
Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Reni Triyaningsih: Application of You Only ...

© Jurnal Nasional Teknik Elektro dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

DOI: 10.22146/jnteti.v14i4.21931

Application of You Only Look Once (YOLO) Method for
Sign Language Identification

Reni Triyaningsih1, Pradita Eko Prasetyo Utomo2, Benedika Ferdian Hutabarat2

1 Information Systems Study Program, Faculty of Science and Technology, Jambi University, Muaro Jambi, Jambi 36361, Indonesia
2 Informatics Study Program, Faculty of Science and Technology, Jambi University, Muaro Jambi, Jambi 36361, Indonesia

[Submitted: 2 July 2025, Revised: 5 October 2025, Accepted: 30 October 2025]

Corresponding Author: Pradita Eko Prasetyo Utomo (email: pradita.eko@unja.ac.id)

ABSTRACT — Limited understanding of sign language has widened the social gap for deaf people, creating barriers in

communication and social interaction. To address this challenge, technology-based solutions are required to facilitate

inclusive communication. Deep learning-based detection methods, particularly the You Only Look Once (YOLO) algorithm,

have gained attention for their speed and accuracy in real-time object detection. This research aims to develop and evaluate

a YOLO training model for the identification of Indonesian sign language system (sistem isyarat bahasa Indonesia, SIBI).

The dataset was obtained from resource person at the State Special School Prof. Dr. Sri Soedewi Masjchun Sofwan, SH.

Jambi, and enriched with additional images collected from external subjects. Augmentation techniques with Roboflow were

applied to expand the dataset, and several training schemes were implemented. Model performance was assessed using

confusion matrix while considering accuracy and indications of overfitting. The results showed that the quality and quantity

of training data, as well as the epoch values, strongly influenced the accuracy of the trained model. The best performance

was achieved with 40 primary images per label class, augmented to 60 images, and trained over 24 epochs, resulting in a

confusion matrix accuracy of 99.9%. The implemented model was able to recognize SIBI gestures in real-time using a

webcam with fast processing. Overall, the proposed YOLO-based model successfully identifies sign language in real-time

and demonstrates strong potential for reducing communication barriers among deaf people. However, further refinement

and expansion of the dataset are recommended to improve effectiveness and enable broader real-world applications.

KEYWORDS — Sign Language, Real-Time Detection, You Only Look Once, YOLO Model Fine-Tuning.

I. INTRODUCTION

Sign language is a form of communication commonly used

by deaf people using hand gestures, facial expressions, and

body movements to form symbols that represent letters or

words [1]. Just like any other language, sign language is a

naturally evolving system, systematic, and governed by

linguistic rules [2]. In Indonesia itself, the formal use of sign

language as a means of communication and teaching material

that has been formalized by the government is the Indonesian

sign language system (sistem isyarat bahasa Indonesia, SIBI)

[3]. SIBI is a form of oral communication adapted to sign

language, with some vocabulary taken from American sign

language (ASL) [4]. SIBI was developed through a

combination of four local, forged, invented, and absorbed signs,

which were then standardized into a national sign system. It is

published by the Ministry of Education and Culture and applied

in formal schools, such as special schools [5]. The purpose of

using SIBI in education is to help people with disabilities

actively participate, especially in teaching and learning

activities, to improve the quality of their social interactions.

Hearing and communication impairments will not prevent them

from doing their usual activities, including continuing their

education. They can still communicate using sign language.

In Indonesia, sign language is generally learned through

special schools and the deaf community, as well as specialized

books that discuss sign language. Implementing learning

activities in a deaf community is certainly not easy and is very

different from learning in a nondisabled environment. For deaf

people, they must receive education guided by qualified

teaching staff [6]. However, the nondisabled environments

generally learn without the need for sign language teaching

staff, so they become less familiar with sign language.

Limited understanding of sign language among nondisabled

individuals further widens the social gap between them and the

deaf community. This situation create barriers for deaf people

in social interaction, emotions, and communication [7].

Communication can be said to be successful if what is

conveyed and intended by someone can be understood by the

interlocutor [8]. However, deaf people are more likely to have

difficulty communicating with the nondisabled community. As

a result, they are often viewed differently by the nondisabled

community, causing them to feel inferior and hopeless.

To realize quick action to overcome the communication gap

between deaf people and nondisabled people, it is necessary to

develop a system that can be used not only by teaching staff,

but also by the community to help communicate with deaf

people. Unlike spoken language, the delivery of sign language

is done using body movements as the main means of

communication [9]. This shows that sign language can be

visualized in the form of images, so that hand movements or

facial expressions can be detected automatically through

technology. The development of a sign language recognition

system aims to make it easier for people to understand sign

language [10].

One of the most commonly applied methods for object

detection is the convolutional neural network (CNN) method,

which is a popular neural network method and is in high

demand for object detection [11]. However, another object

detection method that can detect objects in real-time with a

higher level of accuracy and speed in recognizing objects has

been developed, namely the You Only Look Once (YOLO)

EN-254

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

Reni Triyaningsih: Application of You Only ... p-ISSN 2301–4156 | e-ISSN 2460–5719

method [12]. It was first developed by Joseph Redmon, who

proposed a grid-based object detection approach by applying a

single convolutional neural network [13]. YOLO is designed as

a unified model algorithm that instantly detects and recognizes

objects as a whole in a single process [14]. YOLO works by

dividing the input image into an S × S grid, where if an object

falls into a grid cell, then that grid cell performs the task of

detecting the object [15]. The main objective of object

detection using YOLO is to find and identify objects in an

image from predefined labels by assigning an object class and

indicating the position of the object obtained by drawing a

bounding box around it [16]. The YOLO method can also

detect objects in real-time, making it suitable for systems that

require a fast response [17].

