EN-254

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

© Jurnal Nasional Teknik Elektro dan Teknologi Informasi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
DOI: 10.22146/jnteti.v14i4.21931

Application of You Only Look Once (YOLO) Method for
Sign Language ldentification

Reni Triyaningsih', Pradita Eko Prasetyo Utomo?, Benedika Ferdian Hutabarat?

! Information Systems Study Program, Faculty of Science and Technology, Jambi University, Muaro Jambi, Jambi 36361, Indonesia
2 Informatics Study Program, Faculty of Science and Technology, Jambi University, Muaro Jambi, Jambi 36361, Indonesia

[Submitted: 2 July 2025, Revised: 5 October 2025, Accepted: 30 October 2025]
Corresponding Author: Pradita Eko Prasetyo Utomo (email: pradita.eko@unja.ac.id)

ABSTRACT — Limited understanding of sign language has widened the social gap for deaf people, creating barriers in
communication and social interaction. To address this challenge, technology-based solutions are required to facilitate
inclusive communication. Deep learning-based detection methods, particularly the You Only Look Once (YOLO) algorithm,
have gained attention for their speed and accuracy in real-time object detection. This research aims to develop and evaluate
a YOLO training model for the identification of Indonesian sign language system (sistem isyarat bahasa Indonesia, SIBI).
The dataset was obtained from resource person at the State Special School Prof. Dr. Sri Soedewi Masjchun Sofwan, SH.
Jambi, and enriched with additional images collected from external subjects. Augmentation techniques with Roboflow were
applied to expand the dataset, and several training schemes were implemented. Model performance was assessed using
confusion matrix while considering accuracy and indications of overfitting. The results showed that the quality and quantity
of training data, as well as the epoch values, strongly influenced the accuracy of the trained model. The best performance
was achieved with 40 primary images per label class, augmented to 60 images, and trained over 24 epochs, resulting in a
confusion matrix accuracy of 99.9%. The implemented model was able to recognize SIBI gestures in real-time using a
webcam with fast processing. Overall, the proposed YOLO-based model successfully identifies sign language in real-time
and demonstrates strong potential for reducing communication barriers among deaf people. However, further refinement

and expansion of the dataset are recommended to improve effectiveness and enable broader real-world applications.

KEYWORDS — Sign Language, Real-Time Detection, You Only Look Once, YOLO Model Fine-Tuning.

. INTRODUCTION

Sign language is a form of communication commonly used
by deaf people using hand gestures, facial expressions, and
body movements to form symbols that represent letters or
words [1]. Just like any other language, sign language is a
naturally evolving system, systematic, and governed by
linguistic rules [2]. In Indonesia itself, the formal use of sign
language as a means of communication and teaching material
that has been formalized by the government is the Indonesian
sign language system (sistem isyarat bahasa Indonesia, SIBI)
[3]. SIBI is a form of oral communication adapted to sign
language, with some vocabulary taken from American sign
language (ASL) [4]. SIBI was developed through a
combination of four local, forged, invented, and absorbed signs,
which were then standardized into a national sign system. It is
published by the Ministry of Education and Culture and applied
in formal schools, such as special schools [5]. The purpose of
using SIBI in education is to help people with disabilities
actively participate, especially in teaching and learning
activities, to improve the quality of their social interactions.
Hearing and communication impairments will not prevent them
from doing their usual activities, including continuing their
education. They can still communicate using sign language.

In Indonesia, sign language is generally learned through
special schools and the deaf community, as well as specialized
books that discuss sign language. Implementing learning
activities in a deaf community is certainly not easy and is very
different from learning in a nondisabled environment. For deaf
people, they must receive education guided by qualified
teaching staff [6]. However, the nondisabled environments

p-ISSN 2301-4156 | e-ISSN 2460-5719

generally learn without the need for sign language teaching
staff, so they become less familiar with sign language.

Limited understanding of sign language among nondisabled
individuals further widens the social gap between them and the
deaf community. This situation create barriers for deaf people
in social interaction, emotions, and communication [7].
Communication can be said to be successful if what is
conveyed and intended by someone can be understood by the
interlocutor [8]. However, deaf people are more likely to have
difficulty communicating with the nondisabled community. As
a result, they are often viewed differently by the nondisabled
community, causing them to feel inferior and hopeless.

To realize quick action to overcome the communication gap
between deaf people and nondisabled people, it is necessary to
develop a system that can be used not only by teaching staff,
but also by the community to help communicate with deaf
people. Unlike spoken language, the delivery of sign language
is done using body movements as the main means of
communication [9]. This shows that sign language can be
visualized in the form of images, so that hand movements or
facial expressions can be detected automatically through
technology. The development of a sign language recognition
system aims to make it easier for people to understand sign
language [10].

One of the most commonly applied methods for object
detection is the convolutional neural network (CNN) method,
which is a popular neural network method and is in high
demand for object detection [11]. However, another object
detection method that can detect objects in real-time with a
higher level of accuracy and speed in recognizing objects has
been developed, namely the You Only Look Once (YOLO)

Reni Triyaningsih: Application of You Only ...

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

EN-255

method [12]. It was first developed by Joseph Redmon, who
proposed a grid-based object detection approach by applying a
single convolutional neural network [13]. YOLO is designed as
a unified model algorithm that instantly detects and recognizes
objects as a whole in a single process [14]. YOLO works by
dividing the input image into an S x S grid, where if an object
falls into a grid cell, then that grid cell performs the task of
detecting the object [15]. The main objective of object
detection using YOLO is to find and identify objects in an
image from predefined labels by assigning an object class and
indicating the position of the object obtained by drawing a
bounding box around it [16]. The YOLO method can also
detect objects in real-time, making it suitable for systems that
require a fast response [17].

