and measurement.

Reference [8] realized a microstrip antenna operating at two frequencies using two rectangular slots. Each rectangular slot in [8] worked for a different frequency. The research has succeeded in providing good stopband characteristics. Then, the shape of the rectangular slot could be modified into a barbell-shaped slot with a hollow circle in the middle [9]. The dual-band antenna in this study operated at a center frequency of 9.5 GHz and 13.85 GHz. Similar to [8], this study also used different transverse electric (TE) modes for each resonance frequency [9]. Reference [10] made the rectangular slots transverse to each other resulting in dual-band operated at 2.47 GHz and 3.59 GHz. All of the previously mentioned studies can produce a two-frequency microstrip antenna using substrate-integrated waveguide (SIW) technology. However, the design obtained 5% fractional bandwidth (FBW) measurement, which was still very narrow [8]-[10].

Keywords—Microstrip Antenna, Dual-Band Antennas, Wi-Fi, 5G Antenna, Two Slots.

I. INTRODUCTION

In today’s era of globalization, the use of telecommunication networks is advancing very rapidly, especially wireless telecommunication networks such as Wi-Fi and the fifth-generation mobile network (5G) [1]. It is because Wi-Fi and 5G networks provide ease of information dissemination. Therefore, it takes an antenna device to establish such a wireless network.

One of the needs of future applications of wireless communication systems is an antenna with multifrequency capabilities. The multi-band antenna has two or more resonant frequencies so that the effectiveness of a single antenna device can be maximized. Another advantage of multifrequency antennas is reducing the cost and dimensions of a device system because one antenna can be used for various applications.

An antenna is a device that can operate as a transmitter and receiver of electromagnetic waves emitted through a transmission medium in the form of free air. Therefore, the antenna is also called a transceiver component placed at the end or beginning (front-end) of the wireless telecommunication system. Realization of the antenna can be carried out using a substrate material known as a microstrip antenna [2]-[4], a metal material such as a waveguide antenna [5], a wire material such as a dipole antenna [6], and others.

Microstrip antennas are easily fabricated compared to other materials [7]. In addition, multifrequency-microstrip antennas provide simpler dimensions compared to single-frequency antennas. Various studies on methods for generating antennas with two or more resonant frequencies have been conducted. Reference [4] has conducted multi-band antenna research using two substrates stacked into one and input with one port. The lower substrate had a branched unification structure as well as the addition of stub channels for the matching process. On the upper layer of the substrate, there was a tooth-shaped radiation element. The antenna design was applied to Wi-Fi, 5G, and other wireless applications. This study provides fairly suitable results between simulation and measurement.

Reference [8] realized a microstrip antenna operating at two frequencies using two rectangular slots. Each rectangular slot in [8] worked for a different frequency. The research has succeeded in providing good stopband characteristics. Then, the shape of the rectangular slot could be modified into a barbell-shaped slot with a hollow circle in the middle [9]. The dual-band antenna in this study operated at a center frequency of 9.5 GHz and 13.85 GHz. Similar to [8], this study also used different transverse electric (TE) modes for each resonance frequency [9]. Reference [10] made the rectangular slots transverse to each other resulting in dual-band operated at 2.47 GHz and 3.59 GHz. All of the previously mentioned studies can produce a two-frequency microstrip antenna using substrate-integrated waveguide (SIW) technology. However, the design obtained 5% fractional bandwidth (FBW) measurement, which was still very narrow [8]-[10].

[Received: 24 February 2022, Revised: 10 October 2022]
References [11] and [12] employed rectangular slots bent like a river (meander), resulting in a dual-band microstrip antenna. Reference [11] applied antennas operating at frequencies of 900 MHz and 2,450 MHz. Another dual-band antenna study used various slot shapes ranging from irregular triangles, two slots on the top and bottom of the substrate, two stacked isosceles triangle slots, circular slots, and others to produce two to three resonant frequencies [13]-[18]. However, the given FBW in [18] was less than 3%. It is due to the small antenna dimensions, which use an eighth mode substrate integrated waveguide (EMSIW) structure due to a miniaturization factor (MF) of 87.5%.

