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ABSTRACT — Limited understanding of sign language has widened the social gap for deaf people, creating barriers in 

communication and social interaction. To address this challenge, technology-based solutions are required to facilitate 

inclusive communication. Deep learning-based detection methods, particularly the You Only Look Once (YOLO) algorithm, 

have gained attention for their speed and accuracy in real-time object detection. This research aims to develop and evaluate 

a YOLO training model for the identification of Indonesian sign language system (sistem isyarat bahasa Indonesia, SIBI). 

The dataset was obtained from resource person at the State Special School Prof. Dr. Sri Soedewi Masjchun Sofwan, SH. 

Jambi, and enriched with additional images collected from external subjects. Augmentation techniques with Roboflow were 

applied to expand the dataset, and several training schemes were implemented. Model performance was assessed using 

confusion matrix while considering accuracy and indications of overfitting. The results showed that the quality and quantity 

of training data, as well as the epoch values, strongly influenced the accuracy of the trained model. The best performance 

was achieved with 40 primary images per label class, augmented to 60 images, and trained over 24 epochs, resulting in a 

confusion matrix accuracy of 99.9%. The implemented model was able to recognize SIBI gestures in real-time using a 

webcam with fast processing. Overall, the proposed YOLO-based model successfully identifies sign language in real-time 

and demonstrates strong potential for reducing communication barriers among deaf people. However, further refinement 

and expansion of the dataset are recommended to improve effectiveness and enable broader real-world applications. 

KEYWORDS — Sign Language, Real-Time Detection, You Only Look Once, YOLO Model Fine-Tuning.  

I. INTRODUCTION 

Sign language is a form of communication commonly used 

by deaf people using hand gestures, facial expressions, and 

body movements to form symbols that represent letters or 

words [1]. Just like any other language, sign language is a 

naturally evolving system, systematic, and governed by 

linguistic rules [2]. In Indonesia itself, the formal use of sign 

language as a means of communication and teaching material 

that has been formalized by the government is the Indonesian 

sign language system (sistem isyarat bahasa Indonesia, SIBI) 

[3]. SIBI is a form of oral communication adapted to sign 

language, with some vocabulary taken from American sign 

language (ASL) [4]. SIBI was developed through a 

combination of four local, forged, invented, and absorbed signs, 

which were then standardized into a national sign system. It is 

published by the Ministry of Education and Culture and applied 

in formal schools, such as special schools [5]. The purpose of 

using SIBI in education is to help people with disabilities 

actively participate, especially in teaching and learning 

activities, to improve the quality of their social interactions. 

Hearing and communication impairments will not prevent them 

from doing their usual activities, including continuing their 

education. They can still communicate using sign language. 

In Indonesia, sign language is generally learned through 

special schools and the deaf community, as well as specialized 

books that discuss sign language. Implementing learning 

activities in a deaf community is certainly not easy and is very 

different from learning in a nondisabled environment. For deaf 

people, they must receive education guided by qualified 

teaching staff [6]. However, the nondisabled environments 

generally learn without the need for sign language teaching 

staff, so they become less familiar with sign language.  

Limited understanding of sign language among nondisabled 

individuals further widens the social gap between them and the 

deaf community. This situation create barriers for deaf people 

in social interaction, emotions, and communication [7]. 

Communication can be said to be successful if what is 

conveyed and intended by someone can be understood by the 

interlocutor [8]. However, deaf people are more likely to have 

difficulty communicating with the nondisabled community. As 

a result, they are often viewed differently by the nondisabled 

community, causing them to feel inferior and hopeless.  

To realize quick action to overcome the communication gap 

between deaf people and nondisabled people, it is necessary to 

develop a system that can be used not only by teaching staff, 

but also by the community to help communicate with deaf 

people. Unlike spoken language, the delivery of sign language 

is done using body movements as the main means of 

communication [9]. This shows that sign language can be 

visualized in the form of images, so that hand movements or 

facial expressions can be detected automatically through 

technology. The development of a sign language recognition 

system aims to make it easier for people to understand sign 

language [10].  