Previous case study research applying the YOLO method

has been conducted. A research on emotion recognition in

facial images using the YOLOv8 method has been conducted

[18]. Results indicated that the application of the model

successfully detecting emotions through facial images in real-

time by processing 400 dataset images consisting of happy, sad,

angry and surprised emotions, with a validation rate of mean

average precision (mAP) value reaching 90%.

Later, another study was made to detect child abuse and

bullying based on YOLOv8 [19]. The research adopted a

dataset approach containing the shapes of violent and

nonviolent actions with an image size of 640 px. As a result,

the model was able to run and detect acts of violence with an

accuracy value of 85%, a precision of 81.8%, and a recall of

90%.

Other research has also developed systems to detect the

SIBI sign language [20]. The study used a dataset that

specialized in translating alphabetical signs from 24 alphabets

and was grouped into 4 groups, with each group having 20

image datasets. The results showed that the application of the

YOLO method was able to detect gestures with evaluation

values from group 1, resulting in an F1 score of 90.90%, group

2 of 97.1%, group 3 of 90.90%, and group 4 of 83.8%.

Some of these studies have applied algorithms from the

YOLO model to detect objects and produce good evaluation

values. Although object detection research by applying the

YOLO method has been carried out, there has been no research

study related to sign language identification that is applied in

real-time covering datasets from three categories, namely

alphabets, numbers and basic words from SIBI, especially data

samples obtained directly from the resource person at the State

Special School Prof. Dr. Sri Soedewi Masjchun Sofwan, SH.

Jambi. This study proposes the development of a sign language

recognition system based on computer vision, using a model

trained with the You Only Look Once (YOLO) method, which

can directly recognize hand movements through a camera

without the need for additional auxiliary tools. The developed

model is specifically designed for real-time operation and

provides recognition results in text and audio formats, enabling

two-way communication between deaf and nondeaf people

with the aim that the developed model can be an effective

communication aid and social interactions between deaf and

nondeaf people.

In this study, the model was trained using raw data obtained

directly, rather than data sets specifically prepared for local

sign language categories. This approach allows for more

realistic and practical system development, as the data reflect

real-world variations in hand gestures and lighting conditions

commonly encountered in daily environments.

II. METHODOLOGY

This section discusses matters related to the flow of

research work, including datasets, data preprocessing, model

training, model evaluation, implementation, and system testing.

A. DATASETS

In this research, the dataset used for the model training

process was SIBI. Gesture image data obtained directly from

resource person at the State Special School Prof. Dr. Sri

Soedewi Masjchun Sofwan, SH. Jambi. The initial stage before

taking pictures was the process of interviewing sign experts to

determine the class of sign labels that were modeled. The

results of the interview showed that the label coverage of the

dataset consisted of three categories, namely alphabet, number,

and basic words from SIBI. Alphabetical data consists of A–Z,

excluding the letter J, which is symbolized as movement. The

numeric data consists of satu–sembilan, and the basic words

consisted of “bodoh,” “cinta,” “jahat,” “kamu,” “kasih,”

“maaf,” “makan,” “masuk,” “minum,” “nama,” “rumah,”

“saya,” “terima,” “tidur,” “tolong.”

The process of capturing image data from the resource

person was carried out using a cellphone camera with a 1:1

aspect ratio and a 12 MP resolution. Sign image data obtained

from resource person at the special school were used as

reference data for each of the specified label classes. Then, to

enrich the content of the dataset, image data were also collected

from subjects other than the primary resource person by

directly capturing images using cellphone and laptop camera.

The laptop camera had a 16:9 aspect ratio and a resolution of

0.9 MP. During the shooting process, the camera was placed at

approximately 50–70 cm from the subject, at a height parallel

to the subject’s chest level. Lighting conditions were

maintained using natural daylight or evenly distributed indoor

lighting to minimize shadows and ensure clear visibility of

hand movements. From this process, 70 primary images were

collected for each predetermined label class.

B. DATA PREPROCESSING

Data preprocessing refers to converting raw data into a

format that is easier for machines to understand. Data

preprocessing was performed on the Roboflow platform that

provides a web-based interface with the stages of image

labeling, splitting the dataset, and data augmentation [21].

Image labeling was processed by annotating and grouping data

according to the class name of each object in the image to store

information related to the image. The image labeling process

was processed manually by providing bounding boxes to the

image objects one by one to ensure the accuracy of the

annotation.

Data that have been annotated and labeled with class

information were then be split into three subsets, namely

training, validation, and testing subsets: 70% was used as the

main material for training the model, 20% was allocated as the

validation subset to monitor the performance of the model

during the training process, and 10% was used as the testing

subset to test the performance of the model that had been

trained.

The final stage of data preprocessing was to include

augmentation to expand the variety in the data without

increasing the amount of primary data. The augmentation

methods used were crop, which involved cutting out part of an

image so that it no longer had the same position or size;

grayscale, which removed color information from images so

EN-255

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Reni Triyaningsih: Application of You Only ...

that the model could focus more on shapes and patterns; blur,

which applied a blurring images to simulate an out-of-focus

camera; noise, which added random visual noise to the image,

such as small dots or slight distortions; and brightness, which

adjusted the brightness of the image to simulate different

lighting conditions. The data augmentation process was done

by not adding augmentation in the form of image flip because

there was the same gesture for two different class labels and

was distinguished based on the position of the hand when

taking the picture.