Previous case study research applying the YOLO method
has been conducted. A research on emotion recognition in
facial images using the YOLOVS method has been conducted
[18]. Results indicated that the application of the model
successfully detecting emotions through facial images in real-
time by processing 400 dataset images consisting of happy, sad,
angry and surprised emotions, with a validation rate of mean
average precision (mAP) value reaching 90%.

Later, another study was made to detect child abuse and
bullying based on YOLOVS [19]. The research adopted a
dataset approach containing the shapes of violent and
nonviolent actions with an image size of 640 px. As a result,
the model was able to run and detect acts of violence with an
accuracy value of 85%, a precision of 81.8%, and a recall of
90%.

Other research has also developed systems to detect the
SIBI sign language [20]. The study used a dataset that
specialized in translating alphabetical signs from 24 alphabets
and was grouped into 4 groups, with each group having 20
image datasets. The results showed that the application of the
YOLO method was able to detect gestures with evaluation
values from group 1, resulting in an F1 score of 90.90%, group
2 0of 97.1%, group 3 of 90.90%, and group 4 of 83.8%.

Some of these studies have applied algorithms from the
YOLO model to detect objects and produce good evaluation
values. Although object detection research by applying the
YOLO method has been carried out, there has been no research
study related to sign language identification that is applied in
real-time covering datasets from three categories, namely
alphabets, numbers and basic words from SIBI, especially data
samples obtained directly from the resource person at the State
Special School Prof. Dr. Sri Soedewi Masjchun Sofwan, SH.
Jambi. This study proposes the development of a sign language
recognition system based on computer vision, using a model
trained with the You Only Look Once (YOLO) method, which
can directly recognize hand movements through a camera
without the need for additional auxiliary tools. The developed
model is specifically designed for real-time operation and
provides recognition results in text and audio formats, enabling
two-way communication between deaf and nondeaf people
with the aim that the developed model can be an effective
communication aid and social interactions between deaf and
nondeaf people.

In this study, the model was trained using raw data obtained
directly, rather than data sets specifically prepared for local
sign language categories. This approach allows for more
realistic and practical system development, as the data reflect
real-world variations in hand gestures and lighting conditions
commonly encountered in daily environments.

Reni Triyaningsih: Application of You Only ...

Il. METHODOLOGY

This section discusses matters related to the flow of
research work, including datasets, data preprocessing, model
training, model evaluation, implementation, and system testing.

A. DATASETS

In this research, the dataset used for the model training
process was SIBI. Gesture image data obtained directly from
resource person at the State Special School Prof. Dr. Sri
Soedewi Masjchun Sofwan, SH. Jambi. The initial stage before
taking pictures was the process of interviewing sign experts to
determine the class of sign labels that were modeled. The
results of the interview showed that the label coverage of the
dataset consisted of three categories, namely alphabet, number,
and basic words from SIBI. Alphabetical data consists of A-Z,
excluding the letter J, which is symbolized as movement. The
numeric data consists of satu—sembilan, and the basic words
consisted of “bodoh,” “cinta,” “jahat,” “kamu,” “kasih,”
“maaf,” “makan,” “masuk,”’ “minum,” “nama,” “rumah,”’
“saya,” “terima,” “tidur,” “tolong.”

The process of capturing image data from the resource
person was carried out using a cellphone camera with a 1:1
aspect ratio and a 12 MP resolution. Sign image data obtained
from resource person at the special school were used as
reference data for each of the specified label classes. Then, to
enrich the content of the dataset, image data were also collected
from subjects other than the primary resource person by
directly capturing images using cellphone and laptop camera.
The laptop camera had a 16:9 aspect ratio and a resolution of
0.9 MP. During the shooting process, the camera was placed at
approximately 50—70 cm from the subject, at a height parallel
to the subject’s chest level. Lighting conditions were
maintained using natural daylight or evenly distributed indoor
lighting to minimize shadows and ensure clear visibility of
hand movements. From this process, 70 primary images were
collected for each predetermined label class.

B. DATA PREPROCESSING

Data preprocessing refers to converting raw data into a
format that is easier for machines to understand. Data
preprocessing was performed on the Roboflow platform that
provides a web-based interface with the stages of image
labeling, splitting the dataset, and data augmentation [21].
Image labeling was processed by annotating and grouping data
according to the class name of each object in the image to store
information related to the image. The image labeling process
was processed manually by providing bounding boxes to the
image objects one by one to ensure the accuracy of the
annotation.

Data that have been annotated and labeled with class
information were then be split into three subsets, namely
training, validation, and testing subsets: 70% was used as the
main material for training the model, 20% was allocated as the
validation subset to monitor the performance of the model
during the training process, and 10% was used as the testing
subset to test the performance of the model that had been
trained.

The final stage of data preprocessing was to include
augmentation to expand the variety in the data without
increasing the amount of primary data. The augmentation
methods used were crop, which involved cutting out part of an
image so that it no longer had the same position or size;
grayscale, which removed color information from images so

p-ISSN 2301-4156 | e-ISSN 2460-5719

EN-256

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

that the model could focus more on shapes and patterns; blur,
which applied a blurring images to simulate an out-of-focus
camera; noise, which added random visual noise to the image,
such as small dots or slight distortions; and brightness, which
adjusted the brightness of the image to simulate different
lighting conditions. The data augmentation process was done
by not adding augmentation in the form of image flip because
there was the same gesture for two different class labels and
was distinguished based on the position of the hand when
taking the picture.