One of the most commonly applied methods for object 

detection is the convolutional neural network (CNN) method, 

which is a popular neural network method and is in high 

demand for object detection [11]. However, another object 

detection method that can detect objects in real-time with a 

higher level of accuracy and speed in recognizing objects has 

been developed, namely the You Only Look Once (YOLO) 
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method [12]. It was first developed by Joseph Redmon, who 

proposed a grid-based object detection approach by applying a 

single convolutional neural network [13]. YOLO is designed as 

a unified model algorithm that instantly detects and recognizes 

objects as a whole in a single process [14]. YOLO works by 

dividing the input image into an S × S grid, where if an object 

falls into a grid cell, then that grid cell performs the task of 

detecting the object [15]. The main objective of object 

detection using YOLO is to find and identify objects in an 

image from predefined labels by assigning an object class and 

indicating the position of the object obtained by drawing a 

bounding box around it [16]. The YOLO method can also 

detect objects in real-time, making it suitable for systems that 

require a fast response [17].  

Previous case study research applying the YOLO method 

has been conducted. A research on emotion recognition in 

facial images using the YOLOv8 method has been conducted 

[18]. Results indicated that the application of the model 

successfully detecting emotions through facial images in real-

time by processing 400 dataset images consisting of happy, sad, 

angry and surprised emotions, with a validation rate of mean 

average precision (mAP) value reaching 90%. 

Later, another study was made to detect child abuse and 

bullying based on YOLOv8 [19]. The research adopted a 

dataset approach containing the shapes of violent and 

nonviolent actions with an image size of 640 px. As a result, 

the model was able to run and detect acts of violence with an 

accuracy value of 85%, a precision of 81.8%, and a recall of 

90%. 

Other research has also developed systems to detect the 

SIBI sign language [20]. The study used a dataset that 

specialized in translating alphabetical signs from 24 alphabets 

and was grouped into 4 groups, with each group having 20 

image datasets. The results showed that the application of the 

YOLO method was able to detect gestures with evaluation 

values from group 1, resulting in an F1 score of 90.90%, group 

2 of 97.1%, group 3 of 90.90%, and group 4 of 83.8%. 

Some of these studies have applied algorithms from the 

YOLO model to detect objects and produce good evaluation 

values. Although object detection research by applying the 

YOLO method has been carried out, there has been no research 

study related to sign language identification that is applied in 

real-time covering datasets from three categories, namely 

alphabets, numbers and basic words from SIBI, especially data 

samples obtained directly from the resource person at the State 

Special School Prof. Dr. Sri Soedewi Masjchun Sofwan, SH. 

Jambi. This study proposes the development of a sign language 

recognition system based on computer vision, using a model 

trained with the You Only Look Once (YOLO) method, which 

can directly recognize hand movements through a camera 

without the need for additional auxiliary tools. The developed 

model is specifically designed for real-time operation and 

provides recognition results in text and audio formats, enabling 

two-way communication between deaf and nondeaf people 

with the aim that the developed model can be an effective 

communication aid and social interactions between deaf and 

nondeaf people.  

In this study, the model was trained using raw data obtained 

directly, rather than data sets specifically prepared for local 

sign language categories. This approach allows for more 

realistic and practical system development, as the data reflect 

real-world variations in hand gestures and lighting conditions 

commonly encountered in daily environments. 

II. METHODOLOGY 

This section discusses matters related to the flow of 

research work, including datasets, data preprocessing, model 

training, model evaluation, implementation, and system testing. 

A. DATASETS 

In this research, the dataset used for the model training 

process was SIBI. Gesture image data obtained directly from 

resource person at the State Special School Prof. Dr. Sri 

Soedewi Masjchun Sofwan, SH. Jambi. The initial stage before 

taking pictures was the process of interviewing sign experts to 

determine the class of sign labels that were modeled. The 

results of the interview showed that the label coverage of the 

dataset consisted of three categories, namely alphabet, number, 

and basic words from SIBI. Alphabetical data consists of A–Z, 

excluding the letter J, which is symbolized as movement. The 

numeric data consists of satu–sembilan, and the basic words 

consisted of “bodoh,” “cinta,” “jahat,” “kamu,” “kasih,” 

“maaf,” “makan,” “masuk,” “minum,” “nama,” “rumah,” 

“saya,” “terima,” “tidur,” “tolong.”  