C. MODEL TRAINING

The model training process was conducted using the

YOLOv11 model, which was officially released on September

30th, 2024, and served as the main detection framework. The

YOLOv11 was selected because it represents the latest

development in the YOLO family, offering significant

improvements in real-time object detection performance

compared to previous versions such as YOLOv8, YOLOv9,

and YOLOv10. Among the available YOLOv11 variants (nano,

small, medium, large, and x-large), the YOLOv11n (nano)

model was chosen for its lightweight architecture, enabling

faster inference speeds and real-time implementation on

limited graphic processing unit (GPU) resources while

maintaining competitive accuracy.

Google Colab was used as the software to operate the model

training process. Model training implemented the Tesla T4

GPU runtime to speed up the execution process. Table I shows

the combination of hyperparameters used for the success of the

training process. The dataset was trained by applying a

stepwise training procedure with a maximum number of epochs

of 100. The approach aims to obtain the best epoch value that

produces a model with optimal performance. If the training

process yields a model with an evaluation value in the optimal

category, then the training process is stopped even though the

epoch value has not reached the maximum value. This strategy

is applied to avoid the risk of overfitting, where the model is

too explicit on the training data, which results in the model

being less able to handle new data because it tends to memorize

the training data instead of learning from the training data.

D. MODEL EVALUATION

An evaluation of the trained model was done by looking at

the model’s training curve and confusion matrix value. The

confusion matrix visualizes the distribution of model prediction

errors in a single view. From the basic value of the confusion

matrix prediction results, it can be concluded that the

evaluation matrix values include precision, recall, accuracy, F1

score, and mean average precision (mAP). The calculation

results of the evaluation matrix value can be used to measure

the overall performance of the model [22]. The calculation of

the evaluation value depends on the base value of the confusion

matrix prediction result, which is the main component to get

the calculation value of other evaluation matrices, including

true positive (TP), true negative (TN), false positive (FP), and

false negative (FN). In the precision calculation category, the

value is determined from the number of elements that are

actually positive, measured against the total positive predicted

elements.

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
. (1)

Another evaluation matrix is recall, which measures the

model’s ability to collect all positive elements in a dataset [23].

The recall value is calculated by measuring the ratio of

elements that are true positive to the total number of elements

that should be predicted as positive.

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2)

Another evaluation element that becomes an important

point to determine the optimization of a model is none other

than accuracy, which measures how well an algorithm

performs with each data element having the same weight and

contributing equally to the Accuracy value.

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (3)

From the calculation of the values of the three evaluation

matrices above, the F1 score value can also be calculated,

which is part of the most frequently applied parametric

F measures. F1 score works by calculating the average

comparison value of precision and recall [24].

 F1 Score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
. (4)

The last evaluation matrix value that is considered in this

study as a determinant of the optimization of a model is mAP,

which is obtained from the average calculated value of average

precision (AP). The AP value is obtained from the calculation

between precision and recall.

 mAP =
1

𝑛
 ∑ 𝐴𝑃𝑘

𝑘=𝑛
𝑘=1 . (5)

By combining all the calculated values of the evaluation

matrix, an overall view of the performance of the trained model

was obtained. The model with the best evaluation results was

used to implement the model into real-time sign language

detection.

E. SYSTEM IMPLEMENTATION AND TESTING

Implementing the model into a real-time system aims to

provide users access to interact directly with the model. The

training model that had passed the evaluation process and had

the best performance was implemented in real-time by utilizing

computer vision. The application of computer vision enables

computers to “see” and capture objects in the visual

environment [25]. The utilization of computer vision in the

field of deep learning can be divided into classification,

segmentation, detection, and generation, which can provide

benefits in various purposes, for example, for security,

information, monitoring, and other benefits [26]. The most

commonly used task of computer vision is object detection,

which refers to the ability of a computer to identify visual

objects belonging to certain class, in order to determine

whether there are examples of objects of a certain category,

such as humans, vehicles, or animals [27]. In this research, the

model was implemented using an open-source library

commonly applied to systems adopting computer vision,

TABLE I

HYPERPARAMETER COMBINATION

No. Parameters Value

1. Epoch Maximum 100

2. Batch Size 16

3. IoU 0.6

4. Learning Rate 0.01

EN-256

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

Reni Triyaningsih: Application of You Only ... p-ISSN 2301–4156 | e-ISSN 2460–5719

namely OpenCV. This library provides many task functions,

such as motion tracking, object detection, face recognition, and

segmentation. By applying OpenCV, real-time images or

videos can be adapted according to the needs of the system [28].

The trained model was linked into Python code and OpenCV

was employed library to access the webcam camera used as a

live image capture tool. The model identification results were

shown on the device screen in text form. The identified text was

then translated into audio using the Google text-to-speech

(gTTS) library. The gTTS libary is a tool that converts text into

MP3 format so that it can be saved as an audio file [29]. The

generated audio is then played using the Pygame library,

specifically the pygame.mixer module, which is used to play

audio files [30].

