
Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

Fajar Pradana: Comparative Analysis of MVVM … p-ISSN 2301–4156 | e-ISSN 2460–5719

© Jurnal Nasional Teknik Elektro dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

DOI: 10.22146/jnteti.v14i2.18985

Comparative Analysis of MVVM and MVP Patterns
Performance on Android Dashboard System
Fajar Pradana1, Raziqa Izza Langundi1, Djoko Pramono1, Nur Ida Iriani2

1 Information System Department, Faculty of Computer Science, Universitas Brawijaya, Malang, Jawa Timur 65145, Indonesia
2 Management Program Study, Faculty of Economics, Universitas Tribhuwana Tunggadewi, Malang, Jawa Timur 65144, Indonesia

[Received: 23 January 2025, Revised: 7 March 2025, Accepted: 16 April 2025]

Corresponding Author: Fajar Pradana (email: fajar.p@ub.ac.id)

ABSTRACT — The rapid growth of the Android market in various developing countries has driven the demand for higher-

quality applications. Developing Android-based applications presents specific challenges, such as the need for responsive

designs and optimization for devices with diverse specifications. Design patterns like model-view-controller (MVC), model-

view-presenter (MVP), and model-view-viewmodel (MVVM) have become popular approaches to address these issues.

However, studies on the performance of design patterns in Android applications, especially in modern programming

languages like Kotlin, remain limited. This research aims to compare the performance of the MVP and MVVM design

patterns in an Android-based boarding house management application, KosGX. This application utilized Kotlin and featured

an interactive dashboard requiring significant device resources. Testing was conducted by measuring performance across

three key aspects: central processing unit (CPU) usage, memory usage, and system response time. The results of the study

showed that MVVM outperformed in CPU efficiency, with an average usage of 8.92% compared to 11.15% for MVP. In

terms of memory usage, MVVM was also slightly more efficient, with an average usage of 121.48 MB compared to 121.55

MB for MVP. However, MVP excelled in response time, averaging 236.88 ms, whereas MVVM reached 252.68 ms. This

study underscores that the choice of design pattern affects application performance. MVVM is more efficient in CPU and

memory usage, while MVP offers better response times. These findings provide valuable insights for developers in selecting

the optimal design pattern based on the specific needs of their applications.

KEYWORDS — Kotlin, CPU Efficiency, Response Time, MVP, MVVM, Memory Usage, Android Profiling.

I. INTRODUCTION

The Android market is currently experiencing positive

growth [1], driven by increasing demand in developing markets

and technological innovations such as the integration of

artificial intelligence (AI) in mobile devices [2]. According to

a report by the International Data Corporation (IDC), global

smartphone shipments were projected to grow by 6.2% year-

over-year (YoY) in 2024, reaching 1.24 billion units. Android’s

rapid growth of 7.6% YoY is particularly evident in the Asia-

Pacific region (excluding Japan), Latin America, the Middle

East, Africa, and China, primarily in the lower-tier device

segment. Conversely, iOS was only expected to grow by 0.4%

in 2024.

The Android platform is utilized not only by mobile device

users but also by software developers and manufacturers across

various types of devices, including smart TVs, tablets,

wearables, or automobiles [3]. Reflecting this diversity, the

official Android app store hosts over 2 million applications

across 60 different categories. These applications range from

education [4], banking [5], games, medical [6], travelling, and

health monitoring [7].

Android application development differs significantly from

desktop or web development. Applications must be optimized

for a wide variety of devices and specifications compared to

desktop or web, which typically involve more stable

environments with greater resources [8]. Additionally, Android

applications require responsive designs to accommodate

varying screen sizes and resolutions, unlike the relatively

uniform resolutions and screen sizes in desktop and web

development [9], [10]. While desktop and web application

development have been established for a longer time, Android

application development is a relatively newer field, with many

developers still in the beginner phase [11]. Novice developers

often face challenges that can impact application quality, such

as inadequate architectural planning, excessive memory usage,

poor feature implementation, significant bugs, and difficulty in

making improvements. Clear guidance in the form of software

design pattern implementation is therefore necessary to

produce higher-quality software that is reusable, maintainable,

and easier to evolve [12], [13].

Design patterns offer solutions to common problems in

software development [14]. By applying design patterns,

developers can accelerate their workflow, improve code quality,

and create systems that are easier to maintain. Currently, the

most widely used design patterns on the Android platform are

model-view-controller (MVC), model-view-presenter (MVP),

and model-view-viewmodel (MVVM) [15]. MVC is the most

frequently adopted design pattern due to its simplicity in the

development process, but it has a notable drawback in the form

of tight coupling between the controller and the view. MVP and

MVVM, on the other hand, provide different approaches to

managing data and interactions between application

components. In MVP, the presenter acts as the intermediary

between the view and the model, enabling modifications to

both components. In contrast, MVVM’s viewmodel provides a

stream of data that the view can consume, eliminating the need

for the view to update data as in MVP [16]. By separating these

components, these patterns reduce potential issues and enhance

the testability of the application. Although MVP and MVVM

are claimed to be superior to MVC, limited research has

examined the performance differences between these two

patterns. Previous studies on mobile device performance

EN-87

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Fajar Pradana: Comparative Analysis of MVVM …

regarding design pattern usage in Android applications have

reported that MVVM offers better CPU utilization and faster

response times compared to MVP [17]. However, MVP

performs better in memory management. These tests were

conducted on a point of sale (PoS) application developed in

Java, leaving a research gap for performance evaluations in

more modern programming languages.

