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ABSTRACT — White blood cells are crucial components of the immune system responsible for combating infections and 

diseases. The classification and counting of white blood cells are typically performed manually by experienced operators or 

via automated cell analysis systems. The manual method is inefficient, time-consuming, and labor-intensive, while automated 

analysis machines are often expensive and require stringent sample preparation. This study aimed to compare the performance 

of three optimizers—root mean square propagation (RMSProp), stochastic gradient descent (SGD), and adaptive moment 

estimation (Adam)—in a white blood cell classification model using a convolutional neural network (CNN) algorithm. The 

dataset consisted of 12,392 images spanning four white blood cell classes: eosinophils, neutrophils, lymphocytes, and 

monocytes. The results indicate that the Adam optimizer achieved the best performance, with a training accuracy of 98.65% 

and an evaluation accuracy of 97.73%. Adam also outperformed the other optimizers in key metrics, including recall 

(97.43%), precision (97.42%), F1-score (97.42%), and specificity (99.11%). The AUC values for all classes exceeded 90%, 

demonstrating the model’s exceptional ability to distinguish between different cell types. The RMSProp optimizer yielded a 

training accuracy of 98.63%, whereas SGD achieved a lower training accuracy of 83.46%. This study highlights the 

significant impact of optimizer selection on CNN performance in white blood cell image classification, providing a 

foundational step toward the development of more accurate medical classification systems. 

 

KEYWORDS — Adam’s Optimizer, Convolutional Neural Network, White Blood Cell Classification, RMSProp Optimizer, 

SGD Optimizer. 

I. INTRODUCTION 

White blood cells, or leukocytes, are essential components 

of the immune system responsible for fighting infections and 

diseases. Several types of white blood cells exist, including 

neutrophils, lymphocytes, monocytes, eosinophils, and 

basophils, each playing a specific role in an immune response. 

Leukocytes are produced in the bone marrow and circulate 

throughout the body via the bloodstream. The levels and 

proportions of different white blood cell types in the blood 

provide important indicators of an individual’s health and assist 

in diagnosing various medical conditions [1]. Each white blood 

cell type exhibits unique characteristics in terms of color and 

morphology. Neutrophils appear bluish-red and typically 

possess three-lobed nuclei with varying shapes. Basophils 

display a spotted bluish appearance. Eosinophils exhibit 

reddish spots, monocytes have blue color with an elongated 

round nucleus, and lymphocytes appear pale blue with limited 

motility [2]. 

Traditionally, white blood cell classification and counting 

have been conducted manually by skilled operators or through 

fully automated cell analysis. However, manual counting 

methods are inefficient, time-consuming, and labor-intensive. 

Although automated cell analysis has been employed for white 

blood cell classification, these machines often impose high 

sample requirements and are costly, limiting their widespread 

adoption in healthcare facilities and hospitals [3]. The 

advancement of technology has facilitated the classification of 

white blood cell images through deep learning. Deep learning, 

a subset of machine learning, involves artificial neural 

networks composed of multiple layers. The neural network in 

deep learning can have many layers, enabling the extraction of 

complex features from input data, and making deep learning 

applicable in various domains, including medical image 

analysis such as white blood cell classification [4].  

One of the prominent deep learning algorithms is the 

convolutional neural network (CNN), which utilizes 

convolutional layers to extract essential image features such as 

edges, textures, and patterns. These layers integrate the 

extracted features to reduce data dimensionality, allowing the 

network to identify more complex patterns and classify images 

into distinct categories. In addition to convolutional layers, 

CNNs consist of pooling and fully connected layers. Pooling 

layers reduce the size of feature representations and prevent 

overfitting through operations such as max-pooling or average-

pooling. Meanwhile, fully connected layers consolidate all 

extracted features to generate final classification results [5]. 

In the implementation of CNN algorithms for image 

classification, optimizer selection plays a crucial role in the 

model training process. An optimizer is an algorithm that 

adjusts the model’s weight and bias updates to minimize the 

loss function during training. Commonly used deep learning 

optimizers include stochastic gradient descent (SGD), adaptive 

moment estimation (Adam), and root mean square propagation 

(RMSProp), each employing different approaches to handle 

gradients during training [6]. SGD is computationally simple 

and lightweight but often requires more iterations to achieve 

convergence. Adam and RMSProp, on the other hand, offer 

advantages in convergence speed through adaptive approaches. 

This study aims to compare the performance of these three 

optimizers in white blood cell image classification, focusing on 

four white blood cell types: eosinophils, neutrophils, 

lymphocytes, and monocytes. The evaluation employs metrics 

such as the confusion matrix and receiver operating 

characteristic-area under the curve (ROC-AUC), including 
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accuracy, precision, recall, F1 score, and ROC-AUC curves. 

