
Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

Muhammad Rezy Anshari: Comparison Study of Object-Relational ... p-ISSN 2301–4156 | e-ISSN 2460–5719

© Jurnal Nasional Teknik Elektro dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Translation of article 10.22146/jnteti.v14i2.17315

Comparison Study of Object-Relational Mapping
Performance Based on the Implementation of the
DSAP
Muhammad Rezy Anshari1, Redi Ratiandi Yacoub1, Herry Sujaini1, Bomo Wibowo Sanjaya1, Eva Faja Ripanti1

1 Electrical Engineering Study Program, Faculty of Engineering, Tanjungpura University, Pontianak, West Kalimantan 78124, Indonesia

[Submitted: 3 December 2024, Revised: 21 February 2025, Accepted: 16 April 2025]

Corresponding Author: Muhammad Rezy Anshari (email: research.murean@gmail.com)

ABSTRACT — Object-relational mapping (ORM) is a technique that maps in-memory objects and tables in the database,

implementing data source architectural patterns (DSAP), namely Data Mapper and Active Record. These patterns require

comparison due to performance difference indications and their significant roles in a system’s business processes. This study

aims to compare and analyze the execution duration and memory consumption of both patterns quantitatively, as well as the

functions that influence them in the ORM. The selected ORMs were Doctrine (Data Mapper) and Eloquent (Active Record).

The ORM performance was profiled as a library, not bundled in a framework. This profiling encompassed CRUD and lookup

operations based on specified measurement metrics, conducted using variations in the number of database records. The

profiling process was script-automated, leveraging a combination of Xdebug and Apache Benchmark. The analysis was

performed using Kcachegrind and big O notation, resulting in performance graphs, relative percentage differences, and

functions’ contributions to the performance. Results showed that Active Record excelled in memory consumption, whereas

Data Mapper was superior in execution duration in most operation and metrics combinations. Function groups of database

transactions, object serialization, and record retrieval were the primary contributors to the performance. Object and database

synchronizations became additional contributors to Active Record. The complexity of the largest contributor functions in

Data Mapper was higher than that of Active Record. Future studies can utilize automation concepts in the profiling process

and substitute Xdebug according to the requirements of the programming languages used by the ORM.

KEYWORDS — ORM, Data Mapper, Active Record, Data Source Architectural Patterns, Execution Duration, Memory

Consumption.

I. INTRODUCTION

Object-relational mapping (ORM) is a technique that maps

in-memory objects and tables in the database [1]. It is

commonly used in developing applications that employ the

object-oriented programming (OOP) paradigm and interact

with database management systems (DBMS). ORM allows the

execution of DBMS operations without directly writing the

structured query language (SQL), which is not tied to any

specific DBMS, thus improving the efficiency of the software

development process [2]. It also enables developers to focus on

writing program code, thereby minimizing the likelihood of

syntax errors in the SQL; serves as a buffer zone in the cache

[3]; and offers solutions to the semantic gap between the

DBMS and OOP [4]. ORM may lead to performance

degradation in an application, but this might be overlooked,

considering the benefits it offers [2], [5]. Hence, performance

is essential for an ORM [2]. ORM implements data source

architectural patterns (DSAP) with several patterns, such as

Data Mapper and Active Record. The key difference between

the two lies in the separation between the domain objects and

the database. Data Mapper has a layer of mappers that act as an

intermediary between the domain objects and the database. As

a result, both remain independent of each other. Unlike Data

Mapper, Active Record closely binds domain objects to the

database to make them simpler [6], [7]. Data Mapper and

Active Records are related to the domain model, one of the

domain logic patterns that is frequently implemented in the

domain layer. The domain layer is one of the primary layers in

the software architecture, containing the core domain or the

business processes of a system. Domain Model can be simple

or complex. Simple Domain Model usually only necessitates

one domain object for each database table [6]. Given its

simplicity, it is reasonable to combine the domain layer and

data source layer into a single object, enabling the use of Active

Record [6], [7]. A complex Domain Model can consist of

inheritance and various OOP patterns; thus, it can be very

different from a database design. Given its complexity, it is

more appropriate to separate the domain layer from the data

source layer, enabling the use of Data Mapper [6].

The differences between Data Mapper and Active Record

in adjusting the interaction between the domain layer and the

data source layer indicate potential performance variations

when executing the same task. The presence of performance

differences and their significance for the ORM, along with the

significant roles of both patterns in a system’s business process,

underscores the necessity of conducting a comparative study of

Data Mapper and Active Record.

This study aims to quantitatively compare and analyze the

performances of execution duration and memory consumption,

as well as functions that influence them in the ORM, utilizing

Data Mapper and Active Record. The object of the study was

the ORM implementing Data Mapper and Active Record.

Doctrine was chosen as the Data Mapper representative, while

Eloquent as the Active Record representative. Both are PHP-

based popular ORMs. Their popularity owes to their

frameworks, namely Symfony for Doctrine and Laravel for

Eloquent.

EN-129

 Jurnal Nasional Teknik Elektro dan Teknologi Informasi
 Volume 14 Number 2 May 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Muhammad Rezy Anshari: Comparison Study of Object-Relational ...

Based on the statistical comparisons reported by

packagist.org during this study, Laravel surpassed Symfony at

the framework level, with 396 million installations and 33,140

stars, whereas Symfony had 82 million installations and 30,034

stars. On the other hand, at the ORM level, Doctrine

outperformed Eloquent, with 233 million installations and

9,993 stars; meanwhile, Eloquent had 42 million installations

and 2,703 stars.

