
Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Numberr 1 February 2025

Dede Kurniadi: Comparison of Optimizer Use ... p-ISSN 2301–4156 | e-ISSN 2460–5719

© Jurnal Nasional Teknik Elektro dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Translation of article 10.22146/jnteti.v14i1.17162

Comparison of Optimizer Use in White Blood Cell
Classification Employing CNN
Dede Kurniadi1, Rifky Muhammad Shidiq1, Asri Mulyani1

1 Program Studi Teknik Informatika, Jurusan Ilmu Komputer, Institut Teknologi Garut, Garut, Jawa Barat 4415, Indonesia

[Submitted: 19 November 2024, Revised: 21 January 2025, Accepted: 1 February 2025]

Corresponding Author: Dede Kurniadi (email: dede.kurniadi@itg.ac.id)

ABSTRACT — White blood cells are crucial components of the immune system responsible for combating infections and

diseases. The classification and counting of white blood cells are typically performed manually by experienced operators or

via automated cell analysis systems. The manual method is inefficient, time-consuming, and labor-intensive, while automated

analysis machines are often expensive and require stringent sample preparation. This study aimed to compare the performance

of three optimizers—root mean square propagation (RMSProp), stochastic gradient descent (SGD), and adaptive moment

estimation (Adam)—in a white blood cell classification model using a convolutional neural network (CNN) algorithm. The

dataset consisted of 12,392 images spanning four white blood cell classes: eosinophils, neutrophils, lymphocytes, and

monocytes. The results indicate that the Adam optimizer achieved the best performance, with a training accuracy of 98.65%

and an evaluation accuracy of 97.73%. Adam also outperformed the other optimizers in key metrics, including recall

(97.43%), precision (97.42%), F1-score (97.42%), and specificity (99.11%). The AUC values for all classes exceeded 90%,

demonstrating the model’s exceptional ability to distinguish between different cell types. The RMSProp optimizer yielded a

training accuracy of 98.63%, whereas SGD achieved a lower training accuracy of 83.46%. This study highlights the

significant impact of optimizer selection on CNN performance in white blood cell image classification, providing a

foundational step toward the development of more accurate medical classification systems.

KEYWORDS — Adam’s Optimizer, Convolutional Neural Network, White Blood Cell Classification, RMSProp Optimizer,

SGD Optimizer.

I. INTRODUCTION

White blood cells, or leukocytes, are essential components

of the immune system responsible for fighting infections and

diseases. Several types of white blood cells exist, including

neutrophils, lymphocytes, monocytes, eosinophils, and

basophils, each playing a specific role in an immune response.

Leukocytes are produced in the bone marrow and circulate

throughout the body via the bloodstream. The levels and

proportions of different white blood cell types in the blood

provide important indicators of an individual’s health and assist

in diagnosing various medical conditions [1]. Each white blood

cell type exhibits unique characteristics in terms of color and

morphology. Neutrophils appear bluish-red and typically

possess three-lobed nuclei with varying shapes. Basophils

display a spotted bluish appearance. Eosinophils exhibit

reddish spots, monocytes have blue color with an elongated

round nucleus, and lymphocytes appear pale blue with limited

motility [2].

Traditionally, white blood cell classification and counting

have been conducted manually by skilled operators or through

fully automated cell analysis. However, manual counting

methods are inefficient, time-consuming, and labor-intensive.

Although automated cell analysis has been employed for white

blood cell classification, these machines often impose high

sample requirements and are costly, limiting their widespread

adoption in healthcare facilities and hospitals [3]. The

advancement of technology has facilitated the classification of

white blood cell images through deep learning. Deep learning,

a subset of machine learning, involves artificial neural

networks composed of multiple layers. The neural network in

deep learning can have many layers, enabling the extraction of

complex features from input data, and making deep learning

applicable in various domains, including medical image

analysis such as white blood cell classification [4].