The dataset used in this study was sourced from Kaggle, an 

online dataset provider, under the name Blood Cells Images. It 

consists of 12,392 images representing four classes of white 

blood cells: eosinophils, neutrophils, lymphocytes, and 

monocytes [7]. By understanding the impact of each optimizer 

on accuracy, this research aims to provide insights into the most 

suitable optimizer for white blood cell classification 

II. RELATED WORKS 

Several prior studies have developed fully connected CNN 

models consisting of six convolutional layers, six pooling 

layers, and two fully connected layers. These models were 

tested using the Blood Cell Count and Detection (BCCD) 

dataset obtained from Kaggle, consisting of 285 images, 

achieving an accuracy of 96.84% [8]. 

Another study proposed an innovative approach to white 

blood cell image classification using meta-learning and color 

constancy methods. The meta-learning method, based on the 

Xception model, achieved a peak accuracy of 96.47% using the 

Raabin dataset comprising 10,175 images [9]. Additionally, a 

study employing a decision tree algorithm for classifying 167 

white blood cell images obtained through hospital 

communication achieved an accuracy of 92.2% [10]. 

Other studies have applied convolutional features-support 

vector machines (Con-SVM) to classify white blood cell 

images using a dataset of 12,442 images downloaded from 

Kaggle, achieving an accuracy of 85.96% [11]. Meanwhile, the 

k-nearest neighbors (KNN) algorithm has been used to detect 

white blood cell abnormalities for early diagnosis of 

myeloproliferative neoplasm syndrome. Out of 159 test data 

points, 150 were correctly classified, resulting in an accuracy 

of 94.3%  [12]. 

A recently conducted study developed a white blood cell 

classification method employing a deep dilated residual 

convolutional neural network (DDRNet), achieving an 

accuracy of 91.98% and an F1 score of 0.96, utilizing a dataset 

of 16,249 images from Kaggle [13]. 

Based on Table I, various methods for white blood cell 

image classification, such as fully connected CNN, meta-

learning, decision tree, Con-SVM, and DDRNet, exhibit 

variations in accuracy and efficiency. Although some methods 

achieve high accuracies, such as fully connected CNN (96.84%) 

and Xception-based meta-learning (96.47%), challenges 

remain, including model complexity, sensitivity to contrast 

variations, and instability in handling image noise. Methods 

like decision trees and Con-SVM demonstrate limitations in 

processing complex features, resulting in lower accuracy.  

This gap indicates that despite advancements in 

classification methods, further exploration is required to 

enhance computational efficiency and model robustness, 

particularly in medical image classification, which demands 

both high accuracy and stability. In this study, optimizers such 

as Adam, SGD, and RMSProp were selected for white blood 

cell image classification using CNN, as each optimizer has 

distinct advantages in addressing challenges during model 

training. Adam is known for accelerating convergence  [14], 

RMSProp provides stability for fluctuating gradients [15], and 

SGD remains a common baseline due to its simplicity [16]. By 

comparing these three optimizers, this study aimed to identify 

the optimal combination that improves classification 

performance in terms of both accuracy and computational 

efficiency. 

Choosing the appropriate optimizer is important as it can 

address several limitations observed in previous methods, such 

as model stability in handling data variations, convergence 

speed, and generalization capability across different datasets. 

Therefore, this study focuses on optimizing CNN using these 

three optimizers to achieve a balance between accuracy and 

computational efficiency in white blood cell image 

classification.  

III. METHODOLOGY 

This study employed an experimental study strategy to test 

the white blood cell image classification model using CNN and 

to evaluate its performance. The process entailed designing the 

steps to be applied during the study. 

The study workflow began with obtaining a dataset of white 

blood cell images from an online source, Kaggle. The dataset 

was separated into three subsets: training, testing, and 

validation data. This partition ensured that the model had good 

generalization capabilities for new data that had never been 

seen before and accurately measured the model’s performance. 

The preprocessing stage was conducted to prepare the 

dataset to suit the needs of the CNN model. This included 

balancing the dataset using the random oversampling (ROS) 

technique, resizing images for consistency, segmenting images 

to isolate white blood cells from the background, and 

normalizing pixel values. Normalization helped standardize 

pixel value distributions and reduced unwanted variations 

within the data. 

Next, the CNN architecture was developed and trained 

using the training and validation data. The model was 

optimized using three different optimizers: Adam, RMSProp, 

TABLE I 

RESEARCH GAP ANALYSIS IN WHITE BLOOD CELL IMAGE CLASSIFICATION 

Research Method Advantages Disadvantages 

[8] 

Fully 

connected 

CNN 

High accuracy 

(96.84%) 

Complex 

architecture 

increases 

computational 

time and cost. 

[9] 

Meta 

learning 

dan color 

constancy 

Accuracy of 

96.47% with 

Meta Learning 

Susceptible to 

contrast changes 

and color 

variations. 

[10] 
Decision 

tree 

Easy to 

implement, 

accuracy of 

92.2% 

Less effective with 

noisy data or 

complex features. 

[11] Con-SVM 
Improves 

generalization 

Lower accuracy 

(85.96%) 

compared to other 

methods. 

[12] KNN 
Simple, accuracy 

of 94.3% 

Sensitive to 

outliers and 

requires careful 

selection of K 

parameters. 