The system that had been successfully run was tested in the

final stage to ensure that it could be used in the real

environment. In the test, four main aspects of testing were listed:

responsiveness, which was to calculate the frame per second

(FPS) value of each class label when the system was running

using the timing function provided by the OpenCV library to

ensure the model could identify objects without significant lag;

accuracy, which assessed the level of conformity of the model

detection results with the gesture performed by the user;

robustness, which evaluated the system’s ability to recognize

cue objects in various lighting conditions, backgrounds, and

other distortions; and voice system, which ensured that the text

interpreted into audio was synchronized and running properly.

III. RESULTS AND DISCUSSION

This section describes the stages that have been carried out

in the research to obtain the final results of the research.

A. DATASET ACQUISITION

Dataset acquisition was done through two procedures in

image data capture. In the first procedure, the data sample that

became the gesture cue reference for each class label was

obtained directly from the resource person at the State Special

School Prof. Dr. Sri Soedewi Masjchun Sofwan, SH. Jambi.

The data collection process was taken using a cellphone camera,

resulting in 49 primary data images corresponding to the

number of predefined class labels. Then, the second procedure

was carried out to expand the data to a total of 70 primary data

images for each class label by adding images taken from

subjects outside the resource person while maintaining the

gestures from the reference data images. The images in the

second procedure were taken using both a cellphone camera

and a laptop camera to make the dataset more diverse and

representative. The dataset used in this study cannot be made

publicly available due to privacy concerns and its large size.

However, Figure 1 presents the image data acquisition results

as a representative overview of the dataset. The data obtained

was stored in one main folder, where each class label was

placed in a separate subfolder according to its class label.

B. DATASET PREPROCESSING

The collected data were prepared for model training by

annotating each class label on all images using Roboflow. Each

image was annotated individually according to its respective

class, and the results were validated directly by the authors in

collaboration with the resource person from the State Special

School Prof. Dr. Sri Soedewi Masjchun Sofwan, SH. Jambi to

ensure labeling accuracy. For the alphabetic and numeric

category classes, the labeling was focused on the area of the

hand that formed the sign language gesture. Whereas, for the

basic words class, the labeling contained the body parts

involved in the gesture, such as the face, chest, and arms,

depending on the characteristics of each gesture. Figure 2

depict the image labeling process performed on the Roboflow

platform.

Once the labeling stage was complete, the annotated dataset

was split into three subsets: training, validation, and testing.

The total number of primary data images for each class label

was 70, so the total number of primary data images obtained in

the dataset for 49 label classes was 3,430 images. Of the total

number of images, 70% (2,399 images) were allocated to the

training subset, 20% (687 images) to the validation subset, and

10% (344 images) to the testing subset.

The final preprocessing step involved augmenting the

image to enhance the training subset’s dataset. The

augmentation process was still done on the Roboflow platform,

which could also resize the images to 640 × 640 px so that all

images had the same size. Figure 3 depicts the applied

augmented image variations in the dataset, including crop,

grayscale, blur, noise, and brightness adjustments. The final

result of preprocessing produced a total of 5,829 image data in

the training subset. This number was obtained because the

augmentation process was only applied to the training subset,

while the validation and testing subsets were kept without

augmentation so that the evaluation results remained objective

and represented real conditions.

C. MODEL TRAINING

The model training process was carried out through

incremental epoch cycles, where the entire dataset was

processed in each round. In the first training, the model was

trained for 10 epochs with a batch size of 16, an intersection

Figure 1. Image data acquisition result.

Figure 2. Image data annotation.

Figure 3. Dataset augmentations.

EN-257

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Reni Triyaningsih: Application of You Only ...

over union (IoU) of 0.6, and a learning rate of 0.01. However,

the training results obtained did not show good results, since

during the training process, the model showed indications of

overfitting. This can be seen from the significant difference

between the values on the training loss curve, which continues

to decrease and reaches a low point. Meanwhile, Figure 4

depicts that the value on the validation loss curve tends to show

no significant improvement. The loss value in the train box loss

consistently decreased throughout the end of the training

process, suggesting that the model could learn and adapt to the

parameters used with the training data. However, the loss value

in the validation box loss remained stagnant and did not

decrease after several epochs. Starting from epoch 4 to epoch

10, the gap between the train box loss and validation box loss

curve lines significantly apparent, which indicates the model

overfitting.

This situation needs to be improved by performing a model

fine-tuning procedure, namely, retraining the pretrained model

using the corrected data. Applying the fine-tuning procedure

will save more time in the training process than training the

model from scratch. The fine-tuning process is carried out by

improving the dataset and parameter combinations used during

training to obtain more optimal training results.

D. FINE–TUNING

The fine-tuning process was initiated from checking the

quality of all the images in the dataset resulting from the

preprocessing stage. The findings obtained that were results of

data preprocessing captured using a laptop camera decreased in

quality from the results of resizing the image. The image looked

narrow, and the gesture shape became disproportionate.

Therefore, the primary data were reselected by retaining

images that were consistent in proportion and object shape for

model refinement. From a total of 3,430 primary data images

with an average of 70 images per label class, the 40 best quality

images were obtained for each label class, bringing the total

data used to 1,960. All data were captured using a cellphone

camera with a 1:1 ratio. Table II shows the distribution of data

before and after the selection process for high-quality images.

The selected images then went through the data preprocessing

stage again, but with different techniques. The data

preprocessing stage to prepare the dataset that was used in the

fine-tuning process utilized the library in Python before being

re-annotated in Roboflow.