One of the prominent deep learning algorithms is the

convolutional neural network (CNN), which utilizes

convolutional layers to extract essential image features such as

edges, textures, and patterns. These layers integrate the

extracted features to reduce data dimensionality, allowing the

network to identify more complex patterns and classify images

into distinct categories. In addition to convolutional layers,

CNNs consist of pooling and fully connected layers. Pooling

layers reduce the size of feature representations and prevent

overfitting through operations such as max-pooling or average-

pooling. Meanwhile, fully connected layers consolidate all

extracted features to generate final classification results [5].

In the implementation of CNN algorithms for image

classification, optimizer selection plays a crucial role in the

model training process. An optimizer is an algorithm that

adjusts the model’s weight and bias updates to minimize the

loss function during training. Commonly used deep learning

optimizers include stochastic gradient descent (SGD), adaptive

moment estimation (Adam), and root mean square propagation

(RMSProp), each employing different approaches to handle

gradients during training [6]. SGD is computationally simple

and lightweight but often requires more iterations to achieve

convergence. Adam and RMSProp, on the other hand, offer

advantages in convergence speed through adaptive approaches.

This study aims to compare the performance of these three

optimizers in white blood cell image classification, focusing on

four white blood cell types: eosinophils, neutrophils,

lymphocytes, and monocytes. The evaluation employs metrics

such as the confusion matrix and receiver operating

characteristic-area under the curve (ROC-AUC), including

EN-77

 Jurnal Nasional Teknik Elektro dan Teknologi Informasi
 Volume 14 Number 1 February 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Dede Kurniadi: Comparison of Optimizer Use ...

accuracy, precision, recall, F1 score, and ROC-AUC curves.

The dataset used in this study was sourced from Kaggle, an

online dataset provider, under the name Blood Cells Images. It

consists of 12,392 images representing four classes of white

blood cells: eosinophils, neutrophils, lymphocytes, and

monocytes [7]. By understanding the impact of each optimizer

on accuracy, this research aims to provide insights into the most

suitable optimizer for white blood cell classification

II. RELATED WORKS

Several prior studies have developed fully connected CNN

models consisting of six convolutional layers, six pooling

layers, and two fully connected layers. These models were

tested using the Blood Cell Count and Detection (BCCD)

dataset obtained from Kaggle, consisting of 285 images,

achieving an accuracy of 96.84% [8].

Another study proposed an innovative approach to white

blood cell image classification using meta-learning and color

constancy methods. The meta-learning method, based on the

Xception model, achieved a peak accuracy of 96.47% using the

Raabin dataset comprising 10,175 images [9]. Additionally, a

study employing a decision tree algorithm for classifying 167

white blood cell images obtained through hospital

communication achieved an accuracy of 92.2% [10].

Other studies have applied convolutional features-support

vector machines (Con-SVM) to classify white blood cell

images using a dataset of 12,442 images downloaded from

Kaggle, achieving an accuracy of 85.96% [11]. Meanwhile, the

k-nearest neighbors (KNN) algorithm has been used to detect

white blood cell abnormalities for early diagnosis of

myeloproliferative neoplasm syndrome. Out of 159 test data

points, 150 were correctly classified, resulting in an accuracy

of 94.3% [12].

A recently conducted study developed a white blood cell

classification method employing a deep dilated residual

convolutional neural network (DDRNet), achieving an

accuracy of 91.98% and an F1 score of 0.96, utilizing a dataset

of 16,249 images from Kaggle [13].

Based on Table I, various methods for white blood cell

image classification, such as fully connected CNN, meta-

learning, decision tree, Con-SVM, and DDRNet, exhibit

variations in accuracy and efficiency. Although some methods

achieve high accuracies, such as fully connected CNN (96.84%)

and Xception-based meta-learning (96.47%), challenges

remain, including model complexity, sensitivity to contrast

variations, and instability in handling image noise. Methods

like decision trees and Con-SVM demonstrate limitations in

processing complex features, resulting in lower accuracy.