[13] 
DDRNet 

 

High accuracy 

(91.98%) and 

F1-score (0.96), 

effective for 

complex features 

High 

computational 

demands due to 

architectural 

complexity. 

 

EN-78



Jurnal Nasional Teknik Elektro dan Teknologi Informasi 
Volume 14 Numberr 1 February 2025 
  

  

Dede Kurniadi: Comparison of Optimizer Use ... p-ISSN 2301–4156 | e-ISSN 2460–5719 

and SGD. Once training was completed and parameters were 

optimized, the testing data was used for final model evaluation. 

This evaluation provided an objective measure of the model’s 

generalization ability and classification performance on new 

data. 

Performance evaluation was conducted using a confusion 

matrix. Several metrics, including accuracy, precision, recall, 

F1 score, specificity, and ROC-AUC, were employed to assess 

the model’s capability in accurately distinguishing between 

positive and negative classes. 

The results and analysis section presented findings from 

CNN implementation by comparing the performance of the 

three optimizers in white blood cell image classification. The 

results from each process stage were discussed to provide a 

comprehensive overview of the model’s effectiveness in 

classification tasks. 

A. CONVOLUTIONAL NEURAL NETWORK 

CNN is a prominent deep learning algorithm that has gained 

widespread popularity due to its ability to automatically 

identify relevant features without human supervision. CNN has 

been applied in various fields, including computer vision, 

speech processing, and facial recognition. Its structure is 

inspired by biological neurons in the human and animal brains, 

utilizing shared weights and local connections to efficiently 

process 2D input data such as image signals [17]. CNN remains 

the primary choice for image classification tasks in computer 

vision. Recent studies have introduced the Vision Transformer 

(ViT) architecture, integrating CNN for computer vision tasks. 

This study suggests that combining CNNs and transformers can 

improve performance in image classification [18]. 

Advancements in CNN architecture have significantly 

improved facial recognition system accuracy. One study 

demonstrated that CNN effectively addresses challenges such 

as lighting conditions, viewing angles, and facial expressions, 

thereby supporting the implementation of facial recognition for 

security and biometric authentication [19]. Figure 1 illustrates 

an example of CNN architecture. 

As shown in Figure 1, during the feature learning stage, the 

network receives an input image, processes it through 

convolutional and pooling layers, and transforms it into 

numerical feature maps that represent the image. Each layer 

refines the image representation before passing it to the 

classification stage. In this stage, multiple fully connected 

layers receive input from the final feature maps of the previous 

stage. These layers process and refine the extracted features 

through a series of hidden layers within the neural network, 

then ultimately generating classification predictions for each 

class. 

The convolutional layer is an important component of CNN, 

responsible for performing convolution operations on the 

output from previous layers. It contains a series of randomly 

learned filters designed to extract important features from input 

data. The goal is to obtain a representation of the important 

features of the input data, especially in images.  

The pooling or subsampling layer typically follows the 

convolutional layer in CNN. It reduces the spatial dimensions 

(height and width) of the convolutional layer’s output. The 

primary objective of pooling is to decrease the number of 

learnable parameters in the network, mitigating overfitting 

while enhancing overall network performance and 

classification accuracy. 

The rectified linear unit (ReLU) function is the most 

commonly used nonlinear function in neural networks in the 

current era. ReLU produces a value of 0 for all negative values 

of x, while for positive values of x, the value remains 

unchanged. This function is demonstrated in (1).  

 𝑓_𝑟𝑒𝑙𝑢 (𝑥) =  𝑚𝑎𝑥(0, 𝑥). (1) 

In this function, x denotes the input function, and max(0, x) 

represents the maximum function that selects the larger value 

between 0 and x. 

The fully connected layer represents a prevalent component 

in neural networks, a notable distinction being its absence of a 

convolution operation during the process of generating output. 

This layer facilitates direct connectivity between neurons 

within the preceding layer, thereby establishing more intricate 

connections and enabling the network to discern more abstract 

relationships between the features manifested by activations. 

The fully connected layer is positioned in the final two layers 

of the network and employs a softmax activation function to 

ascertain the probability of the output based on the provided 

input [20]. 

B. ADAPTIVE MOMENT ESTIMATION (ADAM) 

Adam’s optimizer is one of the widely used optimization 

algorithms in deep learning model training. It combines the 

advantages of adaptive gradient (AdaGrad) and RMSProp by 

dynamically adjusting the exponential rates for the first (mean) 

and second (variance) moment estimates of the gradient to 

update the parameters. Adam’s optimizer is particularly 

suitable for large data and nonstationary objective optimization 

with noisy and sparse gradients. In comparison to alternative 

optimization algorithms, Adam demonstrates superior 

performance in terms of rapid convergence and stability during 

training, particularly when confronted with problems involving 

numerous parameters and loss functions that may be 

nonconvex [21]. The utilization of Adam is also employed in 

the optimizations of deep learning models, particularly in the 

medical domain. A study demonstrated that Adam expedites 

convergence while preserving accuracy, even when dealing 

with substantial and intricate medical datasets [14]. The 

formulas for calculating the Adam’s optimizer are stated in (2) 

to (6). 