This study introduced a new approach by evaluating the

performance of an application named KosGX, built using

Kotlin, through a comparative analysis of the MVP and

MVVM design patterns. Unlike previous studies that focused

solely on Java programming language with limited use cases,

this study leveraged Kotlin—a modern programming language

officially supported by Android—to address the lack of

research evaluating performance in newer programming

environments. KosGX, a boarding house management

application with complex interactive elements, provides a

comprehensive testing platform to assess design pattern

performance in real-world scenarios. The application serves as

a general example of a dashboard-based system, presenting

data akin to typical dashboard systems. Memory usage reflects

the amount of RAM allocated to the application, making it

critical for low-end devices where excessive RAM allocation

can degrade performance [18]. System response time (SRT) is

a key factor influencing user satisfaction [19].

This study offers three main contributions: empirical

evidence, practical implications, and actionable insights.

Empirical evidence provides empirical evidence on the

performance trade-offs between MVP and MVVM in Kotlin-

based Android applications, addressing gaps in previous

research on contemporary software development. Meanwhile,

practical implications highlight the significance of choosing

design patterns for resource-constrained software, ensuring

more optimal memory usage and shorter response times.

Actionable insights offer developers to improve application

quality and user experience through informed architectural

decisions.

From a societal perspective, these findings benefit both

developers and end-users. For developers, the study equips

them with deeper insights into design pattern performance,

enabling them to create more efficient and maintainable

applications. For end-users, especially those in developing

regions who rely on low-end Android devices, optimized

applications contribute to smoother user experiences and

longer device lifespans. Furthermore, as digital solutions

continue to address critical societal needs such as education,

healthcare, and financial inclusion, developing high-

performance applications becomes a cornerstone for

technology-driven progress.

This research aims to identify the design pattern that

offered better data presentation and optimal resource utilization

for the KosGX application. Significant performance

differences indicate that the choice of design pattern is an

essential factor in performance testing. Design pattern selection

impacts device performance when running applications,

making it essential for developers to choose the most suitable

pattern to ensure a positive user experience. Application

performance plays a vital role in user satisfaction, and poor

performance can adversely affect users’ perceptions of the

application [20]. Consequently, developers must consider

system performance as an integral aspect of user experience

design.

II. RELATED WORKS

A. DESIGN PATTERN

A design pattern is a solution to common problems

encountered during system development, particularly those

related to design, code organization, and system efficiency [14].

In mobile applications, system development also requires

design patterns to ensure architectural structures are more

organized and that the function and purpose of every line of

code written by the developer can be easily identified.

Officially, Android recommends that applications consist of

two layers: the presentation layer and the data layer, with an

additional layer acting as an intermediary to facilitate

interaction between these two layers [15]. Design patterns are

essential in Android system development to create efficient,

maintainable applications with high scalability [21]. Various

types of design patterns can be applied in Android development,

each with its unique characteristics, advantages, and

disadvantages. For instance, applying the flyweight design

pattern in Android has proven to enhance awareness of memory

consumption during mobile application development [22]. One

study compared the flyweight pattern with traditional object-

oriented programming, showing that the flyweight pattern does

not negatively impact memory usage, enabling professional

software design without sacrificing efficiency. Another study

discussed the importance of improving software quality and

reusability in Android systems [23]. As a result, a paper

proposed PatRoid, a framework for automatically detecting the

presence of design patterns in source code. Preliminary

evaluations demonstrated that PatRoid successfully detected 23

gang of four (GoF) design patterns in Android applications.

B. MODEL VIEW VIEWMODEL (MVVM) dan MODEL VIEW
PRESENTER (MVP)

The MVVM and MVP architectural patterns are widely

used in software development, particularly in Android

applications. Both patterns aim to decouple concerns,

improving maintainability and testability, but they differ in

their implementation approaches and data handling. MVVM is

a variation of the MVC architecture designed to achieve a

complete separation between the model and the view

components [24]. The model is a class containing data, the view

represents the application’s user interface (UI) and is

responsible for displaying information, and the viewmodel

handles the application’s business logic, providing data streams

to the view component without being directly tied to it. In other

words, the viewmodel has no knowledge of the existence of a

View.

In contrast, MVP is an architecture similar to MVC but with

some differences. The workflow begins with the view

capturing user input, which is then passed to the presenter [25].

The model contains the data to be displayed, the view

represents the application’s interface, and the presenter

manages all interactions between the model and the view [26].

The presenter retrieves data from the model and delivers it to

the view. MVP leverages interface classes, which are empty

function definitions that can be extended by other classes.

These interfaces are used in both the presenter and view

components to implement functions as required, whether to

retrieve or send data [27]. Figure 1 illustrates the workflow of

the MVP and MVVM architectures.

MVVM excels in terms of modifiability, featuring the

lowest modification index, while MVP performs better in terms

of raw performance. Both architectures are part of the clean

EN-88

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

Fajar Pradana: Comparative Analysis of MVVM … p-ISSN 2301–4156 | e-ISSN 2460–5719

architecture paradigm, which enhances Android application

development by ensuring minimal dependencies and improved

usability [26].

A study has reported that MVVM is the best in

modifiability, boasting the lowest modification index, while

MVP outperforms in performance and model-view-intent

(MVI) excels in test coverage [28]. Due to the limited research

exploring the comparative analysis of MVP and MVVM in

native Android platforms, particularly in systems developed

using Kotlin, this study aimed to address the existing gap.

C. SYSTEM PERFORMANCE

Modern smartphone users are no longer limited to

preinstalled applications provided by device manufacturers.