C. MODEL TRAINING

The model training process was conducted using the
YOLOv!11 model, which was officially released on September
30th, 2024, and served as the main detection framework. The
YOLOv11l was selected because it represents the latest
development in the YOLO family, offering significant
improvements in real-time object detection performance
compared to previous versions such as YOLOvS, YOLOV9,
and YOLOv10. Among the available YOLOv11 variants (nano,
small, medium, large, and x-large), the YOLOvI11n (nano)
model was chosen for its lightweight architecture, enabling
faster inference speeds and real-time implementation on
limited graphic processing unit (GPU) resources while
maintaining competitive accuracy.

Google Colab was used as the software to operate the model
training process. Model training implemented the Tesla T4
GPU runtime to speed up the execution process. Table I shows
the combination of hyperparameters used for the success of the
training process. The dataset was trained by applying a
stepwise training procedure with a maximum number of epochs
of 100. The approach aims to obtain the best epoch value that
produces a model with optimal performance. If the training
process yields a model with an evaluation value in the optimal
category, then the training process is stopped even though the
epoch value has not reached the maximum value. This strategy
is applied to avoid the risk of overfitting, where the model is
too explicit on the training data, which results in the model
being less able to handle new data because it tends to memorize
the training data instead of learning from the training data.

D. MODEL EVALUATION

An evaluation of the trained model was done by looking at
the model’s training curve and confusion matrix value. The
confusion matrix visualizes the distribution of model prediction
errors in a single view. From the basic value of the confusion
matrix prediction results, it can be concluded that the
evaluation matrix values include precision, recall, accuracy, F1
score, and mean average precision (mAP). The calculation
results of the evaluation matrix value can be used to measure
the overall performance of the model [22]. The calculation of
the evaluation value depends on the base value of the confusion
matrix prediction result, which is the main component to get
the calculation value of other evaluation matrices, including
true positive (TP), true negative (TN), false positive (FP), and
false negative (FN). In the precision calculation category, the
value is determined from the number of elements that are
actually positive, measured against the total positive predicted
elements.

(1)

Precision = :
TP+FP

p-ISSN 2301-4156 | e-ISSN 2460-5719

TABLE I
HYPERPARAMETER COMBINATION

No. Parameters Value

1. Epoch Maximum 100
2. Batch Size 16

3. IoU 0.6

4. Learning Rate 0.01

Another evaluation matrix is recall, which measures the
model’s ability to collect all positive elements in a dataset [23].
The recall value is calculated by measuring the ratio of
elements that are true positive to the total number of elements
that should be predicted as positive.

Recall = —=— ©)
TP+FN

Another evaluation element that becomes an important
point to determine the optimization of a model is none other
than accuracy, which measures how well an algorithm
performs with each data element having the same weight and
contributing equally to the Accuracy value.

TP+TN

Accuracy = ————
TP+TN+FP+FN

3)

From the calculation of the values of the three evaluation
matrices above, the F1 score value can also be calculated,
which is part of the most frequently applied parametric
F measures. F1 score works by calculating the average
comparison value of precision and recall [24].

Precision X Recall
F1 Score =2 x ——27 % T202 4)

Precision+Recall

The last evaluation matrix value that is considered in this
study as a determinant of the optimization of a model is mAP,
which is obtained from the average calculated value of average
precision (AP). The AP value is obtained from the calculation
between precision and recall.

mAP =~ T AP, ©)

By combining all the calculated values of the evaluation
matrix, an overall view of the performance of the trained model
was obtained. The model with the best evaluation results was
used to implement the model into real-time sign language
detection.

E. SYSTEM IMPLEMENTATION AND TESTING
Implementing the model into a real-time system aims to
provide users access to interact directly with the model. The
training model that had passed the evaluation process and had
the best performance was implemented in real-time by utilizing
computer vision. The application of computer vision enables
computers to “see” and capture objects in the visual
environment [25]. The utilization of computer vision in the
field of deep learning can be divided into classification,
segmentation, detection, and generation, which can provide
benefits in various purposes, for example, for security,
information, monitoring, and other benefits [26]. The most
commonly used task of computer vision is object detection,
which refers to the ability of a computer to identify visual
objects belonging to certain class, in order to determine
whether there are examples of objects of a certain category,
such as humans, vehicles, or animals [27]. In this research, the
model was implemented using an open-source library
commonly applied to systems adopting computer vision,

Reni Triyaningsih: Application of You Only ...

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

EN-257

namely OpenCV. This library provides many task functions,
such as motion tracking, object detection, face recognition, and
segmentation. By applying OpenCV, real-time images or
videos can be adapted according to the needs of the system [28].
The trained model was linked into Python code and OpenCV
was employed library to access the webcam camera used as a
live image capture tool. The model identification results were
shown on the device screen in text form. The identified text was
then translated into audio using the Google text-to-speech
(gTTS) library. The gTTS libary is a tool that converts text into
MP3 format so that it can be saved as an audio file [29]. The
generated audio is then played using the Pygame library,
specifically the pygame.mixer module, which is used to play
audio files [30].