This gap indicates that despite advancements in

classification methods, further exploration is required to

enhance computational efficiency and model robustness,

particularly in medical image classification, which demands

both high accuracy and stability. In this study, optimizers such

as Adam, SGD, and RMSProp were selected for white blood

cell image classification using CNN, as each optimizer has

distinct advantages in addressing challenges during model

training. Adam is known for accelerating convergence [14],

RMSProp provides stability for fluctuating gradients [15], and

SGD remains a common baseline due to its simplicity [16]. By

comparing these three optimizers, this study aimed to identify

the optimal combination that improves classification

performance in terms of both accuracy and computational

efficiency.

Choosing the appropriate optimizer is important as it can

address several limitations observed in previous methods, such

as model stability in handling data variations, convergence

speed, and generalization capability across different datasets.

Therefore, this study focuses on optimizing CNN using these

three optimizers to achieve a balance between accuracy and

computational efficiency in white blood cell image

classification.

III. METHODOLOGY

This study employed an experimental study strategy to test

the white blood cell image classification model using CNN and

to evaluate its performance. The process entailed designing the

steps to be applied during the study.

The study workflow began with obtaining a dataset of white

blood cell images from an online source, Kaggle. The dataset

was separated into three subsets: training, testing, and

validation data. This partition ensured that the model had good

generalization capabilities for new data that had never been

seen before and accurately measured the model’s performance.

The preprocessing stage was conducted to prepare the

dataset to suit the needs of the CNN model. This included

balancing the dataset using the random oversampling (ROS)

technique, resizing images for consistency, segmenting images

to isolate white blood cells from the background, and

normalizing pixel values. Normalization helped standardize

pixel value distributions and reduced unwanted variations

within the data.

Next, the CNN architecture was developed and trained

using the training and validation data. The model was

optimized using three different optimizers: Adam, RMSProp,

TABLE I

RESEARCH GAP ANALYSIS IN WHITE BLOOD CELL IMAGE CLASSIFICATION

Research Method Advantages Disadvantages

[8]

Fully

connected

CNN

High accuracy

(96.84%)

Complex

architecture

increases

computational

time and cost.

[9]

Meta

learning

dan color

constancy

Accuracy of

96.47% with

Meta Learning

Susceptible to

contrast changes

and color

variations.

[10]
Decision

tree

Easy to

implement,

accuracy of

92.2%

Less effective with

noisy data or

complex features.

[11] Con-SVM
Improves

generalization

Lower accuracy

(85.96%)

compared to other

methods.

[12] KNN
Simple, accuracy

of 94.3%

Sensitive to

outliers and

requires careful

selection of K

parameters.

[13]
DDRNet

High accuracy

(91.98%) and

F1-score (0.96),

effective for

complex features

High

computational

demands due to

architectural

complexity.

EN-78

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Numberr 1 February 2025

Dede Kurniadi: Comparison of Optimizer Use ... p-ISSN 2301–4156 | e-ISSN 2460–5719

and SGD. Once training was completed and parameters were

optimized, the testing data was used for final model evaluation.

This evaluation provided an objective measure of the model’s

generalization ability and classification performance on new

data.

Performance evaluation was conducted using a confusion

matrix. Several metrics, including accuracy, precision, recall,

F1 score, specificity, and ROC-AUC, were employed to assess

the model’s capability in accurately distinguishing between

positive and negative classes.

The results and analysis section presented findings from

CNN implementation by comparing the performance of the

three optimizers in white blood cell image classification. The

results from each process stage were discussed to provide a

comprehensive overview of the model’s effectiveness in

classification tasks.

A. CONVOLUTIONAL NEURAL NETWORK

CNN is a prominent deep learning algorithm that has gained

widespread popularity due to its ability to automatically

identify relevant features without human supervision. CNN has

been applied in various fields, including computer vision,

speech processing, and facial recognition. Its structure is

inspired by biological neurons in the human and animal brains,

utilizing shared weights and local connections to efficiently

process 2D input data such as image signals [17]. CNN remains

the primary choice for image classification tasks in computer

vision. Recent studies have introduced the Vision Transformer

(ViT) architecture, integrating CNN for computer vision tasks.