References [19] and [20] used rectangular slots bent into a U letter to producing two to three frequencies. Both studies managed to provide the same measurement results as the simulation results [19], [20]. However, the maximum value of the resulting simulated FBW was 6.9% [20]. In addition, the fabrication of such an antenna is relatively complicated because it uses two substrates hanging from each other by being separated by an air layer.

Another dual-band microstrip antenna study used an L-shaped slot [21]. The letter L comes from a separate U with a certain gap. The antenna works at a center frequency of 2.45 GHz and 5.8 GHz, with FBW frequency measurement results of 2.57% and 2.58%. However, this study still has a narrow FBW below 3% [21]. Other rectangular-shaped microstrip antenna studies have also been conducted [22], [23]. Reference [22] designed a simple square microstrip antenna working at a frequency of 3.3 GHz with Momentum on the Advance Design System (ADS). However, the antenna design was not fabricated. Meanwhile, another study produced 45° polarizations using two interdigital resonators [23]. The study resulted in an FBW of 6.45% with excellent selectivity. It was due to the presence of an integrated filter set into one so that the antenna gained response resembled a bandpass filter. However, the resulting resonance frequency was only one piece for 5G applications at a frequency of 4.65 GHz. Therefore, this study proposes a dual-band microstrip antenna using disconnected square ring-shaped and inverted U-shaped slots. This study aims to generate an FBW antenna with a more than 5% measurement and smaller antenna dimensions. The antenna was implemented on Wi-Fi and 5G frequency applications. The selected Wi-Fi application was at a center frequency of 2.45 GHz, while the 5G frequency was at a center frequency of 3.3 GHz based on [24]. Although 5G technology in Indonesia does not use the 3.3 GHz center frequency due to the effects of humidity [24], 5G technology that uses the 3.3 GHz center frequency is applicable in other countries, such as the United States [25].

This microstrip antenna was fabricated using Rogers Duroid RO 5880 substrate material which could be obtained on the market. The writing of this study began by producing the antenna design discussed in Section II, the fabrication and measurement of the antenna discussed in Section III, and ended with the conclusion in Section IV.

II. ANTENNA DESIGN

Microstrip antenna design with a disconnected square ring-shaped slot and inverted U-shaped slot for Wi-Fi and 5G applications are shown in Fig. 1, while antenna dimension is shown in Table I. The antenna design began with the antenna’s resonance frequency selection. This frequency selection would affect the dimensions of the antenna used. The higher the working frequency of the antenna was, the smaller the dimension of the antenna was, and vice versa. Measurements of antenna magnitudes, such as reflection coefficient parameters, shifts in impedance bandwidth, gain, radiation pattern, axial ratio, antenna efficiency, and others, were also influenced by the selection of substrate materials.

A. Antenna Substrate

The selection of the substrate material significantly affected the performance of the reflection coefficient parameters of the microstrip antenna. Therefore, selecting substrates with small tangent losses were considered in the selection of substrates. This antenna design used a Rogers Duroid 5880 substrate, with a tangent loss of 0.0009, a relative permittivity ($\varepsilon_r$) of 2.2, with a substrate thickness (h) of 1.575 mm. The selection of substrates with small tangent losses aimed to minimize losses, while the selection of thick substrates aimed to allow electromagnetic waves from the slot to radiate out maximally. In addition, a substrate with a relatively small material permittivity should be used in the design of antennas.