The system that had been successfully run was tested in the
final stage to ensure that it could be used in the real
environment. In the test, four main aspects of testing were listed:
responsiveness, which was to calculate the frame per second
(FPS) value of each class label when the system was running
using the timing function provided by the OpenCV library to
ensure the model could identify objects without significant lag;
accuracy, which assessed the level of conformity of the model
detection results with the gesture performed by the user;
robustness, which evaluated the system’s ability to recognize
cue objects in various lighting conditions, backgrounds, and
other distortions; and voice system, which ensured that the text
interpreted into audio was synchronized and running properly.

Ill. RESULTS AND DISCUSSION
This section describes the stages that have been carried out
in the research to obtain the final results of the research.

A. DATASET ACQUISITION

Dataset acquisition was done through two procedures in
image data capture. In the first procedure, the data sample that
became the gesture cue reference for each class label was
obtained directly from the resource person at the State Special
School Prof. Dr. Sri Soedewi Masjchun Sofwan, SH. Jambi.
The data collection process was taken using a cellphone camera,
resulting in 49 primary data images corresponding to the
number of predefined class labels. Then, the second procedure
was carried out to expand the data to a total of 70 primary data
images for each class label by adding images taken from
subjects outside the resource person while maintaining the
gestures from the reference data images. The images in the
second procedure were taken using both a cellphone camera
and a laptop camera to make the dataset more diverse and
representative. The dataset used in this study cannot be made
publicly available due to privacy concerns and its large size.
However, Figure 1 presents the image data acquisition results
as a representative overview of the dataset. The data obtained
was stored in one main folder, where each class label was
placed in a separate subfolder according to its class label.

B. DATASET PREPROCESSING

The collected data were prepared for model training by
annotating each class label on all images using Roboflow. Each
image was annotated individually according to its respective
class, and the results were validated directly by the authors in
collaboration with the resource person from the State Special
School Prof. Dr. Sri Soedewi Masjchun Sofwan, SH. Jambi to
ensure labeling accuracy. For the alphabetic and numeric
category classes, the labeling was focused on the area of the
hand that formed the sign language gesture. Whereas, for the

Reni Triyaningsih: Application of You Only ...

[§

(‘h

-
1

Figure 1. Image data acquisition result.

#
1

Figure 2. Image data annotation.

Original
Image

B R B O

Figure 3. Dataset augmentations.

Crop Grayscale Blur Noise Brightness

basic words class, the labeling contained the body parts
involved in the gesture, such as the face, chest, and arms,
depending on the characteristics of each gesture. Figure 2
depict the image labeling process performed on the Roboflow
platform.

Once the labeling stage was complete, the annotated dataset
was split into three subsets: training, validation, and testing.
The total number of primary data images for each class label
was 70, so the total number of primary data images obtained in
the dataset for 49 label classes was 3,430 images. Of the total
number of images, 70% (2,399 images) were allocated to the
training subset, 20% (687 images) to the validation subset, and
10% (344 images) to the testing subset.

The final preprocessing step involved augmenting the
image to enhance the training subset’s dataset. The
augmentation process was still done on the Roboflow platform,
which could also resize the images to 640 % 640 px so that all
images had the same size. Figure 3 depicts the applied
augmented image variations in the dataset, including crop,
grayscale, blur, noise, and brightness adjustments. The final
result of preprocessing produced a total of 5,829 image data in
the training subset. This number was obtained because the
augmentation process was only applied to the training subset,
while the validation and testing subsets were kept without
augmentation so that the evaluation results remained objective
and represented real conditions.

C. MODEL TRAINING

The model training process was carried out through
incremental epoch cycles, where the entire dataset was
processed in each round. In the first training, the model was
trained for 10 epochs with a batch size of 16, an intersection

p-ISSN 2301-4156 | e-ISSN 2460-5719

EN-258

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

TABLE II
DATASET DISTRIBUTION

. Number of Average Initial Images Total Average Selected Images
Categories Total Images
Classes per Class Images per Class
Alphabet 25 70 1,750 40 1,000
Number 9 70 630 40 360
Basic Words 15 70 1,050 40 600
Total 49 3,430 1,960

Train vs Validation Loss

—— Train Box Loss
1.2 Validation Box Loss

0.6 q

2 4 6 8 10
Epoch

Figure 4. Train vs validation loss curve of the initial model.

over union (IoU) of 0.6, and a learning rate of 0.01. However,
the training results obtained did not show good results, since
during the training process, the model showed indications of
overfitting. This can be seen from the significant difference
between the values on the training loss curve, which continues
to decrease and reaches a low point. Meanwhile, Figure 4
depicts that the value on the validation loss curve tends to show
no significant improvement. The loss value in the train box loss
consistently decreased throughout the end of the training
process, suggesting that the model could learn and adapt to the
parameters used with the training data. However, the loss value
in the validation box loss remained stagnant and did not
decrease after several epochs. Starting from epoch 4 to epoch
10, the gap between the train box loss and validation box loss
curve lines significantly apparent, which indicates the model
overfitting.

This situation needs to be improved by performing a model
fine-tuning procedure, namely, retraining the pretrained model
using the corrected data. Applying the fine-tuning procedure
will save more time in the training process than training the
model from scratch. The fine-tuning process is carried out by
improving the dataset and parameter combinations used during
training to obtain more optimal training results.