They can also access third-party applications downloaded

through various app distribution platforms [21]. In this

ecosystem, the use of third-party applications often leads to

significant memory consumption, which can result in

insufficient available memory to run these applications

optimally. This issue is particularly common in lower-tier

mobile devices with limited memory capacity, making memory

shortages a more frequent problem [29].

Application performance reflects how quickly an

application runs, how fast it loads data, and its overall

connectivity with various operations. Several key aspects need

to be considered to evaluate the performance of Android

applications. These include the central processing unit (CPU)

usage, execution time, and memory consumption, which are the

primary metrics for measuring application performance [30].

The demand for high-performance applications on the Android

platform continues to grow with advances in technology and

rising user expectations. Thus, this study aimed to compare

design patterns to identify the one with the best performance on

the Android platform.

In this research, Android Profiler was utilized to measure

performance. During the testing process, the device was

connected to Android Profiler to record CPU and memory

usage while opening the dashboard. For response time, logs

from Android Studio were analyzed to determine the time taken

by the application to display data.

III. METHODOLOGY

This study employed a methodology inspired by the

research and development (R&D) methodology, which is

commonly used to develop new products or systems through

research, design, development, and evaluation processes [31].

Research methodology was designed to support a comparative

performance analysis of the MVVM and MVP design patterns

in an Android dashboard system. The study began with the

software development phase, where an application

implementing both MVVM and MVP design patterns was

developed using the Kotlin programming language. Once the

application was completed, the designing test case phase was

conducted to create testing scenarios covering various

performance parameters, such as CPU usage, memory usage,

and response time. The subsequent phase, experiment, involved

executing the test scenarios on the application to collect

performance data. The data obtained from the experiments

were gathered during the data collection phase to ensure their

completeness and validity. Subsequently, the data were

analyzed during the data analysis phase using relevant

statistical methods, such as the independent sample t-test, in

order to identify significant differences between the two design

patterns.

A. SOFTWARE DEVELOPMENT

The first step in this research was the development of a

dashboard-based application named KosGX, built using Kotlin,

a modern programming language officially supported by

Google for Android development. KosGX is a boarding house

management application with a dashboard feature that includes

various visual components such as text, images, graphs, and

interactive elements requiring significant CPU and memory

resources.

The application was developed using MVP and MVVM

design patterns. The application interfaces were made identical,

displaying data such as payment visual diagrams, the number

of residents, rooms, a list of residents, a list of needs for the

boarding house, and a summary of payment income. The data

were stored in a local database using Room, a library built on

SQLite for local data storage on Android. Figure 2 illustrates

the UI of the KosGX application, which serves as the

experimental object in the performance comparison study of

the MVVM and MVP design patterns on Android applications.

The application is designed to assist in managing boarding

houses with key features such as monitoring payment status,

tracking room availability, revenue management, and a to-do

list.

On the left side of the interface, the main dashboard

displays a summary of important data, including payment

status represented as a pie chart, room availability with total

capacity, total revenue, and a high-priority task list for facility

maintenance. Meanwhile, on the right side, a detailed view of

room occupants is shown, featuring information such as

occupant names, professions, payment amounts, and payment

statuses (paid or unpaid), marked with visual icons.

This application was developed to support data collection

related to application performance in real-world usage

scenarios. The UI components are designed to accommodate

the needs of boarding house managers, focusing on efficiency,

clear information presentation, and simple interactions. In the

experiment, this application is used to compare CPU

performance, memory usage, and response time between the

implementations of the MVVM and MVP design patterns.

B. DESIGNING TEST CASE

The test scenarios in this research focus on the application’s

performance, which includes evaluating responsiveness,

(a)

(b)

Figure 1. Illustration of how pattern architecture works, (a) MVP and (b) MVVM.

EN-89

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Fajar Pradana: Comparative Analysis of MVVM …

scalability, stability, and resource usage [32]. Dummy data, or

synthetic data, are displayed on the application’s dashboard for

testing. Each test case is identified using a specific code format:

“TC-X-Y-Z,” where X represents the design pattern, Y

represents the test type, and Z indicates the test case number.

Data for each test case consists of 10 data points. Tables I and

II show the test cases for each design pattern.

C. EXPERIMENT

The testing involves running the application populated with

dummy data according to the designated test cases. During

testing, the device is connected to Android Profiler to record

CPU and memory usage while opening the dashboard. For

response time, logs from Android Studio are used to measure

the time the application takes to display data. Before testing

begins, it is ensured that no other applications are running on

the device. The testing was conducted on an Android device,

specifically a Samsung Galaxy A52 with a Snapdragon 778G

processor, 8GB of RAM, and Android 14 operating system.

D. DATA COLLECTION

CPU and memory performance were recorded using

Android Profiler, while dashboard response times were

collected using Android activity’s built-in methods. Data

collection occurs exclusively during the dashboard activity.

When the dashboard was opened, CPU and memory usage

appeared in the Android Profiler. CPU usage data were

summed and averaged, while memory usage was measured at

the start, peak, and end of the activity, then averaged.

E. DATA ANALYSIS

Quantitative data were analyzed using parametric or

nonparametric statistical techniques, depending on the

characteristics of the data. Parametric statistics are typically

used when the data meet certain assumptions, including normal

distribution, linearity, and homogeneity of variance. These

assumptions are crucial as they ensure the reliability and

validity of tests such as t-tests or ANOVA, which rely on

precise mathematical models to evaluate differences or

relationships between variables. For instance, the normality of

data distribution is often assessed using tools such as the

Shapiro-Wilk test, while homogeneity of variance can be

evaluated using Levene’s test.