This study suggests that combining CNNs and transformers can

improve performance in image classification [18].

Advancements in CNN architecture have significantly

improved facial recognition system accuracy. One study

demonstrated that CNN effectively addresses challenges such

as lighting conditions, viewing angles, and facial expressions,

thereby supporting the implementation of facial recognition for

security and biometric authentication [19]. Figure 1 illustrates

an example of CNN architecture.

As shown in Figure 1, during the feature learning stage, the

network receives an input image, processes it through

convolutional and pooling layers, and transforms it into

numerical feature maps that represent the image. Each layer

refines the image representation before passing it to the

classification stage. In this stage, multiple fully connected

layers receive input from the final feature maps of the previous

stage. These layers process and refine the extracted features

through a series of hidden layers within the neural network,

then ultimately generating classification predictions for each

class.

The convolutional layer is an important component of CNN,

responsible for performing convolution operations on the

output from previous layers. It contains a series of randomly

learned filters designed to extract important features from input

data. The goal is to obtain a representation of the important

features of the input data, especially in images.

The pooling or subsampling layer typically follows the

convolutional layer in CNN. It reduces the spatial dimensions

(height and width) of the convolutional layer’s output. The

primary objective of pooling is to decrease the number of

learnable parameters in the network, mitigating overfitting

while enhancing overall network performance and

classification accuracy.

The rectified linear unit (ReLU) function is the most

commonly used nonlinear function in neural networks in the

current era. ReLU produces a value of 0 for all negative values

of x, while for positive values of x, the value remains

unchanged. This function is demonstrated in (1).

 𝑓_𝑟𝑒𝑙𝑢 (𝑥) = 𝑚𝑎𝑥(0, 𝑥). (1)

In this function, x denotes the input function, and max(0, x)

represents the maximum function that selects the larger value

between 0 and x.

The fully connected layer represents a prevalent component

in neural networks, a notable distinction being its absence of a

convolution operation during the process of generating output.

This layer facilitates direct connectivity between neurons

within the preceding layer, thereby establishing more intricate

connections and enabling the network to discern more abstract

relationships between the features manifested by activations.

The fully connected layer is positioned in the final two layers

of the network and employs a softmax activation function to

ascertain the probability of the output based on the provided

input [20].

B. ADAPTIVE MOMENT ESTIMATION (ADAM)

Adam’s optimizer is one of the widely used optimization

algorithms in deep learning model training. It combines the

advantages of adaptive gradient (AdaGrad) and RMSProp by

dynamically adjusting the exponential rates for the first (mean)

and second (variance) moment estimates of the gradient to

update the parameters. Adam’s optimizer is particularly

suitable for large data and nonstationary objective optimization

with noisy and sparse gradients. In comparison to alternative

optimization algorithms, Adam demonstrates superior

performance in terms of rapid convergence and stability during

training, particularly when confronted with problems involving

numerous parameters and loss functions that may be

nonconvex [21]. The utilization of Adam is also employed in

the optimizations of deep learning models, particularly in the

medical domain. A study demonstrated that Adam expedites

convergence while preserving accuracy, even when dealing

with substantial and intricate medical datasets [14]. The

formulas for calculating the Adam’s optimizer are stated in (2)

to (6).

Estimation of the first moment (average):

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡. (2)

Estimation of the second moment (off-center variance):

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2. (3)

Bias-corrected first-moment estimate:

 𝑚̂𝑡 =
𝑚𝑡

1− 𝛽 1
𝑡 . (4)

Figure 1. Convolutional neural network.

EN-79

 Jurnal Nasional Teknik Elektro dan Teknologi Informasi
 Volume 14 Number 1 February 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Dede Kurniadi: Comparison of Optimizer Use ...