D. FINE-TUNING

The fine-tuning process was initiated from checking the
quality of all the images in the dataset resulting from the
preprocessing stage. The findings obtained that were results of
data preprocessing captured using a laptop camera decreased in
quality from the results of resizing the image. The image looked
narrow, and the gesture shape became disproportionate.
Therefore, the primary data were reselected by retaining
images that were consistent in proportion and object shape for
model refinement. From a total of 3,430 primary data images
with an average of 70 images per label class, the 40 best quality
images were obtained for each label class, bringing the total
data used to 1,960. All data were captured using a cellphone
camera with a 1:1 ratio. Table II shows the distribution of data
before and after the selection process for high-quality images.
The selected images then went through the data preprocessing

p-ISSN 2301-4156 | e-ISSN 2460-5719

stage again, but with different techniques. The data
preprocessing stage to prepare the dataset that was used in the
fine-tuning process utilized the library in Python before being
re-annotated in Roboflow.

1) FINE-TUNING DATASET PREPROCESSING

The initial stage of the data preprocessing process is to
perform the background removal technique on the image. The
dataset selected by the fine-tuning process was uploaded into a
Google Drive folder and processed using Google Colab. The
purpose of removing the background is to remove the
background so that the model focuses on the main object in the
image without being distracted by other irrelevant elements.
The process of removing the background was done by opening
all images from the input folder using Python code and
executing them using the rembg library. The results of the
remove background process were saved using the os.mekedirs
function to the remove background results folder.

Dataset preprocessing was followed by a resize process to
equalize the image size to 640 x 640 px so that the training
process was organized and in accordance with the input image
model used. The resize process was done by retrieving image
data from the remove background result folder. The resize
process was done by utilizing the Python imaging library (PIL),
and the image was resized using the thumbnail() method to
maintain the aspect ratio of the image. Then, the resized results
were saved into a new resized result folder.

To ensure the images used in modeling had good visuals,
was not blurry, and still maintained the details of gesture cues,
the process of checking image quality using the Laplacian
variance method was carried out. The method was used to
detect blur based on the calculation of pixel value variations by
setting a threshold value of 50, and the passed images were
saved into the final folder of preprocessing results using Python.

The last folder used to store the final results of
preprocessing using Python was then downloaded, and
relabeling, splitting, and augmentation were carried out without
entering the resize process in Roboflow. The labeling, splitting,
and image augmentation processes followed the same data
preprocessing procedure before the fine-tuning process, but
were conducted in increments of 10, forming data groups
consisting of 10, 20, 30, and 40 primary images data per label
class. The final result of data preprocessing was four zipped
folders resulting from labeling, splitting, and augmentation
according to the amount of primary data.

2) FINE-TUNING MODEL

The model fine-tuning process applied a four-scenario
method of gradual data training process, starting from training
using 10 primary data images to 40 primary data images per
class label. This approach was applied as an effort to anticipate
the risk of overfitting, especially considering the limited
amount of data. The model with the best performance was used
as raw material for system implementation. Table IIT shows the

Reni Triyaningsih: Application of You Only ...

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

EN-259

TABLE IIT
MODEL FINE-TUNING TRAINING SCENARIOS

Number of Primary Data per Class Label

Number of Data after Augmentation per Class Label

Training Validation Testing Total Training Validation Testing Total Best Epoch
First Scenario 7 2 1 10 14 2 1 17 21
Second Scenario 14 4 2 20 28 4 2 34 21
Third Scenario 22 6 2 30 44 6 2 52 25
Fourth Scenario 30 8 2 40 60 8 2 70 24

data distribution for each model fine-tuning scenario and the
best epoch obtained. During the fine-tuning model process, the
training hyperparameters were readjusted to suit the dataset.
After several training trials, the optimal hyperparameter
configuration for each fine-tuning scenario was identified. The
selected hyperparameters included 40 epochs a patience value
of 3, a batch size of 16, and an IoU of 0.6. Additionally, the
learning rate was reduced to 0.001, with freeze set to 1 and
dropout set to 0.3.

The training process by applying the early stopping
mechanism with patience at 3 aimed to stop the training process
early if there was no performance improvement during the
epoch increments. The freeze and dropout parameters were
applied to prevent overfitting by randomly removing some
neurons while training the model. During the training process,
although the maximum number of epochs was set at 40, in
reality, the best results were obtained at no more than 30. For
example, for the model in the fourth scenario, the best result is
at the 24th epoch. Although the training process continued past
that epoch, no significant performance improvement was found,
so the 24th epoch was considered the optimal epoch.

E. MODEL EVALUATION

Model evaluation is done to determine the best model
among all completed model training schemes. The model can
be categorized as a good model if the evaluation results show
optimal model performance and there is no indication of
overfitting during the training process. A high evaluation
matrix score alone is not enough to conclude that the model is
feasible to implement. Models that experienced overfitting
were also categorized as unfit because they tended to recognize
patterns from the training data and had difficulty in identifying
gesture cues when applied in real environments. An indication
of the presence or absence of overfitting during the training
process can be seen through the train vs validation loss
evaluation curve.

Figure 5 depicts the evaluation results of the training
process based on the train vs validation loss curve, which
indicates that the model in the first scenario did not perform
optimally, as the validation loss does not show consistent
improvement and diverges from the training loss. The
validation loss value on the curve is unstable and often
fluctuates up and down during the training process, indicating
that the model has not learned optimally from the limited data.
However, in the subsequent training process in the second to
fourth scenarios of the model, the curve began to show a more
stable decreasing pattern suggesting that the error (loss) values
on the training and validation data were decreasing, which
suggests that the model training process was running well
without any indication of overfitting. So, it can be concluded
that increasing the amount of data in the training subset can
effectively improve the performance of the model.

The performance of each model can also be seen in the
confusion matrix value, which gives an idea of the extent to

Reni Triyaningsih: Application of You Only ...