References [8]–[10] have compared several ORMs

implementing Data Mapper and Active Record. The

performance profiling of these studies was done at the

framework level. In other words, the ORM performances were

measured under the condition that each ORM was bundled in

different frameworks. In contrast to prior studies that bundled

the ORM into frameworks, this study conducted performance

profiling of the ORM in the form of a library so that the ORM

was not bundled into frameworks. The selection of ORM in the

form of a library was used as a control variable. Therefore, the

difference in treatment of each ORM during the comparison

process could be minimized. This was done considering that

each framework has its own flow when executing the same

operations. This study is also different from the previous study

[11]. Although both performed ORM profiling in the form of

libraries, this study distinguishes itself by comparing ORM

with another ORM, namely Eloquent, which utilizes a different

DSAP with Doctrine. This study utilized measurement metrics

[12], [13] and variations in the number of database records [2],

[9], [11], [14] in the profiling processes. This study also

analyzed functions that influenced the measured performances.

The performances used in this study were execution durations

and memory consumption, which had been widely used in

comparative studies. This election of the execution duration as

the measured performance has previously been done [2], [8],

[10], [11], [14]‒[18]. Similarly, memory consumption has also

been evaluated in earlier works [2], [8], [10], [16]‒[18].

Similar to the prior studies, Doctrine and Eloquent were

utilized in the application’s profiling processes. Profiling was

subsequently carried out in that application. The profiling

processes in this study were executed automatically through a

script leveraging the combination of Xdebug and Apache

Benchmark. Xdebug has been previously utilized for profiling

[19]–[21]. Similarly, the Apache Benchmark has also been

used in comparative studies [15]–[17], [20]. The profiling

results were records of call history between functions related to

a process, which were then analyzed using Kcachegrind. Prior

studies have also analyzed profiling results using Kcachegrind

[20], [22], [23]. Functions with dominant contributions were

further examined using big O notation to assess the complexity

and algorithm performance used. The big O notation has also

been discussed in [24]–[27].

This study contributes to filling the methodological gap of

prior contrastive studies that have yet to discuss the

contribution of ORM functions to measurable performance.

This can be achieved by combining Apache Benchmark,

Xdebug, Kcachegrind, and big O notation. Therefore, the

percentage and complexity of the contributor functions that

exert the most significant influences on performance are also

obtained while acquiring quantitative performance

comparisons. The results of the analysis of the contribution of

these associated functions can be further employed as

references for ORM optimization purposes in an effort to

enhance performance.

II. METHODOLOGY

This comparative study commenced with determining

measurement metrics, designing the database to meet the

metric needs, preparing the study environment, and concluding

with the analysis.

A. MEASUREMENT METRICS

Measurement metrics were based on a series of metrics

discussed in previous studies [12], [28]. The metrics were

associated with performance when handling create, read,

update, delete, and lookup (CRUDL) operations. The lookup

operation is related to a single datum based on id. The first

measurement metric was relationship, which consisted of

CRUDL performances related to inter-table relationships,

namely one-to-one, one-to-many, and many-to-many. The

second metric was the polymorphic query (PQ), which

consisted of CRUDL performances related to tables connected

by inheritance. The final metric was the additional null value

(ANV), which consisted of CRUDL performances related to

the presence of some table attributes that were null. In this

study, change propagation and change isolation operations

were excluded, as neither Doctrine nor Eloquent provides an

abstraction for them.

B. DATABASE DESIGN

The predetermined measurement metrics were utilized as a

guide in the process of designing the database. The design for

the relationship metric pertained to employee management.

Each employee (user) has a personal desk, many personal tasks,

and many roles that may resemble or differ from those of

others. Thus, the relation between the user entity and desk is

one-to-one, between the user and tasks is one-to-many, and

between users and roles is many-to-many. Each entity can be

in a single table, but due to the many-to-many relation, an

additional pivot table is necessary for the user and role, namely

user_role. Consequently, the database design for the

relationship metric consisted of five tables: user, desk, task,

role, and user_role. The tables and their attributes in the

database design for the relationship metric are shown in Figure

1. This design was employed to assess the performance of both

ORMs in handling various inter-table relations.

The design of PQ and ANV metric databases was built

based on information management for contractual and

permanent employees. A permanent employee has an employee

identification number (nomor induk karyawan, NIK), while a

contractual employee has a contract duration

(contract_duration). According to this context, there are three

entities: employee, contract, and permanent. The employee

entity represented core information of the employee and served

as the parent of the Contract and Permanent entities, which

denote contractual and permanent employees, respectively.

This entity also had name and address attributes. The Contract

entity had the contract_duration attribute, while Permanent had

the nik attribute. Each ANV and PQ metric employed different

mapping strategies for these entities.

The design for the PQ metric employed the single table (ST)

mapping strategy [6]; hence, three tables were required:

employee, contract, and permanent (Figure 2). The id attribute

in the contract and permanent tables served as both primary key

(PK) and foreign key (FK) of the employee table. The database

design using table per class (TPC) was utilized to test the

performance of both ORMs in handling inheritance relations in

the related tables.

EN-130

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

Muhammad Rezy Anshari: Comparison Study of Object-Relational ... p-ISSN 2301–4156 | e-ISSN 2460–5719

The design for the ANV metric employed the ST mapping

strategy [6]; hence, all three entities’ attributes were integrated

in the employee table (Figure 3). In the same record, one of the

contract_duration attributes or nik was certain to be null since

no employee had both contract and permanent status

simultaneously. The database design using ST was utilized to

test the performance of both ORMs when handling the presence

of some attributes with null values.