Estimation of the first moment (average): 

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 −  𝛽1)𝑔𝑡. (2) 

Estimation of the second moment (off-center variance): 

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 −  𝛽2)𝑔𝑡
2. (3) 

Bias-corrected first-moment estimate: 

 �̂�𝑡 =  
𝑚𝑡

1− 𝛽 1
𝑡 . (4) 

 

Figure 1. Convolutional neural network. 
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Bias-corrected second-moment estimate: 

 �̂�𝑡 =  
𝑣𝑡

1− 𝛽 2
𝑡 . (5) 

Parameter update: 

 �̂�𝑡 = 𝜃𝑡−1 − 𝑎 
�̂�𝑡

√�̂�𝑡+ 𝜖
 (6) 

where 𝑎 is the learning rate, 𝛽1 and 𝛽2 represent the decay rates 

for moment estimation, 𝜖 is a small constant for numerical 

stability. 

C. ROOT MEAN SQUARE PROPAGATION (RMSProp) 

RMSProp is an optimization algorithm that has been 

designed to accelerate the model training process in deep 

learning. It is a development of the SGD method that aims to 

overcome the problems of too slow learning rate decline and 

large fluctuations in parameter updates. RMSProp works by 

storing the mean square of the gradient that has been calculated 

at each iteration. By doing so, it can adjust the learning rate for 

each parameter individually [15]. In recent years, RMSProp has 

been identified as a leading method in various deep-learning 

applications. The study has demonstrated its superiority to 

Adam, particularly in nonconvex optimization tasks, making it 

well-suited for complex architectures and challenging datasets 

[22]. The formulas for calculating the RMSProp optimizer are 

presented in (7) and (8). 

Moving average of the squared gradient: 

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 −  𝛽)𝑔𝑡
2   (7) 

Parameter update: 

 𝜃𝑡 = 𝜃𝑡−1 − 𝑎 
𝑔𝑡

√𝑣𝑡+ 𝜖
  (8) 

where 𝛼 denotes the learning rate, 𝛽 defines the decay rate for 

the moving average of the squared gradient, and 𝜖 serves as a 

small constant for numerical stability. 

D. STOCHASTIC GRADIENT DESCENT (SGD) 

SGD is a simple yet highly effective optimizer in machine 

learning. It updates parameters using a single randomly 

selected example from the dataset per iteration, significantly 

reducing computational time and memory usage compared to 

the batch gradient descent method, which processes the entire 

dataset before updating parameters. While this approach 

accelerates training, it also introduces noise into gradient 

estimation, leading to fluctuations in the convergence path and 

potential instability. However, these fluctuations can help 

escape saddle points and discover better solutions [16]. Recent 

studies highlight that variations of SGD, such as momentum-

based SGD and adaptive learning rate techniques, further 

enhance its effectiveness across deep learning applications, 

including image recognition and object detection [23]. The 

mathematical formulation of the SGD optimizer is given in 

equation (9). 

Parameter update: 

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 −  𝛽1)𝑔𝑡 (9) 

where α represents the machine learning, and 𝑔𝑡  denotes the 

gradient of the objective function with respect to the parameters 

at time step 𝑡. 

E. IMAGE SEGMENTATION 

Image segmentation is a fundamental process in computer 

vision technology, designed to partition an image into distinct 

regions based on specific characteristics. This process 

facilitates the identification and extraction of target objects, 

serving as a crucial bridge between image processing and 

analysis. Segmentation enables the separation of the object of 

interest (target) from its background, which has a wide range 

of applications in fields such as medical image processing, 

pattern recognition, and artificial intelligence [24]. In medical 

image processing, deep learning-based segmentation methods 

have improved detection accuracy in lung cancer diagnosis 

from computed tomography (CT) images [25]. Moreover, 

segmentation is also instrumental in applications such as road 

mapping in satellite imagery, and provides better results in 

automated navigation systems [26]. 

F. CONFUSION MATRIX 

A confusion matrix is an N × N table used in classification 

tasks to assess model performance, where N represents the 

number of predicted classes. By comparing the model’s 

predictions with the actual values, the confusion matrix 

provides a detailed overview of classification accuracy and 

highlights areas requiring improvement [27]. The matrix 

comprises four key components: true positive (TP), false 

negative (FN), false positive (FP), and true negative (TN). 

These values serve as the foundation for calculating various 

evaluation metrics, including accuracy, precision, recall, and 

F1 score, which collectively quantify the model’s overall 

performance. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
. (10) 

Accuracy is the ratio of the number of correct predictions 

(both positive and negative) to the total number of predictions.

 𝑃𝑟𝑒𝑠𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
. (11) 

Precision measures the accuracy of the model in predicting the 

positive class. The higher the precision, the fewer false positive 

predictions. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
. (12) 

Recall or sensitivity is the ability of the model to capture all 

positive samples. 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
. (13) 

F1 score is the harmonic mean of precision and recall. This 

metric is used when balancing between precision and recall.