First Scenario Second Scenario

Third Scenario Fourth Scenario

Figure 5. Train vs validation loss curve fine-tuned model.

which the model can predict gesture cues correctly. The
confusion matrix is a table that shows the number of model
predictions for each label class and compares them with the
predicted correct answers (actual labels). The value of the
confusion matrix is the main component in calculating the
value of other evaluation matrices. Figure 6 depicts the
distribution of prediction results for each model fine-tuning
scenario across all label classes. The prediction outcomes were
then recalculated to obtain additional evaluation metrics,
including precision, recall, accuracy, F1 score, and mAP. All
figures, including training curves and confusion matrices, were
generated directly from Python outputs during the model
training process.

Table IV shows the average values of each evaluation
component for each model fine-tuning scenario, based on the
results of the prediction value calculations. From the evaluation
results, the model with the best results was obtained from fine-
tuning the fourth scenario model with the training process using
40 primary data for each label class, followed by augmentation
to 60 images from each label class, and with the best epoch at
24. The training results showed no indication of overfitting,
with the precision evaluation matrix value reaching 99.4%,
recall 97.8%, accuracy 99.9%, F1 score 98.7%, and the mAP
value 94.3%.

F. SYSTEM IMPLEMENTATION AND TESTING

The implementation of the model in the real-time system
was built using Python program code with the help of Notepad
as a text editor. A combination of several libraries needed, such
as OpenCV, was used to access the webcam camera, read and
display video frames, and display detection results. Then, the
gTTS library was used to convert the detected text into audio,
and with the help of pygame library, to play the audio directly.
The time library is also used to calculate and display the FPS
of the detection speed.

The model was run using a local CPU device via Anaconda
Prompt as an interface to run the Python environment and the
prepared detection scripts that had been prepared. This

p-ISSN 2301-4156 | e-ISSN 2460-5719

EN-260

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

First Scenario Second Scenario

Fourth Scenario

Figure 6. Visualization of the confusion matrix prediction fine-tuned model.

TABLE IV
AVERAGE EVALUATION MATRIX VALUE

Pretrained Model

First Second Third Fourth
Scenario Scenario Scenario Scenario
Precision 0.770 0.929 0.975 0.994
Recall 0.695 0.935 0.956 0.978
Accuracy 0.989 0.989 0.997 0.999
F1 score 0.816 0.904 0.948 0.987
mAP 0911 0.894 0.928 0.943

implementation was fully conducted on local hardware without
relying on cloud-based resources. Figure 7 depicts the
implementation output of the SIBI sign language identification
system.

After the system was implemented, testing was conducted
to determine whether the system could identify sign language
well in the real environment. This test aimed to evaluate the
overall performance of the system when run by taking input
images from a live camera. The responsiveness aspect was
tested by measuring the absence of any significant delay in
detecting gesture signals for each label during the detection
process. Responsiveness was then calculated based on the FPS
value obtained from the average of 10 detection attempts for
each class label. The accuracy aspect was evaluated by running
the system and recording detection results. Detections were
considered accurate if the identified gesture matched the
performed gesture and the confidence score > 80%. Robustness
was assessed by operating the system under various
background and lighting conditions, where successful detection
under these conditions was considered a success. Finally, the
voice output system was tested to ensure that the generated
audio remained synchronized with the recognized text during
operation.

After the system was executed and tested, the results
showed that the responsiveness of the system in detecting each
class label was relatively consistent, with an average of 5 FPS.
In this study, no minimum FPS value was defined, as the main
focus was to verify whether the system could perform real-time
detection without noticeable delay. Although the FPS was
relatively low due to the CPU-based implementation, the model
still proved effective in recognizing sign language gestures.

p-ISSN 2301-4156 | e-ISSN 2460-5719

Figure 7. Sign language identification system display.

Future improvements in FPS can be achieved by increasing the
training data, applying more diverse augmentation, and
utilizing more powerful hardware. Overall, the detection results
for all class labels were accurate, with confidence scores
consistently >80%. However, several class labels, namely “v,”
“w,” “dua,” and “enam” showed lower accuracy due to
frequent misclassifications caused by the similarity of their
gesture forms. These labels only achieved confidence scores in
the range of 50% to 70%. Then, the results of robustness testing
showed that the alphabet and number class categories category
still had limited detection capabilities because the system was
only able to detect these labels in clean background conditions.
This is the effect of the dataset used in the model training
process, where the dataset has a clean background as the output
of the remove background. In the final test, the voice system
was evaluated, and the voice output of each label class was
always in sync with the text detected by the system.

IV. CONCLUSION

The results of this research show that sign language,
especially SIBI, can be identified in real-time using a YOLO-
based training model. The results also show that the data quality,
data quantity, and the epoch value significantly affect the
quality of the trained model. The YOLO model training in this
study achieved the best accuracy during the fine-tuning process
in the fourth scenario, with the number of primary data as many
as 40 images per label class, with a total of 60 images of subset
training after augmentation per label class. The model trained
at epoch of 24 produced a training accuracy value of 99.9%,
based on the calculation of the confusion matrix evaluation
value. Based on the research results, the developed sign
language identification system can identify signs through input
images taken directly using a webcam and processed in a short
time. Thus, the target of developing the YOLO model for
identifying sign language has been achieved. However, the
model still needs further refinement to address its shortcomings
in this study before it can be widely applied in real-world
settings. This study will help pave the way for better future
research. Future research is recommended to enrich the
diversity of backgrounds in the dataset and to adjust the system
according to the application domain. Applying more variations
of augmentation can possibly overcome the problem of false
detection due to similar gestures between labels, and

Reni Triyaningsih: Application of You Only ...