C. STUDY ENVIRONMENT

1) DEVICES AND INFRASTRUCTURE

Figure 4 displays the devices and infrastructure used in this

study. The devices used were VivoBook ASUS

X409FJ_A409FJ with CPU Intel i7-8565U (8) @ 4.6 Ghz and

RAM of 12 GB. The study environment infrastructures

employed were Ubuntu (v20.04), PHP (v8.2), MySQL (v8),

Apache Server (v2.4.41), Apache Benchmark (v2.3), Xdebug

(v3.3.2), Composer (v2.5.5), Git (v2.25.1), and Kcachegrind

(v0.8) operating systems. Each infrastructure’s component was

separated from one another, except for Apache, MySQL, and

PHP, which were integrated in the same XAMPP application.

The installation guide for each infrastructure component is

available through their respective links, while Ubuntu can be

accessed at https://ubuntu.com/tutorials/install-ubuntu-

desktop. At the same time, Apache (Server dan Benchmark),

MySQL, and PHP can be accessed via

https://www.apachefriends.org. Xdebug is accessible at

https://xdebug.org/docs/install; Composer at

https://getcomposer.org /download; the installation for Git at

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git;

and Kcachegrind at

https://kcachegrind.github.io/html/Download.html.

2) COMPONENTS OF THE OBJECT OF THE STUDY

Profiler and Profiling Object (PO) are the components of

the object study in the form of a PHP programming language-

based application. A Profiler is an executable script that

automatically conducts profiling in PO. PO consists of the

ORM’s implementation based on the measurement metrics. PO

was developed utilizing representational state transfer (REST)

architecture. This architecture was selected because it aligns

with how Profiler works, which requires access to the endpoints

associated with the measurement metrics. The installation for

Profiler and PO involved cloning the repository and executing

the Composer installation command. Detailed installation

instructions, source code, and Profiler and PO structures are

available in the public repository on the GitHub site:

https://github.com/devmurean/orm-profiling.

In general, the Profiler and PO directory structure consisted

of three basic directories, namely App, Profiler, and sql_dump,

along with three directories generated automatically during the

profiling process, namely doctrine_metadata, inputs, and result.

The App directory is a directory for PO, which consists of two

subdirectories: Doctrine and Eloquent. Each subdirectory had

three documents corresponding to the measurement metrics.

These documents are Relationship.php,

PolymorphicQuery.php, and AdditionalNullValue.php. They

consisted of the implementation of the CRUDL operation for

each measurement metric. The Profiler directory contained the

Profiler application, while the sql_dump directory contained

the SQL documents used as seeder data for each metric. The

doctrine_metadata directory contained the metadata cache in

Doctrine; the input directory contained a list of inputs used by

the Profiler when profiling operations needing inputs, such as

Figure 3. Design of the ANV matric database.

Figure 4. Software and infrastructure.

Figure 1. Design of the relationship metric database.

Figure 2. Design of the PQ metric database.

EN-131

 Jurnal Nasional Teknik Elektro dan Teknologi Informasi
 Volume 14 Number 2 May 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Muhammad Rezy Anshari: Comparison Study of Object-Relational ...

create and update. Meanwhile, the results directory contained

the profiling results that could be analyzed using Kcachegrind.

The PO had five dynamic endpoints for each operation

defined in the routes.php document within

/{orm}/{metrik}/{operasi}/{id} format. Words enclosed in

curly brackets are the dynamic components of the endpoint,

which can be filled as required. The {orm}, {metrik}, and

{operasi} components were employed to determine the ORM

and measurement metric that would be profiled, whereas {id}

was used to access the related records. The {id} component was

exclusively employed by update, delete, and lookup operations.

Writing values for {orm} and {metrik} utilized kebab-case and

lowercase format without abbreviations (example: additional-

null-value for the ANV metric).

The algorithm for implementing the CRUDL for each

metric is simple. The create operation generated new records

within the corresponding table based on the input and returned

the results in the JavaScript Object Notation (JSON) format.

The update operation began by finding the related records

based on the id. The changes were then recorded in the

corresponding tables based on the input before returning the

updated record in the JSON format. The delete operation began

by searching the related records based on the id and removing

their existence from the corresponding tables. The create,

delete, and update operations were encapsulated within

database transactions. The read operation retrieved all records

(without inter-table relationship), serialized them in the object

collection, and returned them in the JSON format. The lookup

operation began by locating the related records based on the id,

followed by serializing them along with the inter-table relations

in the form of an object and returning the object in the form of

JSON.

D. PROFILING

The profiling process was conducted with several variations

in the number of records: 100, 1,000, 10,000, and 100,000. The

process was automatically executed using a script (with

administrator or sudo permission) through the php profiler

command. This command was executed via the command line

interface (CLI), which triggered the Profiler to operate. The

Profiler executed the Apache Benchmark to access every

endpoint in the PO, thereby triggering Xdebug to commence

the profiling process, resulting in callgrind-compatible files.

All files and results were then stored in the directory (provided

that no changes were made to the PO configuration). The file

naming adhered to the specified format, comprising the ORM

name, metric, operation, number of records, and timestamp.

For instance, the name format for the Doctrine output was

cachegrind.out.doctrine_polymorphic-query_create_record=1

00.1234.gz, representing the PQ metric, create operation, and

the record number of 100.

E. ANALYSIS

The analysis was carried out in three stages, commencing

by comparing the profiling results presented based on the

performance comparison graph and the relative percentage

difference (RPD) graph [29]. The RPD graphs exhibit the

significance of the performance difference between the two

ORMs in percent units. The RPD with the positive trend shows

that the importance of the performance difference between the

two ORMs increases as the number of records increases.

Conversely, when the trend is negative, the significance of the

performance difference decreases.