If the data fail to meet these assumptions, nonparametric

statistical techniques are used as an alternative. Methods such

as the Mann-Whitney U test or Kruskal-Wallis test do not rely

on strict assumptions about the underlying data distribution,

making them more robust for analyzing skewed or nonlinear

data. While nonparametric tests are less sensitive to outliers and

irregularities, they may lack the statistical power of parametric

tests, meaning that detecting significant effects might require

larger sample sizes or more pronounced differences.

In this study, hypotheses were formulated to examine

whether there are significant differences in application

performance metrics—CPU usage, memory usage, and

response time—between the MVVM and MVP design patterns.

These hypotheses were tested using appropriate statistical

techniques based on the processed research data. For example,

an independent sample t-test was applied if the data met

parametric criteria, allowing for accurate comparisons of mean

differences between the two design patterns. Conversely, if

assumptions were violated, the Mann-Whitney U test was used

to compare the distributions of performance metrics without

relying on normality.

The completion of the data analysis phase provided critical

insights into the performance characteristics of each design

pattern. The results determined whether observed differences

in CPU usage, memory consumption, or response time were

statistically significant or merely due to random variation.

These findings not only validated the hypotheses but also

offered actionable conclusions regarding the suitability of

MVVM and MVP for various application scenarios,

contributing to a deeper understanding of their performance

trade-offs in Android development.

By employing a rigorous and adaptive statistical approach,

this study ensured that the analysis was scientifically robust and

capable of adapting to the nuances of the data, providing

reliable evidence to support the conclusions drawn. This

meticulous methodology reinforced the validity of the research

findings and emphasized the importance of selecting

appropriate statistical techniques tailored to the characteristics

of the data.

F. RESULTS AND DISCUSSION

After statistical analysis is completed, the results will yield

conclusions about whether there is a significant difference

between the MVVM and MVP design patterns in displaying

Figure 2. Example of KosGX application UI.

.

TABLE I

TEST CASE MVVM

Data Range CPU Memory
Response

Time

10,000– 19,000
TC-VM-

CPU-01

TC-VM-

MEM-01

TC-VM-

RT-01

20,000– 29,000
TC-VM-

CPU-02

TC-VM-

MEM-02

TC-VM-

RT-02

30,000– 39,000
TC-VM-

CPU-03

TC-VM-

MEM-03

TC-VM-

RT-03

40,000– 49,000
TC-VM-

CPU-04

TC-VM-

MEM-04

TC-VM-

RT-04

TABLE II

TEST CASE MVP

Data Range CPU Memory
Response

Time

10,000– 19,000 TC-P-CPU-01
TC-P-MEM-

01

TC-P-RT-

01

20,000– 29,000 TC-P-CPU-02
TC-P-MEM-

02

TC-P-RT-

02

30,00 – 39,000 TC-P-CPU-03
TC-P-MEM-

03

TC-P-RT-

03

40,000– 49,000 TC-P-CPU-04
TC-P-MEM-

04

TC-P-RT-

04

EN-90

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

Fajar Pradana: Comparative Analysis of MVVM … p-ISSN 2301–4156 | e-ISSN 2460–5719

data on an Android application’s dashboard. The following

criteria must be satisfied to determine the optimal design

pattern.

1. The design pattern is considered better if it has a lower

average CPU usage.

2. The design pattern is considered better if it has a lower

average memory usage.

3. The design pattern is considered better if it demonstrates

faster response times.

IV. RESULTS AND DISCUSSION

A. RESULTS

The testing was conducted on an Android device,

specifically a Samsung Galaxy A52 with a Snapdragon 778G

processor, 8GB of RAM, and Android 14 operating system.

The tests were divided into four test cases (TC) based on the

range of data used in each test. For TC-1, which used a data

range of 10,000–19,000 entries in the application’s database,

the average CPU usage was 7.24% for MVVM and 9.54% for

MVP. In TC-2 (20,000–29,000 data), average CPU

usage was 8.49% for MVVM and 10.90% for MVP. In TC-

3 (30,000–39,000 data), it was 9.37% for MVVM and 11.76%

for MVP. Finally, in TC-4 (40,000–49,000 data), CPU usage

averaged 10.57% for MVVM and 12.39% for MVP. Figure 3

illustrates the rising trend in CPU usage for each design pattern,

with MVVM represented by a blue line and MVP by a red line.

In the CPU category, MVVM consistently outperformed MVP

by using less CPU in all test cases.

The distribution of CPU usage data can be visualized using

a boxplot in Figure 4. The lowest CPU usage is represented by

the bottommost point, at 6% for MVVM and 7.43% for MVP.

The highest CPU usage is represented by the topmost point, at

11.86% for MVVM and 14% for MVP. The box itself

represents the interquartile range (IQR), which is the difference

between the first and third quartiles, illustrating the variability

of the data around the median. The median CPU usage is

marked by the line inside the box, at 9% for MVVM and 11%

for MVP. Visually, MVVM appears to be more efficient in

CPU usage compared to MVP.

In TC-1, with a data range of 10,000–19,000, the average

memory usage was 113.03 MB for MVVM and 113.35 MB for

MVP. In TC-2, with a range of 20,000–29,000 data, the average

memory usage was 119.84 MB for MVVM and 120.39 MB for

MVP. For TC-3, with 30,000–39,000 data, the average memory

usage was 124.10 MB for MVVM and 123.37 MB for MVP.

Finally, in TC-4, with 40,000–49,000 data, the average

memory usage was 128.96 MB for MVVM and 129.10 MB for

MVP. The visualization of the increasing average memory

usage is shown in Figure 5, with MVVM represented by a blue

line and MVP by a red line. In the memory performance

category, MVVM and MVP were closely matched, with MVP

performing better in TC-1, TC-2, and TC-4, while MVVM

outperformed in TC-3.