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

EN-261

supplementing the alphabetic dataset by including the alphabet
J symbolized in gestures through a video-based data capture
and model training approach. For broader applicability,
implementing the system in a more accessible form, such as a
mobile application or similar platform, is essential for the
model to be truly usable in a real-world environment.

CONFLICTS OF INTEREST

The authors declare that the article entitled “Application of
You Only Look Once (YOLO) Method for Sign Language
Identification™ is written free from conflict of interest.

AUTHORS’ CONTRIBUTIONS

Conceptualization, Reni Triyaningsih, Pradita Eko Prasetyo
Utomo and Benedika Ferdian Hutabarat; methodology, Reni
Triyaningsih, Pradita Eko Prasetyo Utomo and Benedika
Ferdian Hutabarat; software, Reni Triyaningsih; validation,
Pradita Eko Prasetyo Utomo and Benedika Ferdian Hutabarat;
formal analysis, Pradita Eko Prasetyo Utomo; investigation,
Reni Triyaningsih and Pradita Eko Prasetyo Utomo; resources,
Pradita Eko Prasetyo Utomo and Benedika Ferdian Hutabarat;
data curation, Reni Triyaningsih; writing-original drafting,
Reni Triyaningsih; writing-reviewing and editing, Pradita Eko
Prasetyo Utomo and Benedika Ferdian Hutabarat; visualization,
Reni Triyaningsih; supervision, Pradita Eko Prasetyo Utomo
and Benedika Ferdian Hutabarat; project administration,
Pradita Eko Prasetyo Utomo and Benedika Ferdian Hutabarat;
funding acquisition, Reni Triyaningsih;

ACKNOWLEDGMENT

The author would like to thank the Faculty of Science and
Technology, University of Jambi; and the State Special School
Prof. Dr. Sri Soedewi Masjchun Sofwan, SH. Jambi for their
invaluable support and assistance in the success of this research.
the authors greatly appreciate their cooperation and
commitment to advance this research.

REFERENCES

[1] N.P.L. Wedayanti, A.P. Lintangsari, and G.A.P. Wirawan,
“Perkembangan bahasa isyarat daerah Denpasar,” Linguist. Indones., vol.
39, no. 2, pp. 217-223, Aug. 2021, doi: 10.26499/1i.v39i2.230.

[2] D. Bragg et al., “Sign language recognition, generation, and translation:
An interdisciplinary perspective,” in ASSETS '19, Proc. 21st Int. ACM
SIGACCESS Conf. Comput. Access., 2019, pp. 16-31, doi:
10.1145/3308561.3353774.

[3] M. Sholawati, K. Auliasari, and Fx. Ariwibisono, “Pengembangan
aplikasi pengenalan bahasa isyarat abjad SIBI menggunakan metode
convolutional neural network (CNN),” JATI, vol. 6, no. 1, pp. 134-144,
Feb. 2022, doi: 10.36040/jati.v6i1.4507.

[4] A. Pratiwi, “Penggunaan sistem isyarat bahasa Indonesia (SIBI) sebagai
media komunikasi (Studi pada siswa tunarungu di SLB Yayasan Bukesra
Ulee Kareng, Banda Aceh),” J. Ilm. Mhs. FISIP (JIMFISIP), vol. 4, no.
3, pp. XxX—xX, Aug. 2019.

[5] LJ.Thiraetal., “Pengenalan alfabet sistem isyarat bahasa Indonesia (SIBI)
menggunakan convolutional neural network,” J. Algoritma, vol. 20, no.
2, pp. 421432, Oct. 2023, doi: 10.33364/algoritma/v.20-2.1480.

[6] R.R.D.Jannah, “Pola komunikasi guru dalam meningkatkan kemampuan
belajar siswa tunarungu di sekolah luar biasa negeri Lubuk Linggau,”
Wardah, vol. 22, no. 2, pp. [1-15 Dec. 2021, doi:
10.19109/wardah.v22i2.10830.

[71 E. Juherna, E. Purwanti, Melawati, and Y.S. Utami, “Implementasi
pendidikan karakter pada disabilitas anak tunarungu,” J. Gold. Age, vol.
4, no. 1, pp. 12-19, Jun. 2020, doi: 10.29408/jga.v4i01.1809.

[8] I Damayanti and S.H. Purnamasari, “Hambatan komunikasi dan stres
orangtua siswa tunarungu sekolah dasar,” J. Psikol. Insight, vol. 3, no. 1,
pp. 1-9, Apr. 2019, doi: 10.17509/insight.v3i1.22311.

[9]1 E. Mustapi¢ and F. Malenica, “The signs of silence — An overview of
systems of sign languages and co-speech gestures,” ELOPE, Engl. Lang.

Reni Triyaningsih: Application of You Only ...

Overseas Perspect. Eng., vol. 16, no. 1, pp. 123—144, Jun. 2019, doi:
10.4312/elope.16.1.123-144.

[10] Renaldy and A.B. Dharmawan, “Pengenalan citra bahasa isyarat
berdasarkan sistem isyarat bahasa Indonesia menggunakan metode vision
transformer,” JIKSI (J. Ilmu Komput, Sist. Inf.), vol. 12, no. 2, pp. 1-9,
Jul. 2024, doi: 10.24912/jiksi.v12i2.31559.