The subsequent stage was tabulating the DSAP

implementer functions. These functions were the dominant

contributors to the performance of both ORMs in every

database operation and measurement metric. The tabulation

was carried out based on analysis using Kcachegrind. The

analysis commenced with the functions executing CRUDL

operations, namely the functions of each class associated with

the measurement metrics: relationship, AdditionalNullValue,

and PolymorphicQuery. The criteria for determining

dominance were grounded in the Pareto principle [30]; hence,

only 20% of the functions contributing to 80% of the

performance are deemed dominant. The final stage of the

analysis involved an assessment utilizing big O notation to

ascertain the complexity and algorithm performance of the

functions that contribute the most to operations in each

measurement metric.

III. RESULTS AND DISCUSSION

A. COMPARISON OF EXECUTION DURATION
PERFORMANCE

The performance of the create operation of both ORMs

alternately outperformed each other on the relationship metric

(Figure 5), with a negative RPD trend as the number of records

increased. It was found that the performance duration of

Eloquent for 100 records was higher (> 200%) than for other

numbers of records. Through the Kcachegrind visualization,

the cause of the increase in duration was identified as a uniform

increase in duration across related functions. Doctrine

demonstrated a dominant performance advantage in ANV and

PQ metrics. In line with the relationship metric, the RPD ANV

metric had a negative trend, whereas the PQ metric had a

positive trend.

As illustrated in Figure 6, The read operation using

Doctrine exhibited superior performance on the relationship

metric with the negative RPD trend. In contrast, Eloquent

showed excellent performance for the ANV and PQ metrics,

with a positive RPD trend for both metrics. The execution

duration for both ORMs in the read operation was directly

proportional to the number of records added.

In the update and delete operations for the relationship

metric, Eloquent had the advantage (Figure 7 and Figure 8).

The RPD for update and delete operations had a positive trend.

Based on the graphic, there is a spike in the execution duration

for Doctrine when the record was 10,000 and 100,000. A surge

of 86% occurred in the update operation and 130% occurred in

the delete operation. In line with the execution duration, a

similar surge was observed in the RPD under the same

conditions. The RPD for the update operation demonstrated an

increase of 57.6%, while it was 106.2% for the delete operation.

These surges resulted from similar causes, namely the increase

in the execution duration for the execute function of the

PDOStatement class (internal PHP) of ±1,000% at 100,000

records compared to 10,000 records.

For the ANV and PQ metrics, in the update (Figure 7) and

the delete operation (Figure 8), Doctrine outperformed

Eloquent. The RPD for both metrics on the update and delete

operations showed a positive trend.

In the lookup operation, Doctrine outperformed Eloquent

(Figure 9) in the relationship and PQ metrics. The RPD for the

lookup operation for the relationship metric had a negative

trend, while the PQ metric had a positive trend. A surge in

execution duration was observed for the relationship metric

EN-132

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

Muhammad Rezy Anshari: Comparison Study of Object-Relational ... p-ISSN 2301–4156 | e-ISSN 2460–5719

when the record was 10,000 and 100,000 for Doctrine (686%)

and Eloquent (571%). The cause of the surge was similar to that

of the update and delete operations for the same metric. Despite

experiencing a surge in execution duration for the same reason,

no surge occurred at the RPD. For the ANV metric, the

performance of Eloquent outperformed Doctrine, with a

negative RPD trend.

B. COMPARISON OF MEMORY CONSUMPTION
PERFORMANCE

The memory consumption performance of Doctrine and

Eloquent had a tendency to be constant, except for the read

operation, which was directly proportional to the number of

records added (Figure 10). Eloquent absolutely outperformed

the performance of Doctrine in each operation and metric.

Memory consumption of both ORMs for all metrics increased

consistently with the number of records. The RPD for the

relationship metric had a positive trend, whereas the ANV and

PQ had a negative trend.

C. CONTRIBUTION OF DSAP IMPLEMENTOR FUNCTIONS

1) DOCTRINE

Based on the Kcachegrind analysis, seven DSAP

implementor functions dominantly contributed to Doctrine,

which was divided into two groups: mapper and domain

objects. Functions included in the Mapper group were

App\Doctrine\EM::make (D1),

Doctrine\ORM\EntityManager->flush (D2),

Doctrine\ORM\EntityManager->persist (D3),

Doctrine\ORM\EntityManager->find (D4), and

Doctrine\ORM \EntityRepository->findAll (D5). The

D1 function was the constructor for Mapper, D2 was associated

with the database transaction process, D3 was associated with

synchronization management between objects and databases,

D4 was associated with single record retrieval, and D5 was

associated with multiple record retrieval.

The functions of the domain object group were App
\Doctrine\Helper\ModelCollection->serialize

(D6), and App\Doctrine\Models\User->serialize

(D7). The D6 function was related to the serialization for

collections, and D7 was related to the serialization specific to

the User object domain.

For the relationship metric, it was found that in the create

operation, the contribution to the execution duration was

dominated by the D1 and D2 functions. In contrast, the D2 and

D3 functions dominated memory consumption. For the read

operation, the contribution to execution duration and memory

consumption was dominated by the D5 function. For the update

and delete operations, the contribution to execution duration

was dominated by the D2 and D4 functions, whereas the D4

function dominated memory consumption. For the lookup

operation, the contribution to execution duration and memory

consumption was dominated by D4 and D7 functions.

For the ANV metric, it was found that in the create

operation, the contribution to execution duration was

dominated by the D1 and D2 functions, while the D2 and D3

functions dominated memory consumption. For the read

operation, the contribution to execution duration and memory

consumption was dominated by the D5 function, while D5 and

D6 dominated the contribution to memory consumption. For

the update operation, the contribution to execution duration

was dominated by D1, D2, and D4 functions, whereas D4

Figure 5. Execution duration and RPD in the create operation.