The process of capturing image data from the resource 

person was carried out using a cellphone camera with a 1:1 

aspect ratio and a 12 MP resolution. Sign image data obtained 

from resource person at the special school were used as 

reference data for each of the specified label classes. Then, to 

enrich the content of the dataset, image data were also collected 

from subjects other than the primary resource person by 

directly capturing images using cellphone and laptop camera. 

The laptop camera had a 16:9 aspect ratio and a resolution of 

0.9 MP. During the shooting process, the camera was placed at 

approximately 50–70 cm from the subject, at a height parallel 

to the subject’s chest level. Lighting conditions were 

maintained using natural daylight or evenly distributed indoor 

lighting to minimize shadows and ensure clear visibility of 

hand movements. From this process, 70 primary images were 

collected for each predetermined label class. 

B. DATA PREPROCESSING 

Data preprocessing refers to converting raw data into a 

format that is easier for machines to understand. Data 

preprocessing was performed on the Roboflow platform that 

provides a web-based interface with the stages of image 

labeling, splitting the dataset, and data augmentation [21]. 

Image labeling was processed by annotating and grouping data 

according to the class name of each object in the image to store 

information related to the image. The image labeling process 

was processed manually by providing bounding boxes to the 

image objects one by one to ensure the accuracy of the 

annotation. 

Data that have been annotated and labeled with class 

information were then be split into three subsets, namely 

training, validation, and testing subsets: 70% was used as the 

main material for training the model, 20% was allocated as the 

validation subset to monitor the performance of the model 

during the training process, and 10% was used as the testing 

subset to test the performance of the model that had been 

trained. 

The final stage of data preprocessing was to include 

augmentation to expand the variety in the data without 

increasing the amount of primary data. The augmentation 

methods used were crop, which involved cutting out part of an 

image so that it no longer had the same position or size; 

grayscale, which removed color information from images so 
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that the model could focus more on shapes and patterns; blur, 

which applied a blurring images to simulate an out-of-focus 

camera; noise, which added random visual noise to the image, 

such as small dots or slight distortions; and brightness, which 

adjusted the brightness of the image to simulate different 

lighting conditions. The data augmentation process was done 

by not adding augmentation in the form of image flip because 

there was the same gesture for two different class labels and 

was distinguished based on the position of the hand when 

taking the picture. 

C. MODEL TRAINING 

The model training process was conducted using the 

YOLOv11 model, which was officially released on September 

30th, 2024, and served as the main detection framework. The 

YOLOv11 was selected because it represents the latest 

development in the YOLO family, offering significant 

improvements in real-time object detection performance 

compared to previous versions such as YOLOv8, YOLOv9, 

and YOLOv10. Among the available YOLOv11 variants (nano, 

small, medium, large, and x-large), the YOLOv11n (nano) 

model was chosen for its lightweight architecture, enabling 

faster inference speeds and real-time implementation on 

limited graphic processing unit (GPU) resources while 

maintaining competitive accuracy.  

Google Colab was used as the software to operate the model 

training process. Model training implemented the Tesla T4 

GPU runtime to speed up the execution process. Table I shows 

the combination of hyperparameters used for the success of the 

training process. The dataset was trained by applying a 

stepwise training procedure with a maximum number of epochs 

of 100. The approach aims to obtain the best epoch value that 

produces a model with optimal performance. If the training 

process yields a model with an evaluation value in the optimal 

category, then the training process is stopped even though the 

epoch value has not reached the maximum value. This strategy 

is applied to avoid the risk of overfitting, where the model is 

too explicit on the training data, which results in the model 

being less able to handle new data because it tends to memorize 

the training data instead of learning from the training data.  

D. MODEL EVALUATION 

An evaluation of the trained model was done by looking at 

the model’s training curve and confusion matrix value. The 

confusion matrix visualizes the distribution of model prediction 

errors in a single view. From the basic value of the confusion 

matrix prediction results, it can be concluded that the 

evaluation matrix values include precision, recall, accuracy, F1 

score, and mean average precision (mAP). The calculation 

results of the evaluation matrix value can be used to measure 

the overall performance of the model [22]. The calculation of 

the evaluation value depends on the base value of the confusion 

matrix prediction result, which is the main component to get 

the calculation value of other evaluation matrices, including 

true positive (TP), true negative (TN), false positive (FP), and 

false negative (FN). In the precision calculation category, the 

value is determined from the number of elements that are 

actually positive, measured against the total positive predicted 

elements.  