1) FINE–TUNING DATASET PREPROCESSING

The initial stage of the data preprocessing process is to

perform the background removal technique on the image. The

dataset selected by the fine-tuning process was uploaded into a

Google Drive folder and processed using Google Colab. The

purpose of removing the background is to remove the

background so that the model focuses on the main object in the

image without being distracted by other irrelevant elements.

The process of removing the background was done by opening

all images from the input folder using Python code and

executing them using the rembg library. The results of the

remove background process were saved using the os.mekedirs

function to the remove background results folder.

Dataset preprocessing was followed by a resize process to

equalize the image size to 640 × 640 px so that the training

process was organized and in accordance with the input image

model used. The resize process was done by retrieving image

data from the remove background result folder. The resize

process was done by utilizing the Python imaging library (PIL),

and the image was resized using the thumbnail() method to

maintain the aspect ratio of the image. Then, the resized results

were saved into a new resized result folder.

To ensure the images used in modeling had good visuals,

was not blurry, and still maintained the details of gesture cues,

the process of checking image quality using the Laplacian

variance method was carried out. The method was used to

detect blur based on the calculation of pixel value variations by

setting a threshold value of 50, and the passed images were

saved into the final folder of preprocessing results using Python.

The last folder used to store the final results of

preprocessing using Python was then downloaded, and

relabeling, splitting, and augmentation were carried out without

entering the resize process in Roboflow. The labeling, splitting,

and image augmentation processes followed the same data

preprocessing procedure before the fine-tuning process, but

were conducted in increments of 10, forming data groups

consisting of 10, 20, 30, and 40 primary images data per label

class. The final result of data preprocessing was four zipped

folders resulting from labeling, splitting, and augmentation

according to the amount of primary data.

2) FINE–TUNING MODEL

 The model fine-tuning process applied a four-scenario

method of gradual data training process, starting from training

using 10 primary data images to 40 primary data images per

class label. This approach was applied as an effort to anticipate

the risk of overfitting, especially considering the limited

amount of data. The model with the best performance was used

as raw material for system implementation. Table III shows the

TABLE II

DATASET DISTRIBUTION

Categories
Number of

Classes

Average Initial Images

per Class

Total

Images

Average Selected Images

per Class
Total Images

Alphabet 25 70 1,750 40 1,000

Number 9 70 630 40 360

Basic Words 15 70 1,050 40 600

Total 49 3,430 1,960

Figure 4. Train vs validation loss curve of the initial model.

EN-258

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

Reni Triyaningsih: Application of You Only ... p-ISSN 2301–4156 | e-ISSN 2460–5719

data distribution for each model fine-tuning scenario and the

best epoch obtained. During the fine-tuning model process, the

training hyperparameters were readjusted to suit the dataset.

After several training trials, the optimal hyperparameter

configuration for each fine-tuning scenario was identified. The

selected hyperparameters included 40 epochs a patience value

of 3, a batch size of 16, and an IoU of 0.6. Additionally, the

learning rate was reduced to 0.001, with freeze set to 1 and

dropout set to 0.3.

The training process by applying the early stopping

mechanism with patience at 3 aimed to stop the training process

early if there was no performance improvement during the

epoch increments. The freeze and dropout parameters were

applied to prevent overfitting by randomly removing some

neurons while training the model. During the training process,

although the maximum number of epochs was set at 40, in

reality, the best results were obtained at no more than 30. For

example, for the model in the fourth scenario, the best result is

at the 24th epoch. Although the training process continued past

that epoch, no significant performance improvement was found,

so the 24th epoch was considered the optimal epoch.

E. MODEL EVALUATION

Model evaluation is done to determine the best model

among all completed model training schemes. The model can

be categorized as a good model if the evaluation results show

optimal model performance and there is no indication of

overfitting during the training process. A high evaluation

matrix score alone is not enough to conclude that the model is

feasible to implement. Models that experienced overfitting

were also categorized as unfit because they tended to recognize

patterns from the training data and had difficulty in identifying

gesture cues when applied in real environments. An indication

of the presence or absence of overfitting during the training

process can be seen through the train vs validation loss

evaluation curve.

Figure 5 depicts the evaluation results of the training

process based on the train vs validation loss curve, which

indicates that the model in the first scenario did not perform

optimally, as the validation loss does not show consistent

improvement and diverges from the training loss. The

validation loss value on the curve is unstable and often

fluctuates up and down during the training process, indicating

that the model has not learned optimally from the limited data.

However, in the subsequent training process in the second to

fourth scenarios of the model, the curve began to show a more

stable decreasing pattern suggesting that the error (loss) values

on the training and validation data were decreasing, which

suggests that the model training process was running well

without any indication of overfitting. So, it can be concluded

that increasing the amount of data in the training subset can

effectively improve the performance of the model.

The performance of each model can also be seen in the

confusion matrix value, which gives an idea of the extent to

which the model can predict gesture cues correctly. The

confusion matrix is a table that shows the number of model

predictions for each label class and compares them with the

predicted correct answers (actual labels). The value of the

confusion matrix is the main component in calculating the

value of other evaluation matrices. Figure 6 depicts the

distribution of prediction results for each model fine-tuning

scenario across all label classes. The prediction outcomes were

then recalculated to obtain additional evaluation metrics,

including precision, recall, accuracy, F1 score, and mAP. All

figures, including training curves and confusion matrices, were

generated directly from Python outputs during the model

training process.