Figure 6. Execution duration and RPD in the read operation.

Figure 7. Execution duration and RPD in the update operation.

Figure 8. Execution duration and RPD in the delete operation.

EN-133

 Jurnal Nasional Teknik Elektro dan Teknologi Informasi
 Volume 14 Number 2 May 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Muhammad Rezy Anshari: Comparison Study of Object-Relational ...

dominated the contribution to memory consumption. For the

delete operation, the contribution to execution duration was

dominated by D1, D2, and D4, while D4 dominated memory

consumption. For the lookup operation, the contribution to

execution duration was dominated by D1 and D4 functions,

whereas the D4 function dominated memory consumption.

For the ANV metric, it was found that in the create

operation, the contribution to execution duration was

dominated by D1 and D2, while D2 and D3 dominated memory

consumption. For the read operation, the contribution to

execution duration was dominated by the D5 function, while

D5 and D6 dominated the contribution to memory

consumption. For the update operation, the contribution to

execution duration was dominated by D1, D2, and D4

functions, whereas D4 dominated the contribution to memory

consumption. For the delete operation in the PQ metric, the

performance of execution duration was dominated by D1, D2,

and D4, while D4 dominated memory consumption. For the

lookup operation, the contribution to execution duration was

dominated by D1 and D4 functions, whereas the D4 function

dominated memory consumption.

An analysis of the contribution of the functions associated

with the Data Mapper implementation revealed that four

functions in Doctrine exhibited the most significant

contribution to specified metrics and operations, namely D2,

D4, D5, and D7 functions. Table I presents the percentage

range and Table II presents the contribution positions of these

functions to operations and metrics.

The D2 function for execution duration had the most

significant contribution to each create operation across all

metrics. Despite having the largest contribution percentage, its

percentage tended to decrease as the number of records

increased. In the delete and update operations across all

metrics, this function’s contribution was also dominant,

although not the largest, because create, update, and delete

operations typically involve database transactions. Moreover,

the D2 function served as the largest contributor to memory

consumption performance in every create operation of all

metrics.

The D4, D5, and D7 functions had a dominant contribution

to the operation that performed record retrieval (read, update,

delete, and lookup). The D4 function had the largest

contribution to the operation that performed record retrieval

(update, delete, and lookup) in all metrics, except for the

relationship metric in the lookup operation. In update and

delete operations for the relationship metric, the percentage

contribution of D4 function tended to increase in direct

proportion to the increase in the number of records. In contrast,

in the lookup operations, it was otherwise. The D4 function was

also the primary contributor to memory consumption

performance on every update, delete, and lookup operation for

all metrics.

The D5 function contributed the largest percentage

contribution to the metrics and operations involving multiple

record retrieval, i.e., read operation in all metrics. The

percentage contribution of the D5 function increased directly

proportional to the increase in the number of records. In

addition, this function was the largest contributor to the

memory consumption performance in every operation across

all metrics.

The D7 function, related to single record retrieval, had the

largest contribution to the relationship metric in the lookup

operation, which tended to increase as the number of records

increased. However, this function was not the largest

contributor to memory consumption in the lookup operation for

the relationship metric. That position is occupied by function

D4.

2) ELOQUENT

Ten functions dominantly contributed to Eloquent. Based

on the operating scope, these functions were grouped into

database transaction manager, object serialization, object and

database synchronization manager, record retrieval manager,

and relationship manager.

The group of database transaction managers consisted of a

single function, namely Illuminate\Database\Capsule\

Manager::__callStatic (E1). The group of object

serialization consisted of a single function, namely

Figure 9. Execution duration and RPD in the lookup operation.

Figure 10. Execution duration and RPD in the read operation.

TABLE I

DOCTRINE: FUNCTIONS OF THE LARGEST CONTRIBUTORS

ORM Code

Contribution Percentage Dominance

Execution Duration
Memory

Consumption

Doctrine

D2 55.8% – 62.2% 63.4% – 66.2%

D4 42.4% – 68.1% 68.9% – 88.5%

D5 81.8% – 98.8% 69.5% – 86.8%

D7 31.3% – 93.5% –

TABLE II

DOCTRINE: CONTRIBUTION POSITION TOWARDS OPERATIONS AND

METRICS

Metric
Execution Duration Memory Consumption

C R U D L C R U D L

Relationship D2 D5 D4 D4 D7 D2 D5 D4 D4 D4

ANV D2 D5 D4 D4 D4 D2 D5 D4 D4 D4

PQ D2 D5 D4 D4 D4 D2 D5 D4 D4 D4

EN-134

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

Muhammad Rezy Anshari: Comparison Study of Object-Relational ... p-ISSN 2301–4156 | e-ISSN 2460–5719

Illuminate\Database\Eloquent\Model->jsonSerial

ize (E2). The group of object and database synchronization

manager consisted of four functions, namely
Illuminate\Database\Eloquent\Model::__callStat

ic (E3), Illuminate\Database\Eloquent\Model

->saveOrFail (E4), Illuminate\Database\Eloquent

\Model->push (E5) dan Illuminate\Database

\Eloquent\Model->delete (E6). Specifically, the E3

function served as a model constructor. The E4 function

handled synchronization in the create and update operations; it

would also throw an exception in case of errors. The E5

function handled synchronization comprising the related

relationship. Meanwhile, the E6 function specifically handled

the delete operation.

The group of record retrieval managers comprised two

functions: Illuminate\Database\Eloquent

\Model::all (E7) and Illuminate\Database\Eloquent

\Builder->find (E8). The E7 function handled multiple

record retrievals, whereas the single record retrieval was

handled by the E8 function.