Bias-corrected second-moment estimate:

 𝑣̂𝑡 =
𝑣𝑡

1− 𝛽 2
𝑡 . (5)

Parameter update:

 𝜃̂𝑡 = 𝜃𝑡−1 − 𝑎
𝑚̂𝑡

√𝑣̂𝑡+ 𝜖
 (6)

where 𝑎 is the learning rate, 𝛽1 and 𝛽2 represent the decay rates

for moment estimation, 𝜖 is a small constant for numerical

stability.

C. ROOT MEAN SQUARE PROPAGATION (RMSProp)

RMSProp is an optimization algorithm that has been

designed to accelerate the model training process in deep

learning. It is a development of the SGD method that aims to

overcome the problems of too slow learning rate decline and

large fluctuations in parameter updates. RMSProp works by

storing the mean square of the gradient that has been calculated

at each iteration. By doing so, it can adjust the learning rate for

each parameter individually [15]. In recent years, RMSProp has

been identified as a leading method in various deep-learning

applications. The study has demonstrated its superiority to

Adam, particularly in nonconvex optimization tasks, making it

well-suited for complex architectures and challenging datasets

[22]. The formulas for calculating the RMSProp optimizer are

presented in (7) and (8).

Moving average of the squared gradient:

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽)𝑔𝑡
2 (7)

Parameter update:

 𝜃𝑡 = 𝜃𝑡−1 − 𝑎
𝑔𝑡

√𝑣𝑡+ 𝜖
 (8)

where 𝛼 denotes the learning rate, 𝛽 defines the decay rate for

the moving average of the squared gradient, and 𝜖 serves as a

small constant for numerical stability.

D. STOCHASTIC GRADIENT DESCENT (SGD)

SGD is a simple yet highly effective optimizer in machine

learning. It updates parameters using a single randomly

selected example from the dataset per iteration, significantly

reducing computational time and memory usage compared to

the batch gradient descent method, which processes the entire

dataset before updating parameters. While this approach

accelerates training, it also introduces noise into gradient

estimation, leading to fluctuations in the convergence path and

potential instability. However, these fluctuations can help

escape saddle points and discover better solutions [16]. Recent

studies highlight that variations of SGD, such as momentum-

based SGD and adaptive learning rate techniques, further

enhance its effectiveness across deep learning applications,

including image recognition and object detection [23]. The

mathematical formulation of the SGD optimizer is given in

equation (9).

Parameter update:

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (9)

where α represents the machine learning, and 𝑔𝑡 denotes the

gradient of the objective function with respect to the parameters

at time step 𝑡.

E. IMAGE SEGMENTATION

Image segmentation is a fundamental process in computer

vision technology, designed to partition an image into distinct

regions based on specific characteristics. This process

facilitates the identification and extraction of target objects,

serving as a crucial bridge between image processing and

analysis. Segmentation enables the separation of the object of

interest (target) from its background, which has a wide range

of applications in fields such as medical image processing,

pattern recognition, and artificial intelligence [24]. In medical

image processing, deep learning-based segmentation methods

have improved detection accuracy in lung cancer diagnosis

from computed tomography (CT) images [25]. Moreover,

segmentation is also instrumental in applications such as road

mapping in satellite imagery, and provides better results in

automated navigation systems [26].

F. CONFUSION MATRIX

A confusion matrix is an N × N table used in classification

tasks to assess model performance, where N represents the

number of predicted classes. By comparing the model’s

predictions with the actual values, the confusion matrix

provides a detailed overview of classification accuracy and

highlights areas requiring improvement [27]. The matrix

comprises four key components: true positive (TP), false

negative (FN), false positive (FP), and true negative (TN).

These values serve as the foundation for calculating various

evaluation metrics, including accuracy, precision, recall, and

F1 score, which collectively quantify the model’s overall

performance.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
. (10)

Accuracy is the ratio of the number of correct predictions

(both positive and negative) to the total number of predictions.

 𝑃𝑟𝑒𝑠𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
. (11)

Precision measures the accuracy of the model in predicting the

positive class. The higher the precision, the fewer false positive

predictions.