Table IV shows the average values of each evaluation

component for each model fine-tuning scenario, based on the

results of the prediction value calculations. From the evaluation

results, the model with the best results was obtained from fine-

tuning the fourth scenario model with the training process using

40 primary data for each label class, followed by augmentation

to 60 images from each label class, and with the best epoch at

24. The training results showed no indication of overfitting,

with the precision evaluation matrix value reaching 99.4%,

recall 97.8%, accuracy 99.9%, F1 score 98.7%, and the mAP

value 94.3%.

F. SYSTEM IMPLEMENTATION AND TESTING

The implementation of the model in the real-time system

was built using Python program code with the help of Notepad

as a text editor. A combination of several libraries needed, such

as OpenCV, was used to access the webcam camera, read and

display video frames, and display detection results. Then, the

gTTS library was used to convert the detected text into audio,

and with the help of pygame library, to play the audio directly.

The time library is also used to calculate and display the FPS

of the detection speed.

The model was run using a local CPU device via Anaconda

Prompt as an interface to run the Python environment and the

prepared detection scripts that had been prepared. This

TABLE III

MODEL FINE-TUNING TRAINING SCENARIOS

 Number of Primary Data per Class Label Number of Data after Augmentation per Class Label
Best Epoch

 Training Validation Testing Total Training Validation Testing Total

First Scenario 7 2 1 10 14 2 1 17 21

Second Scenario 14 4 2 20 28 4 2 34 21

Third Scenario 22 6 2 30 44 6 2 52 25

Fourth Scenario 30 8 2 40 60 8 2 70 24

Figure 5. Train vs validation loss curve fine-tuned model.

EN-259

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Reni Triyaningsih: Application of You Only ...

implementation was fully conducted on local hardware without

relying on cloud-based resources. Figure 7 depicts the

implementation output of the SIBI sign language identification

system.

After the system was implemented, testing was conducted

to determine whether the system could identify sign language

well in the real environment. This test aimed to evaluate the

overall performance of the system when run by taking input

images from a live camera. The responsiveness aspect was

tested by measuring the absence of any significant delay in

detecting gesture signals for each label during the detection

process. Responsiveness was then calculated based on the FPS

value obtained from the average of 10 detection attempts for

each class label. The accuracy aspect was evaluated by running

the system and recording detection results. Detections were

considered accurate if the identified gesture matched the

performed gesture and the confidence score ˃ 80%. Robustness

was assessed by operating the system under various

background and lighting conditions, where successful detection

under these conditions was considered a success. Finally, the

voice output system was tested to ensure that the generated

audio remained synchronized with the recognized text during

operation.

After the system was executed and tested, the results

showed that the responsiveness of the system in detecting each

class label was relatively consistent, with an average of 5 FPS.

In this study, no minimum FPS value was defined, as the main

focus was to verify whether the system could perform real-time

detection without noticeable delay. Although the FPS was

relatively low due to the CPU-based implementation, the model

still proved effective in recognizing sign language gestures.

Future improvements in FPS can be achieved by increasing the

training data, applying more diverse augmentation, and

utilizing more powerful hardware. Overall, the detection results

for all class labels were accurate, with confidence scores

consistently ˃80%. However, several class labels, namely “v,”

“w,” “dua,” and “enam” showed lower accuracy due to

frequent misclassifications caused by the similarity of their

gesture forms. These labels only achieved confidence scores in

the range of 50% to 70%. Then, the results of robustness testing

showed that the alphabet and number class categories category

still had limited detection capabilities because the system was

only able to detect these labels in clean background conditions.

This is the effect of the dataset used in the model training

process, where the dataset has a clean background as the output

of the remove background. In the final test, the voice system

was evaluated, and the voice output of each label class was

always in sync with the text detected by the system.

IV. CONCLUSION

The results of this research show that sign language,

especially SIBI, can be identified in real-time using a YOLO-

based training model. The results also show that the data quality,

data quantity, and the epoch value significantly affect the

quality of the trained model. The YOLO model training in this

study achieved the best accuracy during the fine-tuning process

in the fourth scenario, with the number of primary data as many

as 40 images per label class, with a total of 60 images of subset

training after augmentation per label class. The model trained

at epoch of 24 produced a training accuracy value of 99.9%,

based on the calculation of the confusion matrix evaluation

value. Based on the research results, the developed sign

language identification system can identify signs through input

images taken directly using a webcam and processed in a short

time. Thus, the target of developing the YOLO model for

identifying sign language has been achieved. However, the

model still needs further refinement to address its shortcomings

in this study before it can be widely applied in real-world

settings. This study will help pave the way for better future

research. Future research is recommended to enrich the

diversity of backgrounds in the dataset and to adjust the system

according to the application domain. Applying more variations

of augmentation can possibly overcome the problem of false

detection due to similar gestures between labels, and

Figure 6. Visualization of the confusion matrix prediction fine-tuned model.

TABLE IV

AVERAGE EVALUATION MATRIX VALUE

 Pretrained Model

 First

Scenario

Second

Scenario

Third

Scenario

Fourth

Scenario

Precision 0.770 0.929 0.975 0.994

Recall 0.695 0.935 0.956 0.978

Accuracy 0.989 0.989 0.997 0.999

F1 score 0.816 0.904 0.948 0.987

mAP 0.911 0.894 0.928 0.943

Figure 7. Sign language identification system display.