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
. (14) 

Specificity measures the ability of the model to correctly 

predict the negative class. 

G. ROC-AUC 

The ROC-AUC curve is used to measure the ability of a 

classification model to differentiate between classes across 

various threshold scenarios [28]. This evaluation to calculate 

the AUC value results in (15) 

 𝐴𝑈𝐶 =  
1

2
(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦). (15) 

AUC is a measure of the model’s ability to distinguish between 

positive and negative classes at various thresholds.. 

IV. RESULTS AND DISCUSSION 

This section presents the study findings from the 

implementation of a CNN algorithm by comparing three 
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optimizers for white blood cell image classification. The 

process flow of each stage is explained as follows. 

A. DATA SOURCE 

The first step in the data source stage involved collecting 

datasets from an online dataset provider, namely Kaggle. 

Figure 2 illustrates four sample images of white blood cells. 

Based on Figure 2, this dataset comprises a total of 12,392 

images, including 3,120 images for the eosinophil class, 3,103 

images for the lymphocyte class, 3,098 images for the 

monocyte class, and 3,123 images for the neutrophil class. 

After data collection, the dataset was divided into three 

subsets: 80% for training data, 10% for validation data, and 10% 

for testing data. This proportion was selected based on previous 

study findings, which demonstrated that this split could achieve 

an accuracy of up to 95.69% [29]. Figure 3 illustrates the 

distribution of the dataset split.  

Figure 3 was generated using a program that partitions the 

white blood cell image dataset into three main subsets: training 

data (blue), validation data (orange), and testing data (green). 

The x-axis represents the dataset classes, while the y-axis 

represents the total number of data points. For the eosinophil 

class, there were 2,443 images for training, 303 for validation, 

and 295 for testing. The lymphocyte class contained 2,467 

images for training, 313 for validation, and 321 for testing. The 

monocyte class comprised 2,324 images for training, 312 for 

validation, and 304 for testing. Finally, the neutrophil class 

included 2,482 images for training, 287 for validation, and 295 

for testing. 

B. PREPROCESSING 

In this stage, preprocessing was performed to prepare the 

dataset before proceeding to the modeling phase. The first step 

involved balancing the dataset to address class imbalance. 

Figure 4(a) presents a visualization of the white blood cell 

image dataset, which initially exhibited class imbalance. To 

mitigate this issue, a data balancing process was conducted 

using the random oversampling technique. This technique 

addresses class imbalance in classification tasks by increasing 

the number of samples in minority classes through random 

duplication with replacement [30]. 

Figure 4 illustrates the dataset condition before and after 

data balancing. After the balancing process, the results are 

displayed in Figure 4(b), which shows that the sample count for 

all classes has been balanced. 

However, it is important to note that oversampling 

techniques such as random oversampling can introduce 

potential biases into the model. This bias arises because random 

duplication with replacement may increase the likelihood of 

overfitting the minority class, resulting in model learning 

patterns that are less general [31]. 

Following dataset balancing, image resizing was performed 

to reduce image dimensions before inputting them into the 

CNN model. Figure 5 visualizes the resizing process, where 

images were resized from 320 × 240 to 120 × 120. This step 

ensures that input images maintain consistent dimensions, 

thereby reducing computational complexity [32]. 

The next step involved image segmentation, which was 

carried out to separate white blood cells from the background 

using OpenCV. The process began with thresholding to 

highlight objects based on pixel intensity, followed by dilation 

to enlarge object areas and erosion to remove noise. A second 

dilation step was applied to refine object shapes. Subsequently, 

the Canny edge detection algorithm was employed to detect 

object edges, followed by contour detection to identify object 

boundaries. Bounding boxes were then created around the 

contours to highlight detected areas. The final outcome was an 

extracted white blood cell image, as shown in Figure 6.  

Figure 6 illustrates the segmented areas from the previous 

process, ensuring that the image is more focused on the 

segmented object, revealing clearer details after the object has 

been separated from the background. Once all segmentation 

processes were completed, the final segmentation results were 

applied to the entire white blood cell image dataset. 

Figure 7 presents five examples of successfully segmented 

and classified white blood cell images. Each image represents 

different types of white blood cells—lymphocytes, neutrophils, 

eosinophils, and monocytes—that have undergone 

segmentation. The segmentation process effectively isolated 

white blood cells from the background, enhancing the visibility 

of each cell’s shape and structure. This preprocessing step is 

crucial before proceeding with classification using the CNN 

model. 

After the data balancing, image resizing, and segmentation 

processes were completed, the next step was pixel value 

normalization. Normalization is an essential step to ensure that 

input data maintains uniform values, particularly in terms of 

consistent pixel sizes. Pixel value normalization was performed 

on the white blood cell image dataset used for training, 

validation, and testing. This was achieved by dividing each 

pixel value in the images by 255.0, thereby converting the pixel 

value range from [0.255] to [0.1]. 

C. CNN MODEL 

At this stage, the development of a CNN model for white 

blood cell image classification was conducted. The CNN 

architecture employed for this classification task is presented in 

Table II. 