B. Antenna Dimensions

The dimensions of the rectangular-shaped antenna patch comprised a ($W_p$) width and ($L_p$) length. The patch width ($W_p$) can be calculated by the formula (1) [21].

$$W_p = \frac{c}{2f_s} \sqrt{\frac{2}{\varepsilon_r + 1}} \tag{1}$$
Given the value of $\varepsilon_r = 2.2$, the center frequency of the antenna design, $f_c = 2.45 \text{ GHz}$, and the speed of the light, $c = 3 \times 10^8 \text{ m/s}$, $W_p$ is obtained using the following formula approach:

$$W_p = \frac{3 \times 10^8}{2.245 \times 10^9} \sqrt{\frac{2}{2.2+1}} = 48.40 \text{ mm}.$$ 

Since $W_p/h > 1$, effective values of $(\varepsilon_{\text{eff}})$ relative permittivity, $(\Delta L)$ delta length, $(L_{\text{eff}})$, and $L_p$ effective lengths could be calculated using (2)-(5) [21].

1. $\varepsilon_{\text{eff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[ 1 + \frac{12}{\varepsilon_r W_p} \right]^{-1/2}$ (2)
2. $\Delta L = h \cdot 0.412 \left( \frac{(\varepsilon_{\text{eff}}+0.3)(W_p+0.264)}{(\varepsilon_{\text{eff}}-0.250)(W_p+0.8)} \right)$ (3)
3. $L_{\text{eff}} = \frac{c}{2f \sqrt{\varepsilon_{\text{eff}}}}$ (4)
4. $L_p = L_{\text{eff}} - 2 \cdot \Delta L$ (5)

From (2)-(5), the values of $\varepsilon_{\text{eff}} = 2.11$, $\Delta L = 0.83 \text{ mm}$, $L_{\text{eff}} = 42.16 \text{ mm}$, and $L_p = 40.5 \text{ mm}$ could be obtained. Subsequently, the antenna design was optimized with Ansys HFSS to obtain optimal results according to the target.

Two slots were added in rectangular patch radiators to emit electromagnetic waves into the air. The first slot was a disconnected rectangular ring with the overall length of the slot being $L_1$, and the second slot was an inverted U-shaped with a total length of $L_2$. The disconnected rectangular ring slot was placed at a distance of 14.5 mm from the top edge of the square patch, while the inverted U slot was placed at a distance of 3.5 mm. Both slots were made on a rectangular radiator with $L_0 = 44 \text{ mm}$ and $W_p = 40 \text{ mm}$, which was the result of the optimization of the above calculations. On the radiator, a rectangular patch was connected with a 50 $\Omega$ transmission line which was 4 mm long and 3 mm wide as a current input. The entire antenna structure was printed on a 50 $\times$ 52 mm substrate. On the back of the antenna, not all substrate layers were filled with a copper layer as ground. However, some of the ground layers were peeled off for the optimization process to obtain a reflection coefficient of -10 $\text{dB}$ and expand the impedance bandwidth. From optimization results, the length and width of the ground were 21 mm and 46 mm, respectively, and were located at a distance of 11 mm from the left edge of the ground. The optimization results of the antenna design are shown in Fig. 1.

C. Parameters Study

Fig. 2 shows the results of parameter studies for low frequency ($f_1$) and high frequency ($f_2$). The frequency $f_1$ was at 2.45 GHz, while $f_2$ was at 3.3 GHz. Fig. 2 shows that $f_1$ is more affected by the length parameter of the $L_1$ slot, i.e., the longer $L_1$, the $f_1$ shifts to a lower frequency. It also applies to the reverse. At high frequencies, $f_2$ was more affected by the $L_2$ length parameter, i.e., the shorter $L_2$, the frequency $f_2$ shifted to a frequency higher than the previous frequency. Therefore, the length parameter of both slots was set to obtain a frequency corresponding to the target.
Fig. 3 shows a parameter study of $y_{L1}$ and $y_{L2}$ slot positions. The change in the value of the reflection coefficient from $f_1$ was more influenced by the position of the $L_1$ slot alone, as shown in Fig. 3(a). The further up the position of slot $L_1$, the $f_1$ experiences a loss of matching condition, as shown by the blue dotted line curve. The further down the position of the slot $L_1$, the better the matching condition for the resonance frequency $f_1$, as shown by the intact black line curve. The study result of $y_{L1}$ optimum value was 1.2 mm. Fig. 3(b) shows the change in the position of slot $L_2$, which affects the resonance frequency shift in $f_1$ and $f_2$. The rise in the position of the slot $L_2$ resulted in a shift of the resonance frequencies, both $f_1$ and $f_2$, towards a higher resonance frequency than before. It was reversed if the position of slot $L_2$ was in a position close to slot $L_1$.