EN-260

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

Reni Triyaningsih: Application of You Only ... p-ISSN 2301–4156 | e-ISSN 2460–5719

supplementing the alphabetic dataset by including the alphabet

J symbolized in gestures through a video-based data capture

and model training approach. For broader applicability,

implementing the system in a more accessible form, such as a

mobile application or similar platform, is essential for the

model to be truly usable in a real-world environment.

CONFLICTS OF INTEREST

The authors declare that the article entitled “Application of

You Only Look Once (YOLO) Method for Sign Language

Identification” is written free from conflict of interest.

AUTHORS’ CONTRIBUTIONS

Conceptualization, Reni Triyaningsih, Pradita Eko Prasetyo

Utomo and Benedika Ferdian Hutabarat; methodology, Reni

Triyaningsih, Pradita Eko Prasetyo Utomo and Benedika

Ferdian Hutabarat; software, Reni Triyaningsih; validation,

Pradita Eko Prasetyo Utomo and Benedika Ferdian Hutabarat;

formal analysis, Pradita Eko Prasetyo Utomo; investigation,

Reni Triyaningsih and Pradita Eko Prasetyo Utomo; resources,

Pradita Eko Prasetyo Utomo and Benedika Ferdian Hutabarat;

data curation, Reni Triyaningsih; writing-original drafting,

Reni Triyaningsih; writing-reviewing and editing, Pradita Eko

Prasetyo Utomo and Benedika Ferdian Hutabarat; visualization,

Reni Triyaningsih; supervision, Pradita Eko Prasetyo Utomo

and Benedika Ferdian Hutabarat; project administration,

Pradita Eko Prasetyo Utomo and Benedika Ferdian Hutabarat;

funding acquisition, Reni Triyaningsih;

ACKNOWLEDGMENT

The author would like to thank the Faculty of Science and

Technology, University of Jambi; and the State Special School

Prof. Dr. Sri Soedewi Masjchun Sofwan, SH. Jambi for their

invaluable support and assistance in the success of this research.

the authors greatly appreciate their cooperation and

commitment to advance this research.

REFERENCES

[1] N.P.L. Wedayanti, A.P. Lintangsari, and G.A.P. Wirawan,

“Perkembangan bahasa isyarat daerah Denpasar,” Linguist. Indones., vol.

39, no. 2, pp. 217–223, Aug. 2021, doi: 10.26499/li.v39i2.230.

[2] D. Bragg et al., “Sign language recognition, generation, and translation:

An interdisciplinary perspective,” in ASSETS '19, Proc. 21st Int. ACM
SIGACCESS Conf. Comput. Access., 2019, pp. 16–31, doi:

10.1145/3308561.3353774.

[3] M. Sholawati, K. Auliasari, and Fx. Ariwibisono, “Pengembangan

aplikasi pengenalan bahasa isyarat abjad SIBI menggunakan metode

convolutional neural network (CNN),” JATI, vol. 6, no. 1, pp. 134–144,
Feb. 2022, doi: 10.36040/jati.v6i1.4507.

[4] A. Pratiwi, “Penggunaan sistem isyarat bahasa Indonesia (SIBI) sebagai

media komunikasi (Studi pada siswa tunarungu di SLB Yayasan Bukesra

Ulee Kareng, Banda Aceh),” J. Ilm. Mhs. FISIP (JIMFISIP), vol. 4, no.
3, pp. xx–xx, Aug. 2019.

[5] I.J. Thira et al., “Pengenalan alfabet sistem isyarat bahasa Indonesia (SIBI)

menggunakan convolutional neural network,” J. Algoritma, vol. 20, no.

2, pp. 421–432, Oct. 2023, doi: 10.33364/algoritma/v.20-2.1480.

[6] R.R.D. Jannah, “Pola komunikasi guru dalam meningkatkan kemampuan

belajar siswa tunarungu di sekolah luar biasa negeri Lubuk Linggau,”

Wardah, vol. 22, no. 2, pp. 1–15, Dec. 2021, doi:
10.19109/wardah.v22i2.10830.

[7] E. Juherna, E. Purwanti, Melawati, and Y.S. Utami, “Implementasi

pendidikan karakter pada disabilitas anak tunarungu,” J. Gold. Age, vol.

4, no. 1, pp. 12–19, Jun. 2020, doi: 10.29408/jga.v4i01.1809.

[8] I. Damayanti and S.H. Purnamasari, “Hambatan komunikasi dan stres

orangtua siswa tunarungu sekolah dasar,” J. Psikol. Insight, vol. 3, no. 1,

pp. 1–9, Apr. 2019, doi: 10.17509/insight.v3i1.22311.

[9] E. Mustapić and F. Malenica, “The signs of silence – An overview of

systems of sign languages and co-speech gestures,” ELOPE, Engl. Lang.

Overseas Perspect. Enq., vol. 16, no. 1, pp. 123–144, Jun. 2019, doi:

10.4312/elope.16.1.123-144.

[10] Renaldy and A.B. Dharmawan, “Pengenalan citra bahasa isyarat

berdasarkan sistem isyarat bahasa Indonesia menggunakan metode vision
transformer,” JIKSI (J. Ilmu Komput, Sist. Inf.), vol. 12, no. 2, pp. 1–9,

Jul. 2024, doi: 10.24912/jiksi.v12i2.31559.