As shown in Table II, the CNN architecture designed in this 

study was specifically structured for white blood cell image 

classification while considering both efficiency and 

 

Figure 2. Dataset samples. 

 

Figure 3. Dataset sharing distribution. 
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effectiveness. The initial layer consists of a Conv2D layer with 

16 filters of size 3 × 3, which aims to extract fundamental 

features such as edges and simple patterns from input images 

of 120 × 120 pixels. Subsequently, each convolutional layer 

was followed by max pooling to reduce data dimensionality, 

thereby decreasing the number of parameters and mitigating the 

risk of overfitting while enhancing computational efficiency. 

The separable convolution layer was utilized to capture more 

complex patterns with fewer parameters, ensuring a balance 

between accuracy and computational cost. To stabilize training, 

batch normalization layers were applied after certain 

convolutional layers, facilitating faster training convergence 

and gradient stability. Additionally, dropout was implemented 

before the fully connected layer to prevent overfitting by 

randomly deactivating neurons during training. The selection 

of these architectural components reflects the balance between 

complexity and generalization capability for the white blood 

cell image classification task. 
Following the architectural design, the next step involved 

training the model using both training and validation data with 
the previously built model. At this stage, adjustments were 
made to the use of optimizers on the parameters used. The 
development of the study method was carried out using Kaggle 
Notebooks, with the T4 GPU provided by the platform utilized 
to accelerate the model training process. The software tools 
utilized included Python 3.8, TensorFlow and Keras 2.8 for 
CNN model development, and several supporting libraries such 
as NumPy 1.21, Pandas 1.3, Matplotlib, and Seaborn for data 
analysis and visualization. The optimizers utilized in this study 

included RMSProp, SGD, and Adam. The batch size was set to 
32 to balance computational efficiency, learning stability, and 
model generalization capability [33]. A learning rate of 0.0001 
was adopted to ensure stable and gradual parameter updates. 
The findings indicate that this learning rate effectively 
prevented divergence or excessively slow learning [34]. The 
number of epochs was set to 30, which was deemed sufficient 
to achieve convergence without overfitting, particularly given 
the implementation of regularization techniques such as 
dropout and batch normalization.  

As presented in Table III, the results indicate that the Adam 
optimizer yielded the best performance, achieving a training 
accuracy of 98.65% and a validation accuracy of 97.94%, along 
with the lowest loss values of 4.35% for training data and 6.35% 
for validation data. RMSProp also demonstrated competitive 
performance but was slightly inferior to Adam, with a training 

 

(a) 

 

(b) 

Figure 4. Data distribution comparison, (a) before balancing, (b) after balancing. 

 

Figure 5. Image resizing process. 

 

 

Figure 6. Image segmentation process. 

 

Figure 7. Sample of five images from the segmentation process. 

TABLE II 

CNN ARCHITECTURE 

Layer (Type) Output Form Parameter# 

conv2d (None, 120, 120, 16) 448 

max_pooling2d (None, 60, 60, 16) 0 

separable_conv2d (None, 60, 60, 32) 688 

batch_normalization (None, 60, 60, 32) 128 

max_pooling2d_1 (None, 30, 30, 32) 0 

separable_conv2d_2 (None, 30, 30, 64) 2400 

batch_normalization_1 (None, 30, 30, 64) 256 

max_pooling2d_2 (None, 15, 15, 64) 0 

separable_conv2d_4 (None, 15, 15, 128) 8896 

batch_normalization_2 (None, 15, 15, 128) 512 

max_pooling2d_3 (None, 7, 7, 128) 0 

dropout (None, 7, 7, 128) 0 

separable_conv2d_6 (None, 7, 7, 256) 34176 

batch_normalization_3 (None, 7, 7, 256) 1024 

max_pooling2d_4 (None, 3, 3, 256) 0 

Flatten (None, 2304) 0 

dense_ (Dense) (None, 512) 1180160 

dense_1 (Dense) (None, 128) 65664 

dense_2 (Dense) (None, 64) 8256 

dense_3 (Dense) (None, 4) 260 

Total params: 1.397.028  

Trainable params: 1.396.068 

Nontrainable params: 960 
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accuracy of 98.63%, a validation accuracy of 96.87%, and a 
higher validation loss compared to Adam. The SGD optimizer 
exhibited the lowest performance among the three, with a 
training accuracy of 83.46% and a validation accuracy of 
87.57%, as well as substantially higher loss values of 40.39% 
for training data and 30.73% for validation data. In terms of 
computational efficiency, the training time required for each 
optimizer was as follows: SGD took 3.82 minutes, Adam 
required 3.59 minutes, and RMSProp needed 3.82 minutes. 
Based on these results, the Adam optimizer provided the best 
overall performance with superior computational efficiency 
compared to the other optimizers.  

Following the optimizer evaluation, the optimal CNN 
model was identified using the Adam optimizer with a batch 
size of 32, a learning rate of 0.0001, and 30 epochs. The 
performance of the optimal CNN model, comparing accuracy 
and loss metrics between training and validation data, is 
illustrated in Figure 8. 