                             Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
.  (1) 

Another evaluation matrix is recall, which measures the 

model’s ability to collect all positive elements in a dataset [23]. 

The recall value is calculated by measuring the ratio of 

elements that are true positive to the total number of elements 

that should be predicted as positive. 

                                  Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

Another evaluation element that becomes an important 

point to determine the optimization of a model is none other 

than accuracy, which measures how well an algorithm 

performs with each data element having the same weight and 

contributing equally to the Accuracy value. 

 Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (3) 

From the calculation of the values of the three evaluation 

matrices above, the F1 score value can also be calculated, 

which is part of the most frequently applied parametric                 

F measures. F1 score works by calculating the average 

comparison value of precision and recall [24]. 

 F1 Score = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
. (4) 

The last evaluation matrix value that is considered in this 

study as a determinant of the optimization of a model is mAP, 

which is obtained from the average calculated value of average 

precision (AP). The AP value is obtained from the calculation 

between precision and recall. 

 mAP = 
1

𝑛
 ∑ 𝐴𝑃𝑘

𝑘=𝑛
𝑘=1 . (5) 

By combining all the calculated values of the evaluation 

matrix, an overall view of the performance of the trained model 

was obtained. The model with the best evaluation results was 

used to implement the model into real-time sign language 

detection. 

E. SYSTEM IMPLEMENTATION AND TESTING 

Implementing the model into a real-time system aims to 

provide users access to interact directly with the model. The 

training model that had passed the evaluation process and had 

the best performance was implemented in real-time by utilizing 

computer vision. The application of computer vision enables 

computers to “see” and capture objects in the visual 

environment [25]. The utilization of computer vision in the 

field of deep learning can be divided into classification, 

segmentation, detection, and generation, which can provide 

benefits in various purposes, for example, for security, 

information, monitoring, and other benefits [26]. The most 

commonly used task of computer vision is object detection, 

which refers to the ability of a computer to identify visual 

objects belonging to certain class, in order to determine 

whether there are examples of objects of a certain category, 

such as humans, vehicles, or animals [27]. In this research, the 

model was implemented using an open-source library 

commonly applied to systems adopting computer vision, 

TABLE I 

HYPERPARAMETER COMBINATION 

No. Parameters Value 

1. Epoch Maximum 100 

2. Batch Size 16 

3.  IoU 0.6 

4. Learning Rate 0.01 
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namely OpenCV. This library provides many task functions, 

such as motion tracking, object detection, face recognition, and 

segmentation. By applying OpenCV, real-time images or 

videos can be adapted according to the needs of the system [28]. 

The trained model was linked into Python code and OpenCV 

was employed library to access the webcam camera used as a 

live image capture tool. The model identification results were 

shown on the device screen in text form. The identified text was 

then translated into audio using the Google text-to-speech 

(gTTS) library. The gTTS libary is a tool that converts text into 

MP3 format so that it can be saved as an audio file [29]. The 

generated audio is then played using the Pygame library, 

specifically the pygame.mixer module, which is used to play 

audio files [30].  

The system that had been successfully run was tested in the 

final stage to ensure that it could be used in the real 

environment. In the test, four main aspects of testing were listed: 

responsiveness,  which  was to calculate the  frame  per second 

(FPS) value of each class label when the system was running 

using the timing function provided by the OpenCV library to 

ensure the model could identify objects without significant lag; 

accuracy, which assessed the level of conformity of the model 

detection results with the gesture performed by the user; 

robustness, which evaluated the system’s ability to recognize 

cue objects in various lighting conditions, backgrounds, and 

other distortions; and voice system, which ensured that the text 

interpreted into audio was synchronized and running properly. 

III. RESULTS AND DISCUSSION  

This section describes the stages that have been carried out 

in the research to obtain the final results of the research. 