[11] A. Jinan and B.H. Hayadi, “Klasifikasi penyakit tanaman padi

mengunakan metode convolutional neural network melalui citra daun

(Multilayer perceptron),” J. Comput. Eng. Sci., vol. 1, no. 2, pp. 37–44,
Apr. 2022.

[12] Y. Hartiwi, E. Rasywir, Y. Pratama, and P.A. Jusia, “Sistem manajemen

absensi dengan fitur pengenalan wajah dan GPS menggunakan YOLO

pada platform Android,” J. Media Inform. Budidarma, vol. 4, no. 4, pp.

1235–1242, Oct. 2020, doi: 10.30865/mib.v4i4.2522.

[13] D.N. Alfarizi et al., “Penggunaan metode YOLO pada deteksi objek:

Sebuah tinjauan literatur sistematis,” J. Artif. Intel. Sist. Penunjang

Keputusan, vol. 1, no. 1, pp. 55–63, Jun. 2023.

[14] J.S.W. Hutauruk, T. Matulatan, and N. Hayaty, “Deteksi kendaraan

secara real time menggunakan metode YOLO berbasis Android,” J.

Sustain., J. Has. Penelit. Ind. Terap., vol. 9, no. 1, pp. 8–14, May 2020,

doi: 10.31629/sustainable.v9i1.1401.

[15] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” in 2016 IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2016, pp. 779–788, doi:

10.1109/CVPR.2016.91.

[16] D. Pestana et al., “A full featured configurable accelerator for object

detection with YOLO,” IEEE Access, vol. 9, pp. 75864–75877, May
2021, doi: 10.1109/ACCESS.2021.3081818.

[17] A. Riansyah and A.H. Mirza, “Pendeteksi mobil berdasarkan merek dan

tipe menggunakan algoritma YOLO,” SMATIKA, STIKI Inform. J., vol.

13, no. 01, pp. 43–52, Jun. 2023, doi: 10.32664/smatika.v13i01.719.

[18] A. Gallu, A.R. Himamunanto, and H. Budiati, “Pengenalan emosi pada

citra wajah menggunakan metode YOLO,” KESATRIA, J. Penerapan

Sist. Inf. (Komput. Manaj.), vol. 5, no. 3, pp. 1253–1261, Jul. 2024, doi:
10.30645/kesatria.v5i3.444.

[19] G.A. Sidik, “Deteksi tindak kekerasan dan perundungan pada anak

berbasis YOLOV8 (You only look once),” Kohesi, J. Multidisiplin

Saintek, vol. 3, no. 9, pp. 71–80, Jun. 2024, doi:

10.3785/kohesi.v3i9.4044.

[20] B.K. Pratama, S. Lestanti, and Y. Primasari, “Implementasi algoritma you

only look once (YOLO) untuk mendeteksi bahasa isyarat SIBI,” J.
ProTekInfo, vol. 11, no. 2, pp. 7–14, Aug. 2024, doi:

10.30656/protekinfo.v11i2.9105.

[21] L. Mahdiyah, S. Oktamuliani, and W.L. Putri, “Penerapan algoritma deep

learning YOLOv8 pada platform Roboflow untuk segmentasi citra

panoramik,” J. Fis. Unand (JFU), vol. 14, no. 3, pp. 228–234, May 2025,
doi: 10.25077/jfu.14.3.228-234.2025.

[22] M. Heydarian, T.E. Doyle, and R. Samavi, “MLCM: Multi-label

confusion matrix,” IEEE Access, vol. 10, pp. 19083–19095, Feb. 2022,

doi: 10.1109/ACCESS.2022.3151048.

[23] M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class

classification: An overview,” 2020, arXiv:2008.05756.

[24] D. Chicco and G. Jurman, “The advantages of the Matthews correlation

coefficient (MCC) over F1 score and accuracy in binary classification

evaluation,” BMC Genom., vol. 21, pp. 1–13, Jan. 2020, doi:
10.1186/s12864-019-6413-7.

[25] S.V.N. Afni, E.P. Silmina, and I.B. Pangestu, “Computer vision used to

monitor the youth during the pandemic COVID-19,” in Procedia Eng.

Life Sci., 2021, pp. 1–4, doi: 10.21070/pels.v1i2.1019.

[26] T.A. Dompeipen, S.R.U.A. Sompie, and M.E.I. Najoan, “Computer

vision implementation for detection and counting the number of humans,”

J. Tek. Inform., vol. 16, no. 1, pp. 65–76, Mar. 2021, doi:
10.35793/jti.v16i1.31471.

[27] L. Liu et al., “Deep learning for generic object detection: A survey,” Int.

J. Comput. Vis., vol. 128, no. 2, pp. 261–318, Feb. 2020, doi:

10.1007/s11263-019-01247-4.

[28] H. Adusumalli et al., “Face mask detection using OpenCV,” in 2021 3rd

Int. Conf. Intell. Commun. Technol. Virtual Mob. Netw. (ICICV), 2021,

pp. 1304–1309, doi: 10.1109/ICICV50876.2021.9388375.

[29] O.P. Orochi and L.G.Kabari, “Text-to-speech recognition using Google

API,” Int. J. Comput. Appl., vol. 183, no. 15, pp. 18–20, Jul. 2021, doi:
10.5120/ijca2021921474.

[30] “Pygame,” Pygame. Access date: 25-Sep-2025. [Online]. Available:

https://www.pygame.org

EN-261

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 4 November 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Reni Triyaningsih: Application of You Only ...

This page is intentionally left blank

EN-262