The final group was the relationship manager. This group

comprised two functions: Illuminate\Database

\Eloquent\Model->loadMissing (E9) and Illuminate

\Database\Eloquent \Model::with (E10). Both

functions were utilized to load certain relationships for the

corresponding domain object, with the distinction that the E10

function was called during the initiation process of the domain

object. On the other hand, the E9 function could only be called

after the initiation.

For the Relationship metric, it was found that in the create

operation, the contribution to execution duration was

dominated by the E1, E2, and E3 functions. For the read

operation, the contribution to execution duration was

dominated by the E2 and E7 functions. For the update

operation, the contribution to execution duration was

dominated by the E1, E2, E3, and E4 functions. For the delete

operation, the contribution to execution duration was

dominated by E1 and E3 functions. For the lookup operation,

the contribution to execution duration was dominated by the E2

and E7 functions. For the performance of the memory

consumption, the E1 function dominated the create, update, and

delete operations. The E7 function dominated the read

operation, while the E8 function dominated the lookup

operation.

For the ANV metric, it was found that in the create

operation, the contribution to execution duration was

dominated by the E1, E2, and E3 functions. For the read

operation, the contribution to execution duration was

dominated by the E2 and E7 functions. For the update

operation, the contribution to execution duration was

dominated by the E1, E3, and E4 functions. For the delete

operation, the contribution to execution duration was

dominated by E1, E3, and E7 functions. For the lookup

operation, the contribution to execution duration was

dominated by the E3 and E2 functions. For the performance of

memory consumption, the E1 function dominated the create,

update, and delete operations. The E7 function dominated the

read operation, while the E3 function dominated the lookup

operation.

In the PQ metric, it was found that in the create operation,

the contribution to execution duration was dominated by the

E1, E2, E3, and E9 functions. For the read operation, the

contribution to execution duration was dominated by the E2

and E7 functions. For the update operation, the contribution to

execution duration was dominated by the E1, E2, E5, and E8

functions. For the delete operation, the contribution to

execution duration was dominated by E1, E3, and E6 functions.

For the lookup operation, the contribution to execution duration

was dominated by E8 and E10 functions. For the memory

consumption performance, the E1 and E3 functions dominated

the creation operation. The E7 function dominated the read

operation, the E1 and E8 functions dominated the update

operation, the E1 function dominated the delete operation, and

the E8 function dominated the lookup operation.

Table III and Table IV present the summary of the most

significant contributing functions and their contribution

positions relative to specific metrics and operations,

respectively. The E1, E2, E3, and E8 functions were the most

significant contributors to the execution duration performance,

while functions E1, E3, E7, and E8 were the largest

contributors to the memory consumption performance.

For execution duration, the E1 function significantly

contributed to the create, update, and delete operations for the

relationship metric. For the relationship metric during the

update operation, the percentage of E1 was directly

proportional to the increase in the number of records. The E1

function also contributed the most to the update and delete

operations for the ANV metric. The E1, functioning as the

largest contributor, was also seen in the create and delete

operations for the PQ metric. For memory consumption, the E1

function was the primary contributor to the create, update, and

delete operations for all metrics.

For execution duration, the E3 function was the most

significant contributor to the create and lookup operations for

the ANV metric. For the memory consumption, the E3 function

served as the largest contributor to the lookup operation for the

ANV, which could be attributed to the absence of inter-table

relationships—unlike the other metrics.

In the read operation across all metrics, the E2 function

contributed the most to execution time, while the most

significant contributor to memory consumption was the E7

function. These results suggest that, in the Active Record, the

object serialization process is the primary contributor to

execution duration in the read operation, whereas the record

retrieval process is the largest contributor to memory

consumption. The percentage contribution of the E2 function

to execution duration increased proportionally with the number

of records. The percentage of contribution of the E7 function to

memory consumption decreased as the number of records

increased.

The E8 function for execution duration was the most

significant contributor to the lookup operation for the

relationship metric and the update and lookup operations for

the PQ metric. Meanwhile, for memory consumption, the E8

function was the primary contributor to the lookup operation

for the relationship and PQ metrics. The percentage

contribution of the E8 function to execution duration increased

proportionally with the number of records.

D. BIG O NOTATION

Big O notation for each function with the largest

contribution, both to execution duration and memory

consumption, has been obtained. In Doctrine, the D2 function

had a complexity O(mn+o), with a variable context m denoting

the number of entities in the insertion process, variable n

EN-135

 Jurnal Nasional Teknik Elektro dan Teknologi Informasi
 Volume 14 Number 2 May 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Muhammad Rezy Anshari: Comparison Study of Object-Relational ...

denoting the number of associated attributes, and variable o

denoting the number of triggered events. The D4 and D5

functions had complexity O(mn), with a variable context m

denoting the number of records processed (specifically for D5,

it denotes the number of records in the associated table) and

variable n denoting the number of attributes per record. The D7

function had complexity O(n), with a variable context n

denoting the number of attributes in the record processed.

In Eloquent, the E1 and E3 functions had complexity O(1).

The E2, E7, and E8 functions had the same complexity, namely

O(n). The variable context for E2 was the number of records

resulting from the query, E7 was the number of records in the

related table, and E8 was the number of records based on the id

list, which was the search parameter.

Based on the complexity comparison, functions in Doctrine

exhibited a greater complexity, involving two or more

variables, in contrast to Eloquent, which only involved a single

variable or even a constant. This occurred because of the

centralization of database operations handled by Data Mapper,

which is handled by a manager called EntityManager. This

aligns with the finding of function D2, which is related to

database transactions, demonstrating the highest complexity

compared to other functions. On the other hand, the

decentralization of database operation handling in Active

Record resulted in lower complexity, as evidenced by the E1

function, which handled a similar process to the D2 function

but exhibited a complexity of O(1).