A. DATASET ACQUISITION 

Dataset acquisition was done through two procedures in 

image data capture. In the first procedure, the data sample that 

became the gesture cue reference for each class label was 

obtained directly from the resource person at the State Special 

School Prof. Dr. Sri Soedewi Masjchun Sofwan, SH. Jambi. 

The data collection process was taken using a cellphone camera, 

resulting in 49 primary data images corresponding to the 

number of predefined class labels. Then, the second procedure 

was carried out to expand the data to a total of 70 primary data 

images for each class label by adding images taken from 

subjects outside the resource person while maintaining the 

gestures from the reference data images. The images in the 

second procedure were taken using both a cellphone camera 

and a laptop camera to make the dataset more diverse and 

representative. The dataset used in this study cannot be made 

publicly available due to privacy concerns and its large size. 

However, Figure 1 presents the image data acquisition results 

as a representative overview of the dataset. The data obtained 

was stored in one main folder, where each class label was 

placed in a separate subfolder according to its class label. 

B. DATASET PREPROCESSING 

The collected data were prepared for model training by 

annotating each class label on all images using Roboflow. Each 

image was annotated individually according to its respective 

class, and the results were validated directly by the authors in 

collaboration with the resource person from the State Special 

School Prof. Dr. Sri Soedewi Masjchun Sofwan, SH. Jambi to 

ensure labeling accuracy. For the alphabetic and numeric 

category classes, the labeling was focused on the area of the 

hand that formed the sign language gesture. Whereas, for the 

basic words class, the labeling contained the body parts 

involved in the gesture, such as the face, chest, and arms, 

depending on the characteristics of each gesture. Figure 2 

depict the image labeling process performed on the Roboflow 

platform. 

Once the labeling stage was complete, the annotated dataset 

was split into three subsets: training, validation, and testing. 

The total number of primary data images for each class label 

was 70, so the total number of primary data images obtained in 

the dataset for 49 label classes was 3,430 images. Of the total 

number of images, 70% (2,399 images) were allocated to the 

training subset, 20% (687 images) to the validation subset, and 

10% (344 images) to the testing subset. 

The final preprocessing step involved augmenting the 

image to enhance the training subset’s dataset. The 

augmentation process was still done on the Roboflow platform, 

which could also resize the images to 640 × 640 px so that all 

images had the same size. Figure 3 depicts the applied 

augmented image variations in the dataset, including crop, 

grayscale, blur, noise, and brightness adjustments. The final 

result of preprocessing produced a total of 5,829 image data in 

the training subset. This number was obtained because the 

augmentation process was only applied to the training subset, 

while the validation and testing subsets were kept without 

augmentation so that the evaluation results remained objective 

and represented real conditions. 

C. MODEL TRAINING 

The model training process was carried out through 

incremental epoch cycles, where the entire dataset was 

processed in each round. In the first training, the model was 

trained for 10 epochs with a batch size of 16, an intersection 

 

Figure 1. Image data acquisition result. 

 

Figure 2. Image data annotation. 

 

Figure 3. Dataset augmentations. 
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over union (IoU) of 0.6, and a learning rate of 0.01. However, 

the training results obtained did not show good results, since 

during the training process, the model showed indications of 

overfitting. This can be seen from the significant difference 

between the values on the training loss curve, which continues 

to decrease and reaches a low point. Meanwhile, Figure 4 

depicts that the value on the validation loss curve tends to show 

no significant improvement. The loss value in the train box loss 

consistently decreased throughout the end of the training 

process, suggesting that the model could learn and adapt to the 

parameters used with the training data. However, the loss value 

in the validation box loss remained stagnant and did not 

decrease after several epochs. Starting from epoch 4 to epoch 

10, the gap between the train box loss and validation box loss 

curve lines significantly apparent, which indicates the model 

overfitting. 

This situation needs to be improved by performing a model 

fine-tuning procedure, namely, retraining the pretrained model 

using the corrected data. Applying the fine-tuning procedure 

will save more time in the training process than training the 

model from scratch. The fine-tuning process is carried out by 

improving the dataset and parameter combinations used during 

training to obtain more optimal training results. 