The distribution of memory usage data can be visualized

using a boxplot, as shown in Figure 6, with MVVM represented

by a blue color and MVP by a red color. The bottommost point

represents the lowest memory usage at 107.37 MB for MVVM

and 108.63 MB for MVP. The highest memory usage is

represented by the topmost point at 137.83 MB for MVVM and

133.97 MB for MVP. The median memory usage is indicated

by the line within the box, at 122.70 MB for MVVM and

122.23 MB for MVP. Visually, the MVVM design pattern

exhibits a wider data spread and the lowest memory usage,

while the MVP design pattern has a narrower data spread.

In TC-1, with a data range of 10,000–19,000, the average

response time was 144.79 ms for MVVM and 134.19 ms for

MVP. In TC-2, with a data range of 20,000–29,000, the average

Figure 3. CPU performance comparison.

Figure 4. Boxplot diagram of CPU usage.

Figure 5. Memory performance comparison.

0

2

4

6

8

10

12

14

TC1 TC2 TC3 TC4

C
P

U
 U

s
a
g

e
 (

in
 P

e
rc

e
n

ta
g

e
)

Test Case

MVVM

MVP

Design Pattern

C
P

U
 U

s
a
g

e
 (

in
 P

e
rc

e
n

ta
g

e
)

0

2

4

6

8

10

12

14

16

MVVM

MVP

100

105

110

115

120

125

130

135

TC1 TC2 TC3 TC4

M
e
m

o
ry

 U
s
a
g

e
 (

in
 P

e
rc

e
n

ta
g

e
)

Test Case

MVVM

MVP

EN-91

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Fajar Pradana: Comparative Analysis of MVVM …

response time was 217.16 ms for MVVM and 202.28 ms for

MVP. In TC-3, with a data range of 30,000–39,000, the average

response time was 285.17 ms for MVVM and 270.49 ms for

MVP. Finally, in TC-4, with a data range of 40,000–49,000, the

average response time was 363.61 ms for MVVM and 340.57

ms for MVP. The visualization of the increasing average

response time for each design pattern is shown in Figure 7, with

MVVM represented by a blue line and MVP by a red line.

MVVM outperformed in TC-1, while MVP performed better in

TC-2, TC-3, and TC-4, with a relatively close gap between the

two design patterns. Graphically, MVP is faster at displaying

data compared to MVVM, though the difference in speed

between the two design patterns is quite narrow.

The distribution of response time data can be visualized

using a boxplot, as shown in Figure 8, with MVVM represented

in blue and MVP in red. The lowest response time is at the

bottommost point, 116.30 ms for MVVM and 107.70 ms for

MVP. The highest response time is at the topmost point, 407.50

ms for MVVM and 390.80 ms for MVP. The median response

time is indicated by the line within the box, at 256.50 ms for

MVVM and 231.65 ms for MVP. Visually, both design patterns

have boxes of the same size, but MVP is slightly more optimal

than MVVM.

Once the experimental data were collected, the next step

was to analyze it. The first analysis involved testing the

normality of the data, which determines the type of difference

test to use. If the data are normally distributed, a parametric test

is applied. Otherwise, a nonparametric test is used.

For CPU usage with MVVM, the p-value was 0.986, which

is greater than 0.05, indicating a normal distribution. Similarly,

CPU usage for MVP had a p-value of 0.8933, which is also

greater than 0.05, confirming normal distribution. For the

memory usage, MVVM had a p-value of 0.674, while and MVP

had a p-value of 0.1883. These results indicate normal

distribution. For response time, MVVM and MVP had p-values

of 0.1768 and 0.1809, respectively, both greater than 0.05,

confirming normality.

Thus, all data categories were found to be normally

distributed, allowing for parametric testing. Table III

summarizes the Shapiro-Wilk normality test results for each

performance category.

Homogeneity testing was conducted to determine whether

the variance between groups is equal or homogeneous, which

is required for an independent t-test. For CPU, the p-value was

0.5931, greater than 0.05, indicating homogeneous variance.

For memory, the p-value was 0.9689, also greater than 0.05,

confirming homogeneity. For response time, the p-value was

0.756, greater than 0.05, indicating homogeneous variance.

Since all data categories had homogeneous variances, an

independent t-test was conducted.

With the prerequisites fulfilled, the final testing was

conducted to determine whether there was a significant

difference between the MVVM and MVP design patterns in

Figure 6. Boxplot diagram of the memory usage.

Design Pattern

M
e
m

o
ry

 U
s
a
g

e
 (

in
 P

e
rc

e
n

ta
g

e
)

100

105

110

115

120

125

130

135

140

MVVM

MVP

Figure 7. Response time comparison.

Figure 8. Boxplot diagram response time.

TABLE III

NORMALITY TESTING

Design

Pattern
CPU Memory

Response

Time

MVVM 0.986 0.674 0.1768

MVP 0.8933 0.1883 0.1809

0

50

100

150

200

250

300

350

400

TC1 TC2 TC3 TC4

R
e
s
p

o
n

s
e
 T

im
e
 (

in
 P

e
rc

e
n

ta
g

e
)

Test Case

MVVM

MVP

Design Pattern

R
e
s
p

o
n

s
e
 T

im
e
 (

in
 P

e
rc

e
n

ta
g

e
)

50

100

150

200

250

300

350

400

450

MVVM

MVP

EN-92

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

Fajar Pradana: Comparative Analysis of MVVM … p-ISSN 2301–4156 | e-ISSN 2460–5719

each performance category. The hypotheses for the

independent t-test were as follows:

1. null hypothesis (H0): If p > 0.05, no significant

difference exists;

2. alternative hypothesis (H1): If p ≤ 0.05, a significant

difference exists.