Figure 8, generated from program processing, depicts the 
accuracy and loss trends throughout model training. The 
accuracy graph indicates that training accuracy (blue line) 
steadily increases from 0.3 to nearly 1.0 by epoch 20, while 
validation accuracy (orange line) rises rapidly during the initial 
epochs (0–5) before stabilizing near the training accuracy. This 
pattern suggests strong model generalization without signs of 
overfitting. In the loss graph, training loss (blue line) sharply 
decreases in the early training phase (0–5 epochs), reflecting 
the optimizer’s effectiveness in minimizing errors. Validation 
loss (orange line) follows a similar trend with minor 
fluctuations in the early epochs (3–5) before stabilizing, 
indicating weight adjustments in response to validation data. 
The consistent loss reduction approaching zero by the final 
epochs signifies effective model convergence. Overall, these 
trends demonstrate that the model achieves high accuracy and 
low loss with optimal performance, supported by the 
effectiveness of the optimizer in managing the training. 

D. EVALUATION 

This stage is conducted to assess the model’s performance 

in predicting test data that has never been seen before. The 

optimal model, obtained from parameter tuning experiments, 

was tested to evaluate its generalization capability. To compute 

accuracy, precision, recall, F1 score, and specificity values, a 

confusion matrix evaluation was conducted using the 

RMSProp, Adam, and SGD optimizers, as illustrated in Figure 

9. 

Figure 9 was generated through computational processing, 

visualizing the model’s classification results in the form of a 

confusion matrix. Based on Figure 9, the Adam optimizer 

demonstrates the best performance in classifying white blood 

cells. Adam exhibits high accuracy with minimal 

misclassification errors, particularly in neutrophils, which are 

occasionally misclassified as eosinophils. This can be 

attributed to Adam’s use of momentum and adaptive weighting, 

enhancing stability and accelerating convergence despite 

indistinct inter-class features. RMSProp also performs well but 

exhibits slightly higher misclassification in eosinophils due to 

its focus on adaptive learning rate adjustments. While this 

contributes to stability, it is less effective in distinguishing 

classes with similar features. Conversely, SGD shows the 

highest misclassification rate, particularly in differentiating 

eosinophils and neutrophils, as its weight update mechanism is 

simpler and more sensitive to learning rate settings, making it 

less effective in handling visually similar classes. After 

extracting the values of TP, TN, FP, and FN from the confusion 

matrix, accuracy, precision, recall, F1 score, and specificity 

were calculated using (10) to (14). 

According to the model evaluation results in Table IV, the 

Adam optimizer provides the best performance among the three 

tested optimizers. Adam achieves an accuracy of 97.37%, 

indicating that the model correctly classified most images, 

although accuracy alone is insufficient for comprehensive 

performance evaluation. A recall of 97.43% demonstrates the 

model’s effectiveness in correctly identifying all white blood 

cells, minimizing the risk of false negatives, which could be 

crucial in medical applications, such as failure to diagnose 

severe conditions. A precision of 97.42% indicates that the 

model accurately classifies white blood cells into the correct 

category, reducing false positives that could lead to 

overdiagnosis and unnecessary medical procedures. With an 

F1-score of 97.42%, the model maintains a well-balanced 

trade-off between recall and precision, which is crucial for 

avoiding misdiagnoses, including underdiagnosis and 

overdiagnosis. Finally, a specificity value of 99.11% 

demonstrates the model’s ability to avoid misclassifying 

negative cases, further reducing false positives and reinforcing 

the reliability of automated diagnostic results for medical 

professionals.  

Subsequently, an evaluation using the ROC AUC curve was 

conducted to assess the model’s capability to distinguish 

between positive and negative classes based on the area under 

the ROC curve. The ROC curve illustrates the model’s 

performance for each class by comparing the true positive rate 

(TPR) and the false positive rate (FPR). The ROC curve results 

for the three optimizers are presented in Figure 10. 

Figure 10 was generated through a computational process 

that visualizes the model evaluation metrics using the ROC 

curve and AUC values. Based on Figure 10, the y-axis 

represents the TPR, which indicates the proportion of correctly 

identified positive cases from the total actual positive class 

instances. The x-axis represents the FPR, denoting the 

proportion of misclassified negative instances from the total 

actual negative class instances. The blue, green, red, and purple 

lines illustrate the model’s performance at different threshold 

values, while the dashed black line represents the performance 

TABLE III 

TRAINING, VALIDATION AND LOSS FOR EACH OPTIMIZER 

Optimizer 
Accuracy 

(%) 

Loss 

(%) 

Validation 

Accuracy 

(%) 

Validation 

Loss (%) 

RMSProp 98.63 5.08 96.87 13.02 

SGD 83.46 40.39 87.57 30.73 

Adam 98.65 4.35 97.94 6.35 

 

 

Figure 8. Accuracy and loss graph results. 
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of a random classifier. The ROC analysis results for the four 

classes of white blood cells indicate that the Adam optimizer 

demonstrated the best performance, achieving an average AUC 

of 1.00, signifying excellent class differentiation capability. 