D. FINE–TUNING  

The fine-tuning process was initiated from checking the 

quality of all the images in the dataset resulting from the 

preprocessing stage. The findings obtained that were results of 

data preprocessing captured using a laptop camera decreased in 

quality from the results of resizing the image. The image looked 

narrow, and the gesture shape became disproportionate. 

Therefore, the primary data were reselected by retaining 

images that were consistent in proportion and object shape for 

model refinement. From a total of 3,430 primary data images 

with an average of 70 images per label class, the 40 best quality 

images were obtained for each label class, bringing the total 

data used to 1,960. All data were captured using a cellphone 

camera with a 1:1 ratio. Table II shows the distribution of data 

before and after the selection process for high-quality images. 

The selected images then went through the data preprocessing 

stage again, but with different techniques. The data 

preprocessing stage to prepare the dataset that was used in the 

fine-tuning process utilized the library in Python before being 

re-annotated in Roboflow.  

1)  FINE–TUNING DATASET PREPROCESSING 

The initial stage of the data preprocessing process is to 

perform the background removal technique on the image. The 

dataset selected by the fine-tuning process was uploaded into a 

Google Drive folder and processed using Google Colab. The 

purpose of removing the background is to remove the 

background so that the model focuses on the main object in the 

image without being distracted by other irrelevant elements. 

The process of removing the background was done by opening 

all images from the input folder using Python code and 

executing them using the rembg library. The results of the 

remove background process were saved using the os.mekedirs 

function to the remove background results folder. 

Dataset preprocessing was followed by a resize process to 

equalize the image size to 640 × 640 px so that the training 

process was organized and in accordance with the input image 

model used. The resize process was done by retrieving image 

data from the remove background result folder. The resize 

process was done by utilizing the Python imaging library (PIL), 

and the image was resized using the thumbnail() method to 

maintain the aspect ratio of the image. Then, the resized results 

were saved into a new resized result folder. 

To ensure the images used in modeling had good visuals, 

was not blurry, and still maintained the details of gesture cues, 

the process of checking image quality using the Laplacian 

variance method was carried out. The method was used to 

detect blur based on the calculation of pixel value variations by 

setting a threshold value of 50, and the passed images were 

saved into the final folder of preprocessing results using Python. 

The last folder used to store the final results of 

preprocessing using Python was then downloaded, and 

relabeling, splitting, and augmentation were carried out without 

entering the resize process in Roboflow. The labeling, splitting, 

and image augmentation processes followed the same data 

preprocessing procedure before the fine-tuning process, but 

were conducted in increments of 10, forming data groups 

consisting of 10, 20, 30, and 40 primary images data per label 

class. The final result of data preprocessing was four zipped 

folders resulting from labeling, splitting, and augmentation 

according to the amount of primary data.  

2)  FINE–TUNING MODEL 

 The model fine-tuning process applied a four-scenario 

method of gradual data training process, starting from training 

using 10 primary data images to 40 primary data images per 

class label. This approach was applied as an effort to anticipate 

the risk of overfitting, especially considering the limited 

amount of data. The model with the best performance was used 

as raw material for system implementation. Table III shows the 

TABLE II 

DATASET DISTRIBUTION 

Categories 
Number of 

Classes 

Average Initial Images 

per Class 

Total 

Images 

Average Selected Images 

per Class 
Total Images 

Alphabet 25 70 1,750 40 1,000 

Number 9 70 630 40 360 

Basic Words 15 70 1,050 40 600 

Total 49  3,430  1,960 

  

 

 

Figure 4. Train vs validation loss curve of the initial model. 
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data distribution for each model fine-tuning scenario and the 

best epoch obtained. During the fine-tuning model process, the 

training hyperparameters were readjusted to suit the dataset. 

After several training trials, the optimal hyperparameter 

configuration for each fine-tuning scenario was identified. The 

selected hyperparameters included 40 epochs a patience value 

of 3, a batch size of 16, and an IoU of 0.6. Additionally, the 

learning rate was reduced to 0.001, with freeze set to 1 and 

dropout set to 0.3.  