For CPU usage, the p-value was 1.866e-10 (less than 0.05),

indicating a significant difference between the design patterns.

For memory usage, the p-value was 0.9608, greater than 0.05,

indicating no significant difference. For response time, the p-

value was 0.756, also greater than 0.05, indicating no

significant difference. Thus, a significant difference was

observed in CPU usage between the design patterns, while no

significant difference was found for memory usage and

response time. Additionally, the analysis results indicate that in

terms of CPU usage, MVVM is more efficient than MVP, with

Cohen’s d = -1.64, representing a very large and significant

effect. Conversely, in response time, MVP demonstrates better

performance than MVVM, with Cohen’s d = 1.07, which is also

a large effect. Meanwhile, in memory usage, the difference

between the two design patterns is not significant (Cohen’s d =

-0.03) with a high p-value, indicating that memory usage

between MVVM and MVP is relatively the same. Regarding

potential biases, the results of the normality test (Shapiro-Wilk

test) and homogeneity of variance test (Levene’s test) confirm

that the statistical assumptions are met, ensuring that the t-test

results are reliable and free from significant bias.

B. DISCUSSION

Among the three performance categories—CPU, memory,

and response time—only CPU usage showed a significant

difference between the MVVM and MVP design patterns.

MVVM was superior in CPU usage, with an average usage of

8.02%, compared to 11.15% for MVP. For memory usage,

MVVM slightly outperformed MVP with an average of 121.48

MB versus 121.55 MB. However, MVP excelled in response

time, with an average of 236.88 ms compared to 252.68 ms for

MVVM. This finding differs from previous research [17]

which reported that MVVM was superior in both CPU usage

and response time, while MVP excelled in memory usage. This

discrepancy could be attributed to differences in testing

environments, application complexity, or the specific use of

Kotlin in this study, which may influence performance metrics.

Additionally, variations in how the UI rendering pipeline is

managed between different versions of Android could also

contribute to these differences, as certain optimizations in UI

thread execution may favor one architecture over the other.

Based on the results of the independent sample t-test, only

the CPU category showed a significant difference in

application performance between the design patterns for

Android-based applications developed using Kotlin. This

difference is assumed to arise from the distinct ways each

design pattern manages data flow and presents data to the user.

The key distinction lies in the intermediary component used to

handle requests to the model and deliver data to the view: the

viewmodel in MVVM and the presenter in MVP. The

viewmodel facilitates a reactive data-binding mechanism that

reduces the overhead of frequent updates, thereby optimizing

CPU usage. This finding is consistent with [16], which

highlighted the efficiency of reactive programming paradigms

in reducing CPU load. Furthermore, since MVVM leverages

LiveData and flows in Kotlin, it offloads computation-heavy

operations to background threads more efficiently than MVP,

where the Presenter actively controls UI updates and might

keep unnecessary UI-bound computations within the main

thread.

Conversely, MVP demonstrated superior response times,

likely due to its simpler data flow architecture, where the

presenter acts as a direct channel between the model and the

view. This aligns with [28], which observed that minimizing

the number of intermediary layers in the data flow can result in

faster response times. However, this advantage comes at the

cost of higher CPU usage, as the presenter requires more

frequent interactions with the View and Model components,

especially in complex applications.

Interestingly, MVVM’s slight advantage in memory usage

compared to MVP contradicts previous findings [17], where

MVP was reported to excel in this category. A possible

explanation is MVVM’s more efficient handling of lifecycle-

aware components, which reduces the likelihood of memory

leaks—a common issue in MVP when managing long-lived

Presenters. This aligns with [20], which emphasizes the

importance of lifecycle-aware components in effectively

managing memory consumption.

Overall, these findings underscore the nuanced trade-offs

between MVVM and MVP, particularly when applied to

Android development using Kotlin. While MVVM

demonstrates superior CPU efficiency and marginally better

memory usage, MVP offers a more responsive user experience.

The choice between the two should consider the application’s

performance priorities and complexity, as well as the

development team’s familiarity with each design pattern.

Future research could further explore these trade-offs by

including more complex scenarios or integrating additional

performance metrics, such as energy consumption or

maintainability.

This study provides valuable insights into the comparative

performance of the MVVM and MVP design patterns in

Android applications developed with Kotlin. One of the main

advantages of this research is its empirical evaluation of real-

world application scenarios, ensuring that the findings are

relevant and applicable to modern Android development.

Additionally, the use of statistical analysis strengthens the

validity of the conclusions, offering developers concrete data

to support design pattern selection based on specific

performance needs. However, the study also has limitations.

The testing was conducted on a single device model, which

may not fully capture variations in hardware performance

across different Android devices. Furthermore, the study

primarily focuses on CPU usage, memory consumption, and

response time, while other important factors such as energy

efficiency, maintainability, and scalability were not explored in

depth. Future research could address these limitations by

expanding the scope to include a broader range of devices and

additional performance metrics to provide a more

comprehensive evaluation of these design patterns.