[11] A. Jinan and B.H. Hayadi, “Klasifikasi penyakit tanaman padi
mengunakan metode convolutional neural network melalui citra daun
(Multilayer perceptron),” J. Comput. Eng. Sci., vol. 1, no. 2, pp. 37-44,
Apr. 2022.

[12] Y. Hartiwi, E. Rasywir, Y. Pratama, and P.A. Jusia, “Sistem manajemen
absensi dengan fitur pengenalan wajah dan GPS menggunakan YOLO
pada platform Android,” J. Media Inform. Budidarma, vol. 4, no. 4, pp.
1235-1242, Oct. 2020, doi: 10.30865/mib.v4i4.2522.

[13] D.N. Alfarizi et al., “Penggunaan metode YOLO pada deteksi objek:
Sebuah tinjauan literatur sistematis,” J. Artif. Intel. Sist. Penunjang
Keputusan, vol. 1, no. 1, pp. 55-63, Jun. 2023.

[14] J.S.W. Hutauruk, T. Matulatan, and N. Hayaty, “Deteksi kendaraan
secara real time menggunakan metode YOLO berbasis Android,” J.
Sustain., J. Has. Penelit. Ind. Terap., vol. 9, no. 1, pp. 8—14, May 2020,
doi: 10.31629/sustainable.v9il.1401.

[15] J.Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in 2016 IEEE Conf. Comput. Vis.
Pattern ~ Recognit. ~ (CVPR), 2016, pp. 779-788, doi:
10.1109/CVPR.2016.91.

[16] D. Pestana et al., “A full featured configurable accelerator for object
detection with YOLO,” IEEE Access, vol. 9, pp. 75864-75877, May
2021, doi: 10.1109/ACCESS.2021.3081818.

[17] A. Riansyah and A.H. Mirza, “Pendeteksi mobil berdasarkan merek dan
tipe menggunakan algoritma YOLO,” SMATIKA, STIKI Inform. J., vol.
13, no. 01, pp. 43-52, Jun. 2023, doi: 10.32664/smatika.v13i01.719.

[18] A. Gallu, A.R. Himamunanto, and H. Budiati, “Pengenalan emosi pada
citra wajah menggunakan metode YOLO,” KESATRIA, J. Penerapan
Sist. Inf. (Komput. Manaj.), vol. 5, no. 3, pp. 1253-1261, Jul. 2024, doi:
10.30645/kesatria.v5i3.444.

[19] G.A. Sidik, “Deteksi tindak kekerasan dan perundungan pada anak
berbasis YOLOVS (You only look once),” Kohesi, J. Multidisiplin
Saintek, vol. 3, mno. 9, pp. 71-80, Jun. 2024, doi:
10.3785/kohesi.v3i9.4044.

[20] B.K.Pratama, S. Lestanti, and Y. Primasari, “Implementasi algoritma you
only look once (YOLO) untuk mendeteksi bahasa isyarat SIBL” J.
ProTekInfo, wvol. 11, no. 2, pp. 7-14, Aug. 2024, doi:
10.30656/protekinfo.v11i2.9105.

[21] L.Mahdiyah, S. Oktamuliani, and W.L. Putri, “Penerapan algoritma deep
learning YOLOv8 pada platform Roboflow untuk segmentasi citra
panoramik,” J. Fis. Unand (JFU), vol. 14, no. 3, pp. 228-234, May 2025,
doi: 10.25077/jfu.14.3.228-234.2025.

[22] M. Heydarian, T.E. Doyle, and R. Samavi, “MLCM: Multi-label
confusion matrix,” IEEE Access, vol. 10, pp. 19083-19095, Feb. 2022,
doi: 10.1109/ACCESS.2022.3151048.

[23] M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class
classification: An overview,” 2020, arXiv:2008.05756.

[24] D. Chicco and G. Jurman, “The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation,” BMC Genom., vol. 21, pp. 1-13, Jan. 2020, doi:
10.1186/s12864-019-6413-7.

[25] S.V.N. Afni, E.P. Silmina, and .B. Pangestu, “Computer vision used to
monitor the youth during the pandemic COVID-19,” in Procedia Eng.
Life Sci., 2021, pp. 1-4, doi: 10.21070/pels.v1i2.1019.

[26] T.A. Dompeipen, S.R.U.A. Sompie, and M.E.I. Najoan, “Computer
vision implementation for detection and counting the number of humans,”
J. Tek. Inform., vol. 16, no. 1, pp. 65-76, Mar. 2021, doi:
10.35793/jti.v16i1.31471.

[27] L. Liu et al., “Deep learning for generic object detection: A survey,” Int.
J. Comput. Vis., vol. 128, no. 2, pp. 261-318, Feb. 2020, doi:
10.1007/s11263-019-01247-4.

[28] H. Adusumalli et al., “Face mask detection using OpenCV,” in 2021 3rd
Int. Conf. Intell. Commun. Technol. Virtual Mob. Netw. (ICICV), 2021,
pp. 1304-1309, doi: 10.1109/ICICV50876.2021.9388375.

[29] O.P. Orochi and L.G.Kabari, “Text-to-speech recognition using Google
APL” Int. J. Comput. Appl., vol. 183, no. 15, pp. 18-20, Jul. 2021, doi:
10.5120/ijca2021921474.

[30] “Pygame,” Pygame. Access date: 25-Sep-2025. [Online]. Available:
https://www.pygame.org

p-ISSN 2301-4156 | e-ISSN 2460-5719

EN-262 Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

This page is intentionally left blank

p-ISSN 2301-4156 | e-ISSN 2460-5719 Reni Triyaningsih: Application of You Only ...