The training process by applying the early stopping 

mechanism with patience at 3 aimed to stop the training process 

early if there was no performance improvement during the 

epoch increments. The freeze and dropout parameters were 

applied to prevent overfitting by randomly removing some 

neurons while training the model. During the training process, 

although the maximum number of epochs was set at 40, in 

reality, the best results were obtained at no more than 30. For 

example, for the model in the fourth scenario, the best result is 

at the 24th epoch. Although the training process continued past 

that epoch, no significant performance improvement was found, 

so the 24th epoch was considered the optimal epoch. 

E. MODEL EVALUATION 

Model evaluation is done to determine the best model 

among all completed model training schemes. The model can 

be categorized as a good model if the evaluation results show 

optimal model performance and there is no indication of 

overfitting during the training process. A high evaluation 

matrix score alone is not enough to conclude that the model is 

feasible to implement. Models that experienced overfitting 

were also categorized as unfit because they tended to recognize 

patterns from the training data and had difficulty in identifying 

gesture cues when applied in real environments. An indication 

of the presence or absence of overfitting during the training 

process can be seen through the train vs validation loss 

evaluation curve.  

Figure 5 depicts the evaluation results of the training 

process based on the train vs validation loss curve, which 

indicates that the model in the first scenario did not perform 

optimally, as the validation loss does not show consistent 

improvement and diverges from the training loss. The 

validation loss value on the curve is unstable and often 

fluctuates up and down during the training process, indicating 

that the model has not learned optimally from the limited data. 

However, in the subsequent training process in the second to 

fourth scenarios of the model, the curve began to show a more 

stable decreasing pattern suggesting that the error (loss) values 

on the training and validation data were decreasing, which 

suggests that the model training process was running well 

without any indication of overfitting. So, it can be concluded 

that increasing the amount of data in the training subset can 

effectively improve the performance of the model. 

The performance of each model can also be seen in the 

confusion matrix value, which gives an idea of the extent to 

which the model can predict gesture cues correctly. The 

confusion matrix is a table that shows the number of model 

predictions for each label class and compares them with the 

predicted correct answers (actual labels). The value of the 

confusion matrix is the main component in calculating the 

value of other evaluation matrices. Figure 6 depicts the 

distribution of prediction results for each model fine-tuning 

scenario across all label classes. The prediction outcomes were 

then recalculated to obtain additional evaluation metrics, 

including precision, recall, accuracy, F1 score, and mAP. All 

figures, including training curves and confusion matrices, were 

generated directly from Python outputs during the model 

training process. 

Table IV shows the average values of each evaluation 

component for each model fine-tuning scenario, based on the 

results of the prediction value calculations. From the evaluation 

results, the model with the best results was obtained from fine-

tuning the fourth scenario model with the training process using 

40 primary data for each label class, followed by augmentation 

to 60 images from each label class, and with the best epoch at 

24. The training results showed no indication of overfitting, 

with the precision evaluation matrix value reaching 99.4%, 

recall 97.8%, accuracy 99.9%, F1 score 98.7%, and the mAP 

value 94.3%.  

F. SYSTEM IMPLEMENTATION AND TESTING 

The implementation of the model in the real-time system 

was built using Python program code with the help of Notepad 

as a text editor. A combination of several libraries needed, such 

as OpenCV, was used to access the webcam camera, read and 

display video frames, and display detection results. Then, the 

gTTS library was used to convert the detected text into audio, 

and with the help of pygame library, to play the audio directly. 

The time library is also used to calculate and display the FPS 

of the detection speed. 

The model was run using a local CPU device via Anaconda 

Prompt as an interface to run the Python environment and the 

prepared detection scripts that had been prepared. This 

TABLE III 

MODEL FINE-TUNING TRAINING SCENARIOS 

 Number of Primary Data per Class Label Number of Data after Augmentation per Class Label 
Best Epoch 

 Training  Validation Testing Total Training  Validation Testing Total 

First Scenario 7 2 1 10 14 2 1 17 21 

Second Scenario 14 4 2 20 28 4 2 34 21 

Third Scenario 22 6 2 30 44 6 2 52 25 

Fourth Scenario 30 8 2 40 60 8 2 70 24 

  

 

 

Figure 5. Train vs validation loss curve fine-tuned model. 
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implementation was fully conducted on local hardware without 

relying on cloud-based resources. Figure 7 depicts the 

implementation output of the SIBI sign language identification 

system. 