E. LIMITATION

This study is limited to a comparative analysis and does not

address performance improvements or optimization strategies.

The comparison was conducted in the PHP-based ORM. This

limitation was imposed since one of the Profiler components,

Xdebug, can only perform profiling in PHP-based applications.

The measured performance was limited to the execution

duration and memory consumption. This performance

limitation was based on the feature limitation available in the

Kcachegrind.

IV. CONCLUSION

The Active Record represented by Eloquent had lower

memory consumption than that of the Data Mapper represented

by Doctrine, with the RPD of 40–90% (relationship) and 20–

60% (PQ and ANV). The performance of the Data Mapper’s

execution duration outperformed the Active Record, with an

average RPD of 35.3%, with several exceptions in the specific

operations and metrics. These exceptions occurred in the delete

operation (all metrics), update (relationship), read

(relationship), and lookup (ANV), with average RPDs for each

being 23%, 30%, 17.4%, and 16%, respectively. Functions

related to the transaction database, object serialization, and

record retrieval for both DSAPs were the most significant

contributors to both performances, with additional object and

database synchronization, specifically for Active Record. The

percentage range of the functions with the largest contribution

for Data Mapper was 31–98%, while for Active Record, it was

25–97%. The highest functional complexity of Data Mapper

was O(mn+o), while O(n) was for Active Record.

Future studies can leverage automation concepts in the

Profiler used in this study. Profiler components, especially

Xdebug, can be substituted with similar components according

to the programming language of the application to be profiled.

CONFLICTS OF INTEREST
The authors declare no conflicts of interest.

AUTHORS’ CONTRIBUTIONS

Conceptualization, Muhammad Rezy Anshari, Redi

Ratiandi Yacoub, and Herry Sujaini; methodology,

Muhammad Rezy Anshari; software, Muhammad Rezy

Anshari; validation, Bomo Wibowo Sanjaya and Eva Faja

Ripanti; formal analysis, Muhammad Rezy Anshari;

investigation, Muhammad Rezy Anshari; resource,

Muhammad Rezy Anshari; data curation, Muhammad Rezy

Anshari; writing—original draft preparation, Muhammad Rezy

Anshari, Redi Ratiandi Yacoub, and Herry Sujaini; writing—

reviewing and editing, Muhammad Rezy Anshari, Redi

Ratiandi Yacoub, Herry Sujaini, Bomo Wibowo Sanjaya, and

Eva Faja Ripanti; visualization, Muhammad Rezy Anshari and

Bomo Wibowo Sanjaya; supervision, Redi Ratiandi Yacoub

and Herry Sujaini; project administration, Muhammad Rezy

Anshari; financial acquisition, Muhammad Rezy Anshari.

REFERENCES

[1] V. Sivakumar, T. Balachander, Logu, and R. Jannali, “Object relational

mapping framework performance impact,” Turk. J. Comput. Math. Educ.,

vol. 12, no. 7, pp. 2516–2519, Apr. 2021.

[2] A.E. Güverci̇n and B. Avenoglu, “Performance analysis of object-

relational mapping (ORM) tools in .NET 6 environment,” Bilişim Teknol.

Derg., vol. 15, no. 4, pp. 453–465, Oct. 2022, doi:

10.17671/gazibtd.1059516.

[3] G. Vial, “Lessons in persisting object data using object-relational

mapping,” IEEE Softw., vol. 36, no. 6, pp. 43–52, Nov./Dec. 2019, doi:

10.1109/MS.2018.227105428.

[4] M. Gorodnichev et al., “Exploring object-relational mapping (ORM)

systems and how to effectively program a data access model,” PalArch’s

J. Archaeol. Egypt/Egyptol., vol. 17, no. 3, pp. 615–627, Nov. 2020, doi:

10.48080/jae.v17i3.141.

[5] A. Joshi and S. Kukreti, “Object relational mapping in comparison to

traditional data access techniques,” Int. J. Sci. Eng. Res., vol. 5, no. 6, pp.

540–543, Jun. 2014.

[6] M. Fowler, Patterns of Enterprise Application Architecture. Boston, MA,

USA: Addison-Wesley, 2003.

[7] T. Nguyen, “Elementary event storage,” Undergraduate thesis,

Metropolia University of Applied Sciences, Helsinki, Finland, 2018.

[8] A. Niarman, Iswandi, and A.K. Candri, “Comparative analysis of PHP

frameworks for development of academic information system using load

and stress testing,” Int. J. Softw. Eng. Comput. Sci., vol. 3, no. 3, pp. 424–

436, Dec. 2023, doi: 10.35870/ijsecs.v3i3.1850.

TABLE III

ELOQUENT: FUNCTIONS OF THE LARGEST CONTRIBUTORS

ORM Code

Contribution Percentage Dominance

Execution Duration
Memory

Consumption

Eloquent

E1 28.2% – 51.5% 68.6% – 93.3%

E2 55.8% – 62.1% –

E3 30.3% – 72.5% 90.5%

E7 – 88.0% – 94.4%

E8 25.5% – 97.7% 82.5% – 87.2%

TABLE IV

ELOQUENT: POSITION OF CONTRIBUTION TO OPERATIONS AND METRICS

Metric
Execution Duration Memory Consumption

C R U D L C R U D L

Relationship E1 E2 E1 E1 E8 E1 E7 E1 E1 E8

ANV E3 E2 E1 E1 E3 E1 E7 E1 E1 E3

PQ E1 E2 E8 E1 E8 E1 E7 E1 E1 E8

EN-136

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

Muhammad Rezy Anshari: Comparison Study of Object-Relational ... p-ISSN 2301–4156 | e-ISSN 2460–5719

[9] P. Garbarz and M. Plechawska-Wójcik, “Comparative analysis of PHP

frameworks on the example of Laravel and Symfony,” J. Comput. Sci.