The RMSProp optimizer ranked second with an average AUC 

of 0.992, reflecting strong performance but slightly lower than 

Adam. The SGD optimizer exhibits the lowest average AUC of 

0.959, indicating suboptimal performance in distinguishing 

between the classes compared to Adam and RMSProp. 

Therefore, Adam was determined to be the most effective 

optimizer for white blood cell classification.  

From a practical perspective, the Adam optimizer is the 

most suitable choice for automated diagnostic systems in 

medical facilities with adequate computational resources. 

However, in resource-constrained environments, RMSProp or 

even SGD may be considered as more efficient alternatives. For 

real-world applications, further model training using data from 

diverse medical institutions could enhance generalization and 

reliability, ensuring the system’s optimal contribution to 

accurate and trustworthy medical diagnostics. 

Based on the study’s findings, the classification of white 

blood cell images using the Adam optimizer with CNN 

               

 (a) (b) (c) 

Figure 9. Confusion matrix, (a) Adam optimizer, (b) RMSProp optimizer, (c) SGD optimizer. 

TABLE IV 

 MODEL EVALUATION OF EACH OPTIMIZER 

Optimizer Accuracy Recall Precision F1 Score Specificity 

RMSProp 0.9630 0.9641 0.9641 0.9637 0.9875 

SGD 0.8741 0.8780 0.8749 0.8750 0.9579 

Adam 0.9737 0.9743 0.9742 0.9742 0.9911 

           

 (a) (b) (c) 

Figure 10. ROC Curve and AUC Value, (a) Adam optimizer, (b) RMSProp optimizer, (c) SGD optimizer. 

TABLE V 

 COMPARISON OF RESEARCH RESULTS 

Research Method Accuracy (%) Precision (%) Recall (%) F1 Score (%) Specificity (%) AUC 

This study 
CNN dan optimizer 

Adam 
97.37 97.42 97.43 97.42 99.11 99.00 

[8] CNN fully connected 96.84 96.39 96.26 - 97.35 - 

[9] 
Meta learning dan color 

constancy 
96.47 95.61 95.61 95.61 - - 

[10] Decision tree 92.20 - - - - - 

[11] Con-SVM 85.96 - - - - - 

[12] KNN  94.30 - - - - - 

[13] DDRNet 91.98 - - 96.00 - - 
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architecture demonstrated superior performance compared to 

previous studies employing different methods. Table V 

provides a comparative analysis between this study and the 

previous study. 

Table V indicates that the combination of CNN and the 

Adam optimizer achieved the highest performance in white 

blood cell image classification compared to earlier 

methodologies. With accuracy, recall, precision, F1 score, and 

AUC values of 97.37%, 97.43%, 97.42%, 97.42%, and 99%, 

respectively, this model outperformed other approaches, 

including fully connected CNN, which was reported in prior 

studies with an accuracy of 96.84% [8], as well as meta-

learning and color constancy methods, which achieved an 

accuracy of 96.47% [9]. Lower performance was also observed 

in classical methods such as decision trees with an accuracy of 

92.2% [10], Convolutional SVM (Con-SVM) with 85.96% [11], 

and KNN with 94.3% [12]. Another study utilizing DDRNet 

reported an accuracy of 91.98% [13]. Although DDRNet 

demonstrated a strong ability to handle complex features, its 

overall performance remained inferior to CNN with the Adam 

optimizer in this study. These findings highlight that the CNN-

Adam combination provides a more adaptive solution for 

medical image analysis. This study confirms that this 

combination represents the optimal approach for white blood 

cell image classification. 

V. CONCLUSION 

This study has found that among the three tested 

optimizers—Adam, RMSProp, and SGD—the Adam optimizer 

demonstrated the best performance in training the CNN model 

for white blood cell classification. Based on the evaluation 

using a confusion matrix, Adam achieved an accuracy of 

97.37%, recall of 97.43%, precision of 97.42%, F1 score of 

97.42%, and specificity of 99.11%. These values indicate that 

Adam outperformed the other optimizers across all evaluation 

metrics. Compared to RMSProp, Adam exhibited a 

performance advantage with an accuracy difference of 1.07%, 

recall of 1.02%, precision of 1.01%, F1 score of 0.95%, and 

specificity of 0.36%. Meanwhile, the performance gap between 

Adam and SGD was significantly larger, with an accuracy 

difference of 10.96%, recall of 9.63%, precision of 9.93%, F1 

score of 9.92%, and specificity of 3.32%. Additionally, the 

ROC-AUC curve analysis showed that the values for each class 

exceeded 90%, indicating that the model effectively 

differentiates between classes and falls within the category of 

excellent classification. Based on these findings, implementing 

the model into a web-based system is recommended, enabling 

image uploads and real-time classification to support practical 

applications in the medical field. However, this study has 

certain limitations, particularly in evaluation, as further 

validation with external datasets and testing in real-world 

clinical environments are required to ensure the model’s 

effectiveness in actual clinical applications. 
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