After the system was implemented, testing was conducted 

to determine whether the system could identify sign language 

well in the real environment. This test aimed to evaluate the 

overall performance of the system when run by taking input 

images from a live camera. The responsiveness aspect was 

tested by measuring the absence of any significant delay in 

detecting gesture signals for each label during the detection 

process. Responsiveness was then calculated based on the FPS 

value obtained from the average of 10 detection attempts for 

each class label. The accuracy aspect was evaluated by running 

the system and recording detection results. Detections were 

considered accurate if the identified gesture matched the 

performed gesture and the confidence score ˃  80%. Robustness 

was assessed by operating the system under various 

background and lighting conditions, where successful detection 

under these conditions was considered a success. Finally, the 

voice output system was tested to ensure that the generated 

audio remained synchronized with the recognized text during 

operation. 

After the system was executed and tested, the results 

showed that the responsiveness of the system in detecting each 

class label was relatively consistent, with an average of 5 FPS. 

In this study, no minimum FPS value was defined, as the main 

focus was to verify whether the system could perform real-time 

detection without noticeable delay. Although the FPS was 

relatively low due to the CPU-based implementation, the model 

still proved effective in recognizing sign language gestures. 

Future improvements in FPS can be achieved by increasing the 

training data, applying more diverse augmentation, and 

utilizing more powerful hardware. Overall, the detection results 

for all class labels were accurate, with confidence scores 

consistently ˃80%. However, several class labels, namely “v,” 

“w,” “dua,” and “enam” showed lower accuracy due to 

frequent misclassifications caused by the similarity of their 

gesture forms. These labels only achieved confidence scores in 

the range of 50% to 70%. Then, the results of robustness testing 

showed that the alphabet and number class categories category 

still had limited detection capabilities because the system was 

only able to detect these labels in clean background conditions. 

This is the effect of the dataset used in the model training 

process, where the dataset has a clean background as the output 

of the remove background. In the final test, the voice system 

was evaluated, and the voice output of each label class was 

always in sync with the text detected by the system. 

IV. CONCLUSION 

The results of this research show that sign language, 

especially SIBI, can be identified in real-time using a YOLO-

based training model. The results also show that the data quality, 

data quantity, and the epoch value significantly affect the 

quality of the trained model. The YOLO model training in this 

study achieved the best accuracy during the fine-tuning process 

in the fourth scenario, with the number of primary data as many 

as 40 images per label class, with a total of 60 images of subset 

training after augmentation per label class. The model trained 

at epoch of 24 produced a training accuracy value of 99.9%, 

based on the calculation of the confusion matrix evaluation 

value. Based on the research results, the developed sign 

language identification system can identify signs through input 

images taken directly using a webcam and processed in a short 

time. Thus, the target of developing the YOLO model for 

identifying sign language has been achieved. However, the 

model still needs further refinement to address its shortcomings 

in this study before it can be widely applied in real-world 

settings. This study will help pave the way for better future 

research. Future research is recommended to enrich the 

diversity of backgrounds in the dataset and to adjust the system 

according to the application domain. Applying more variations 

of augmentation can possibly overcome the problem of false 

detection due to similar gestures between labels, and 

 

Figure 6. Visualization of the confusion matrix prediction fine-tuned model. 

TABLE IV 

AVERAGE EVALUATION MATRIX VALUE 

 Pretrained Model 

  First 

Scenario 

Second 

Scenario 

Third 

Scenario 

Fourth 

Scenario 

Precision 0.770 0.929 0.975 0.994 

Recall 0.695 0.935 0.956 0.978 

Accuracy 0.989 0.989 0.997 0.999 

F1 score 0.816 0.904 0.948 0.987 

mAP 0.911 0.894 0.928 0.943 

 

 

Figure 7. Sign language identification system display. 
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supplementing the alphabetic dataset by including the alphabet 

J symbolized in gestures through a video-based data capture 

and model training approach. For broader applicability, 

implementing the system in a more accessible form, such as a 

mobile application or similar platform, is essential for the 

model to be truly usable in a real-world environment. 
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