Inst., vol. 22, pp. 18–25, Mar. 2022, doi: 10.35784/jcsi.2781.

[10] P.R. Chavan and S. Pawar, “Comparison study between performance of

Laravel and other PHP frameworks,” IJRESM, vol. 4, no. 10, pp. 27–29,

Oct. 2021.

[11] M. Choina and M. Skublewska-Paszkowska, “Performance analysis of

relational databases MySQL, PostgreSQL and Oracle using Doctrine

libraries,” J. Comput. Sci. Inst., vol. 24, pp. 250–257, Sep. 2022, doi:

10.35784/jcsi.3000.

[12] S. Holder, J. Buchan, and S.G. MacDonell, “Towards a metrics suite for

object-relational mappings,” in Model-Based Softw. Data Integr., R.D.

Kutsche dan N. Milanovic, Eds. 2008, pp. 43–54, doi: 10.1007/978-3-

540-78999-4_6.

[13] M. Lorenz et al., “Object-relational mapping reconsidered,” in Proc. 50th

Hawaii Int. Conf. Syst. Sci., 2017, pp. 4877–4886.

[14] U. Ibrahim, J.B. Hayfron-Acquah, and F. Twum, “Comparative analysis

of CodeIgniter and Laravel in relation to object-relational mapping, load

testing and stress testing,” Int. Res. J. Eng. Technol. (IRJET), vol. 5, no.

2, pp. 1471–1475, Feb. 2018.

[15] J.A. Yang and S.A. Aklani, “Performance analysis between interpreted

language-based (Laravel) and compiled language-based (Gin) web

frameworks,” Comput. Based Inf. Syst. J., vol. 11, no. 1, pp. 12–16, Mar.

2023, doi: 10.33884/cbis.v11i1.6583.

[16] M. Laaziri, K. Benmoussa, S. Khoulji, and M.L. Kerkeb, “A comparative

study of PHP frameworks performance,” Procedia Manuf., vol. 32, pp.

864–871, Apr. 2019, doi: 10.1016/j.promfg.2019.02.295.

[17] H. Abutaleb, A. Tamimi, and T. Alrawashdeh, “Empirical study of most

popular PHP framework,” in 2021 Int. Conf. Inf. Technol. (ICIT), 2021,

pp. 608–611, doi: 10.1109/ICIT52682.2021.9491679.

[18] D. Zmaranda et al., “Performance comparison of CRUD methods using

NET object relational mappers: A case study,” Int. J. Adv. Comput. Sci.

Appl. (IJACSA), vol. 11, no. 1, pp. 55–65, Jan. 2020, doi:

10.14569/IJACSA.2020.0110107.

[19] S. Selvaraj, “Performance monitoring and debugging,” in Building Real-

Time Marvels with Laravel. Berkeley, CA, USA: Apress, 2024, pp. 259–

283.

[20] A. Šimec, D. Lozić, and L.T. Golubić, “Benchmarking PHP modules,”

Informatologia, vol. 50, no. 1/2, pp. 95–100, Jun. 2017.

[21] B.A. Azad, P. Laperdrix, and N. Nikiforakis, “Less is more: Quantifying

the security benefits of debloating web applications,” in SEC'19, Proc.
28th USENIX Conf. Secur. Symp., 2019, pp. 1697–1714.

[22] A. Gocht, R. Schöne, and J. Frenzel, “Advanced Python performance

monitoring with Score-P,” in Tools High Perform. Comput. 2018/2019,

H. Mix et al.., Eds. 2021, pp. 261–270, doi: 10.1007/978-3-030-66057-

4_14.

[23] J. Buša Jr., S. Hnatič, and O.V. Rogachevsky, “Performance analysis and

optimization of MPDRoot,” in Proc. 9th Int. Conf. Distrib. Comput. Grid
Technol. Sci. Educ. (GRID'2021), 2021, pp. 75–79, doi:

10.54546/MLIT.2021.22.70.001.

[24] S. Bae, JavaScript Data Structures and Algorithms: An Introduction to

Understanding and Implementing Core Data Structure and Algorithm

Fundamentals. Berkeley, CA, USA: Apress, 2019.

[25] I. Chivers and J. Sleightholme, “An introduction to algorithms and the

big O notation,” in Introduction to Programming with Fortran. Cham,
Switzerland: Springer, 2015, pp. 359–364.

[26] A.J. Lockett, “Performance analysis,” in General-Purpose Optimization

Through Information Maximization. Heidelberg, Germany: Springer,

2020, pp. 239–262.

[27] F. Shamssoolari, “The examination of analyzing data by algorithm

performance,” Int. J. Comput. Sci. Mob. Comput., vol. 8, no. 9, pp. 167–

171, Sep. 2019.

[28] Z. Xu, J. Zhu, L. Yang, and C. Zuo, “Mining the relationship between

object-relational mapping performance anti-patterns and code clones,” in
35th Int. Conf. Softw. Eng. Knowl. Eng., 2023, pp. 1–6, doi:

10.18293/SEKE2023-161.

[29] R.E. Miller, Optimization: Foundations and Applications. New York,

NY, USA: John Wiley & Sons, 2011.

[30] J. Backhaus, “The Pareto principle,” Anal. Krit., vol. 2, no. 2, pp. 146–

171, Nov. 1980, doi: 10.1515/auk-1980-0203.

EN-137