Fig. 4 shows the simulation of the parameter against the $W$ slot thickness. The reduced value of $W$ caused a shift of the resonant frequencies $f_1$ and $f_2$ to a higher frequency than the previous frequency. When the slot was thickened, there was a shift of the resonant frequencies $f_1$ and $f_2$ to a lower frequency. The change in the slot thickness parameter did not significantly change the reflection coefficient parameter compared to the change in the parameters $L_1$, $L_2$, and the slot positions $y_{L1}$ and $y_{L2}$. The selection of $L_1$, $L_2$, $y_{L1}$, $y_{L2}$, and $W$ values was based on the results of reflection coefficient parameters following the dual band antenna configuration design. The optimization results of the antenna design are shown in Table I.

D. Surface Current Flow

Fig. 5 shows a simulation of surface current flow on the design of antennas working at 2.45 GHz frequency. This simulation of surface current flow is necessary to determine the part of the antenna that emits electromagnetic waves into the free air. The strength of the value of the surface current parameter is demonstrated by color degradation. Color degradation from blue to red reveals strong surface currents that flow from weak strength to great strength. The same scale of surface current flow was used to detect the same strength of surface current flow across both frequencies. The scale of surface current flow in the design was 40 A/m. Fig. 5(a) shows that the antenna has an emission at the right of the antenna at slot $L_1$ in phase 0°, while in Fig. 5(b), it appears that the emission of surface current flow is present in phase 60°. In that phase, it is seen that the antenna has a surface current flow emission in the left-hand part of the slot $L_1$. It relates to the radiation pattern of the antenna design.
The simulation of surface current flow at a higher frequency, i.e., 3.3 GHz, is in slot L2, as shown in Fig. 6. In Fig. 6(a), surface current flow occurs in phase 50° with minimal surface current flow. Such a small surface current flow occurs on the right and left sides of the slot L2. Fig. 6(b) shows the maximum surface current flow occurring on the right and left sides of the L2 slot. The maximum surface current flow occurs in phase 150°.

E. Radiation Patterns

Fig. 7(a) shows the simulation results of the radiation pattern at a frequency of 2.45 GHz in the omnidirectional form for the E plane, with a cross-polarization discriminant (XPD) of about 6.5 dB and a maximum amplification direction of 2 dB at theta 180°. As the type of omnidirectional radiation pattern, then as shown in Fig. 7(a) on the right, in the H plane, the radiation pattern at the frequency of 2.45 GHz is shown in two amplification directions of 1 dB and 2 dB in the direction of theta 0° and 180°, respectively. The XPD in both directions is between about 7 dB and 13 dB.

Fig. 7(b) on the left shows the radiation pattern at a frequency of 3.3 GHz, which is also omnidirectional, with a maximum amplification direction at theta 170° of 1.5 dB and XPD of 6 dB in the E plane. The radiation pattern at a frequency of 3.3 GHz in the H plane shows two directions of amplification at theta -15° and 180° with magnitudes of 0 dB and 1 dB, respectively. An XPD of 7 dB was obtained in the 180° direction. The omnidirectional radiation pattern at both frequencies was caused by the partial grounding of this antenna design.

III. FABRICATION AND MEASUREMENT

Fig. 8 shows the results of microstrip antenna fabrication using the photo etching process. The photo etching process facilitates the fabrication of microstrip antennas compared to other antenna types. Fig. 8(a) shows the upper part of the antenna with the slot of the transmitting or irradiating part, while Fig. 8(b) shows the lower part of the antenna.