V. CONCLUSION

This study compared the performance of MVVM and MVP

design patterns in an Android application built with Kotlin,

focusing on CPU usage, memory consumption, and response

time. The results indicate that MVVM outperforms MVP in

CPU efficiency, with an average usage of 8.92% compared to

11.15%. MVVM also demonstrated slightly better memory

efficiency (121.48 MB vs. 121.55 MB), though the difference

was not statistically significant. In contrast, MVP exhibited

EN-93

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Fajar Pradana: Comparative Analysis of MVVM …

faster response times, averaging 236.88 ms compared to 252.68

ms for MVVM.

These findings suggest that the choice of design pattern

should be based on the application’s performance priorities.

MVVM is more suitable for applications requiring optimized

CPU and memory management, particularly those with

complex data-binding scenarios or resource constraints. MVP,

on the other hand, is preferable for applications demanding

real-time responsiveness with minimal latency.

Future research could expand on these findings by

incorporating additional metrics such as energy consumption,

maintainability, and scalability. Furthermore, testing on a wider

range of devices and real-world scenarios could provide deeper

insights into the performance of these design patterns under

various conditions, ensuring broader applicability of the

conclusions drawn from this study.

CONFLICTS OF INTEREST

The authors declare that there is no conflict of interest in the

research and preparation of this paper.

AUTHORS’ CONTRIBUTIONS

Conceptualization, Fajar Pradana and Raziqa Izza

Langundi; methodology, Fajar Pradana; software, Raziqa Izza

Langundi; validation, Djoko Pramono; formal analysis, Nur Ida

Iriani; investigation, Fajar Pradana; resources, Raziqa Izza

Langundi; data curation, Raziqa Izza Langundi; writing—

original draft preparation, Fajar Pradana; writing—reviewing

and editing, Fajar Pradana; visualization, Raziqa Izza Langundi;

supervision, Fajar Pradana; project administration, Nur Ida

Iriani; funding acquisition, Nur Ida Iriani.

ACKNOWLEDGMENT

This research was funded by the Faculty of Computer

Science, Universitas Brawijaya, Malang.

REFERENCES

[1] International Data Corporation (IDC) “Worldwide smartphone market

forecast to grow 6.2% in 2024, fueled by Robust growth for Android in

emerging markets and China, according to IDC.” Access date: 23-Jan-

2025. [Online]. Available:
https://www.idc.com/getdoc.jsp?containerId=prUS52757624

[2] A. Karapantelakis et al., “Generative AI in mobile networks: A survey,”

Ann. Telecommun., vol. 79, no. 1–2, pp. 15–33, Feb. 2024, doi:

10.1007/s12243-023-00980-9.

[3] D. Rimawi and S. Zein, “A static analysis of Android source code for

design patterns usage,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no.
2, pp. 2178–2186, Mar./Apr. 2020, doi:

10.30534/ijatcse/2020/194922020.

[4] S. Papadakis, M. Kalogiannakis, and N. Zaranis, “Educational apps from

the Android Google Play for Greek preschoolers: A systematic review,”

Comput. Educ., vol. 116, pp. 139–160, Jan. 2018, doi:
10.1016/j.compedu.2017.09.007.

[5] J.B. Jorgensen et al., “Variability handling for mobile banking apps on

iOS and Android,” in 2016 13th Work. IEEE/IFIP Conf. Softw. Archit.

(WICSA), 2016, pp. 283–286, doi: 10.1109/WICSA.2016.29.

[6] F.M. Kundi, A. Habib, A. Habib, and M.Z. Asghar, “Android-based

health care management system,” Int. J. Comput. Sci. Inf. Secur. (IJCSIS),

vol. 14, no. 7, pp. 77–87, Jul. 2016.

[7] M. Prakash, U. Gowshika, and T. Ravichandran, “A smart device

integrated with an Android for alerting a person’s health condition:
Internet of things,” Indian J. Sci. Technol., vol. 9, no. 6, pp. 1–6, Feb.

2016, doi: 10.17485/ijst/2016/v9i6/69545.

[8] G.H. Prakash et al., “Development and validation of Android mobile

application in the management of mental health,” Clin. Epidemiol. Glob.

Health, vol. 31, pp. 1–7, Jan./Feb. 2025, doi:
10.1016/j.cegh.2024.101894.

[9] W. Li, Y. Zhou, S. Luo, and Y. Dong, “Design factors to improve the

consistency and sustainable user experience of responsive interface

design,” Sustainability, vol. 14, no. 15, pp. 1–26, Aug. 2022, doi:

10.3390/su14159131.

[10] D. Amalfitano, M. Júnior, A.R. Fasolino, and M. Delamaro, “A GUI-

based metamorphic testing technique for detecting authentication
vulnerabilities in Android mobile apps,” J. Syst. Softw., vol. 224, pp. 1–

17, Jun. 2025, doi: 10.1016/j.jss.2025.112364.

[11] N. Hoshieah, S. Zein, N. Salleh, and J. Grundy, “A static analysis of

Android source code for lifecycle development usage patterns,” J.

Comput. Sci., vol. 15, no. 1, pp. 92–107, Jan. 2019, doi:
10.3844/jcssp.2019.92.107.

[12] B.S. Panca, S. Mardiyanto, and B. Hendradjaya, “Evaluation of software

design pattern on mobile application based service development related

to the value of maintainability and modularity,” in 2016 Int. Conf. Data

Softw. Eng. (ICoDSE), 2016, pp. 1–5, doi:
10.1109/ICODSE.2016.7936132.

[13] B.B. Mayvan, A. Rasoolzadegan, and Z.G. Yazdi, “The state of the art on

design patterns: A systematic mapping of the literature,” J. Syst. Softw.,

vol. 125, pp. 93–118, Mar. 2017, doi: 10.1016/j.jss.2016.11.030.