The prefabricated antenna needs to be tested for performance. One of the antenna performance test parameters is the reflection coefficient measurement parameter, in addition to measuring the antenna radiation pattern, gain, efficiency, and others. The measurement results of the antenna reflection coefficient parameters as a result of fabrication are shown in Fig. 9. Simulation results are shown in red dashed lines, while measurement results are shown in whole blue lines. The simulation results of the reflection coefficient at the level of -10 dB in the first resonance gave a bandwidth of 123 MHz (2.412–2.535 MHz), while a bandwidth of 153 MHz (2.402–2.555 MHz) was obtained from the measurement. It can be seen that the measurement results are 25% wider than the simulation results and shift by 20 MHz towards higher frequencies. At the second resonance frequency, for a reflection coefficient level of -10 dB, a measurement impedance bandwidth of 87 MHz (3.260–3.347 MHz) was obtained. The impedance bandwidth was rather commensurate with the simulation results, i.e., 88 MHz, which was in the frequency range of 3.248–3.336 MHz. There was a difference in measurement results, i.e., the resonance frequency showed a 3% shift towards higher frequencies. The reflection coefficient measurement results showed a very suitable comparison for simulation. It was shown by the impact of measurement results with simulation results on the working frequency of the antenna. The simulated FBW was 5% for \( f_1 \) and 2.67% for \( f_2 \). The FBW measurement results were 6.17% and 2.63% at a center frequency of 2.47 and 3.3 GHz.

The lowest reflection coefficient value at low frequencies was -19 dB, while the measurement results showed a smaller value, namely -21 dB. The high-frequency reflection coefficient measurement results also showed a smaller value of 10 dB compared to the simulation, which was from -24 dB to -34 dB. Fig. 9 shows the difference in depth or small value of the reflection coefficient. It is more caused by the process of soldering the connector, causing a difference in the input.
impedance value of the current input channel. Measurement of other antenna parameters, such as radiation pattern, gain, and antenna efficiency, was not done because there was an improvement in anechoic chamber room facilities.

Table II shows the comparison of the results of this study with previous studies. Table II shows that the microstrip antenna design with disconnected rectangular ring-shaped and inverted U-shaped slots has greater FBW measurement results compared to previous studies [9], [10], [21]. Such greater FBW measurement results apply to $f_1$ and $f_2$. The antenna used was a SIW microstrip [9], [10], and a regular microstrip patch with four L-shaped slots [21]. This study has the dimensions of an antenna with a smaller total volume compared to the study in [10].

IV. CONCLUSION

The dual-band microstrip antennas with a disconnected rectangular ring and inverted U slots were fabricated using Rogers Duroid 5880 substrate with a thickness of 1.575 mm. The measurement results of the reflection coefficient showed excellent results compared to the simulation results at the frequency of 2.47 GHz and 3.3 GHz. At a center frequency of 2.47 GHz, the results of FBW simulation of antenna design were obtained by 5% (2,412–2,535 MHz), while the measurement results were obtained by 61.7% (2,402–2,555 MHz). At a center frequency of 3.3 GHz, the FBW simulation results were 2.67% (3,260–3,347 MHz), while the measurement results were 2.63% (3,260–3,347 MHz). Although FBW at high frequencies is less than 5%, the measurement bandwidth is still commensurate with the research objectives; Muslim assisted conceptualization, article draft writing, corresponding authors, applied measurement bandwidth is still excellent results compared to the simulation results at the center frequency of 2.47 GHz and 3.3 GHz. At a center frequency of 2.47 GHz, the results of FBW simulation of antenna design showed improvement on the antenna efficiency compared to other antenna parameters, such as radiation pattern, gain, and antenna efficiency, was not done because there was an improvement in anechoic chamber room facilities.

ACKNOWLEDGMENT

The authors acknowledge Mr. Bagus Edi Sukoco for his assistance during the antenna measuring procedure at the National Research and Innovation Agency (BRIN), Bandung. Gratitude is also given to the JNTETI Team and reviewers for taking the time to make this article better.

REFERENCES