[14] A. Naghdipour, S.M.H. Hasheminejad, and M.R. Keyvanpour, “DPSA:

A brief review for design pattern selection approaches,” in 2021 26th Int.

Comput. Conf. Comput. Soc. Iran (CSICC), 2021, pp. 1–6, doi:
10.1109/CSICC52343.2021.9420629.

[15] D. Panchal, “Comparative study on Android design patterns,” Int. Res. J.

Eng. Technol., vol. 7, no. 9, pp. 833–840, Sep. 2020.

[16] R.L.B. Baptista, “Framedrop-Mobile Client,” M.S. thesis, University of

Coimbra, Coimbra, Portugal, 2023.

[17] B. Wisnuadhi, G. Munawar, and U. Wahyu, “Performance comparison of

native Android application on MVP and MVVM,” in Proc. Int. Semin.

Sci. Appl. Technol. (ISSAT 2020), 2020, pp. 276–282, doi:
10.2991/aer.k.201221.047.

[18] M. Willocx, J. Vossaert, and V. Naessens, “Comparing performance

parameters of mobile app development strategies,” in MOBILESoft '16,

Proc. Int. Conf. Mob. Softw. Eng. Syst., 2016, pp. 38–47, doi:

10.1145/2897073.2897092.

[19] R.A. Doherty and P. Sorenson, “Keeping users in the flow: Mapping

system responsiveness with user experience,” Procedia Manuf., vol. 3,
pp. 4384–4391, 2015, doi: 10.1016/j.promfg.2015.07.436.

[20] F. Rösler, A. Nitze, and A. Schmietendorf, “Towards a mobile application

performance benchmark,” in ICIW 2014, 9th Int. Conf. Internet Web Appl.

Serv., 2014, pp. 55–59.

[21] G. Lim, C. Min, and Y.I. Eom, “Enhancing application performance by

memory partitioning in Android platforms,” in 2013 IEEE Int. Conf.

Consum. Electron. (ICCE), 2021, pp. 649–650, doi:
10.1109/ICCE.2013.6487055.

[22] W. Ngaogate, “Applying the Flyweight design pattern to Android

application development,” ASEAN J. Sci. Technol. Rep. (AJSTR), vol. 26,

no. 2, pp. 49–57, Apr.-Jun. 2023, doi: 10.55164/ajstr.v26i2.247607.

[23] D. Rimawi and S. Zein, “A model based approach for Android design

patterns detection,” in 2019 3rd Int. Symp. Multidiscip. Stud. Innov.

Technol. (ISMSIT), 2019, pp. 1–10, doi: 10.1109/ISMSIT.2019.8932921.

[24] R.F. García, “MVVM: Model–view–viewmodel,” in iOS Architecture

Patterns. Berkeley, CA, USA: Apress, 2023, pp. 145–224.

[25] X. Li, S. Wang, Z. Liu, and G. Wu, “Design and implementation of

enterprise web application common framework based on model-view-
viewmodel architecture,” in 5th Int. Conf. Mechatron. Comput. Technol.

Eng. (MCTE 2022), 2022, pp. 1-4, doi: 10.1117/12.2661040.

[26] M.I. Alfathar et al., “Penerapan MVVM (model view viewmodel) pada

pengembangan aplikasi bank sampah digital,” J. Ris. Apl. Mhs. Inform.

(JRAMI), vol. 5, no. 2, pp. 406–414, Apr. 2024, doi:
10.30998/jrami.v5i2.11071.

[27] C.J. Sampayo-Rodríguez, R. González-Ambriz, B.A. Gonzalez-Martinez,

and J. Aldana-Herrera, “Processor and memory performance with design

patterns in a native Android application,” J. Appl. Comput., vol. 6, no. 18,

pp. 53–61, Jun. 2022, doi: 10.35429/JCA.2022.18.6.53.61.

[28] F.F. Anhar, M.H.P. Swari, and F.P. Aditiawan, “Analisis perbandingan

implementasi clean architecture menggunakan MVP, MVI, dan MVVM
pada pengembangan aplikasi Android native,” Jupiter, Publ. Ilmu

Keteknikan Ind. Tek. Elekt. Inform., vol. 2, no. 2, pp. 181–191, Mar. 2024,

doi: 10.61132/jupiter.v2i2.155.

[29] A. Moreno-Azze, D. López-Plaza, F. Alacid, and D. Falcón-Miguel,

“Validity and reliability of an iOS mobile application for measuring
change of direction across health, performance, and school sports

contexts,” Appl. Sci., vol. 15, no. 4, pp. 1–11, Feb. 2025, doi:

10.3390/app15041891.

EN-94

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

Fajar Pradana: Comparative Analysis of MVVM … p-ISSN 2301–4156 | e-ISSN 2460–5719

[30] L. Corral, A. Sillitti, and G. Succi, “Mobile multiplatform development:

An experiment for performance analysis,” Procedia Comput. Sci., vol. 10,
pp. 736–743, 2012, doi: 10.1016/j.procs.2012.06.094.

[31] F. Pradana, P. Setyosari, S. Ulfa, and T. Hirashima, “Development of

gamification-based e-learning on web design topic,” Int. J. Interact. Mob.

Technol. (iJIM), vol. 17, no. 3, pp. 21–38, Feb. 2023, doi:

10.3991/ijim.v17i03.36957.

[32] S. Pargaonkar, “A comprehensive review of performance testing

methodologies and best practices: Software quality engineering,” Int. J.
Sci. Res. (IJSR), vol. 12, no. 8, pp. 2008–2014, Aug. 2023, doi:

10.21275/SR23822111402.

EN-95