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. (12)

Recall or sensitivity is the ability of the model to capture all

positive samples.

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
. (13)

F1 score is the harmonic mean of precision and recall. This

metric is used when balancing between precision and recall.

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
. (14)

Specificity measures the ability of the model to correctly

predict the negative class.

G. ROC-AUC

The ROC-AUC curve is used to measure the ability of a

classification model to differentiate between classes across

various threshold scenarios [28]. This evaluation to calculate

the AUC value results in (15)

 𝐴𝑈𝐶 =
1

2
(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦). (15)

AUC is a measure of the model’s ability to distinguish between

positive and negative classes at various thresholds..

IV. RESULTS AND DISCUSSION

This section presents the study findings from the

implementation of a CNN algorithm by comparing three

EN-80

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Numberr 1 February 2025

Dede Kurniadi: Comparison of Optimizer Use ... p-ISSN 2301–4156 | e-ISSN 2460–5719

optimizers for white blood cell image classification. The

process flow of each stage is explained as follows.

A. DATA SOURCE

The first step in the data source stage involved collecting

datasets from an online dataset provider, namely Kaggle.

Figure 2 illustrates four sample images of white blood cells.

Based on Figure 2, this dataset comprises a total of 12,392

images, including 3,120 images for the eosinophil class, 3,103

images for the lymphocyte class, 3,098 images for the

monocyte class, and 3,123 images for the neutrophil class.

After data collection, the dataset was divided into three

subsets: 80% for training data, 10% for validation data, and 10%

for testing data. This proportion was selected based on previous

study findings, which demonstrated that this split could achieve

an accuracy of up to 95.69% [29]. Figure 3 illustrates the

distribution of the dataset split.

Figure 3 was generated using a program that partitions the

white blood cell image dataset into three main subsets: training

data (blue), validation data (orange), and testing data (green).

The x-axis represents the dataset classes, while the y-axis

represents the total number of data points. For the eosinophil

class, there were 2,443 images for training, 303 for validation,

and 295 for testing. The lymphocyte class contained 2,467

images for training, 313 for validation, and 321 for testing. The

monocyte class comprised 2,324 images for training, 312 for

validation, and 304 for testing. Finally, the neutrophil class

included 2,482 images for training, 287 for validation, and 295

for testing.

B. PREPROCESSING

In this stage, preprocessing was performed to prepare the

dataset before proceeding to the modeling phase. The first step

involved balancing the dataset to address class imbalance.

Figure 4(a) presents a visualization of the white blood cell

image dataset, which initially exhibited class imbalance. To

mitigate this issue, a data balancing process was conducted

using the random oversampling technique. This technique

addresses class imbalance in classification tasks by increasing

the number of samples in minority classes through random

duplication with replacement [30].

Figure 4 illustrates the dataset condition before and after

data balancing. After the balancing process, the results are

displayed in Figure 4(b), which shows that the sample count for

all classes has been balanced.

However, it is important to note that oversampling

techniques such as random oversampling can introduce

potential biases into the model. This bias arises because random

duplication with replacement may increase the likelihood of

overfitting the minority class, resulting in model learning

patterns that are less general [31].

Following dataset balancing, image resizing was performed

to reduce image dimensions before inputting them into the

CNN model. Figure 5 visualizes the resizing process, where

images were resized from 320 × 240 to 120 × 120. This step

ensures that input images maintain consistent dimensions,

thereby reducing computational complexity [32].

The next step involved image segmentation, which was

carried out to separate white blood cells from the background

using OpenCV. The process began with thresholding to

highlight objects based on pixel intensity, followed by dilation

to enlarge object areas and erosion to remove noise. A second

dilation step was applied to refine object shapes. Subsequently,

the Canny edge detection algorithm was employed to detect

object edges, followed by contour detection to identify object

boundaries. Bounding boxes were then created around the

contours to highlight detected areas. The final outcome was an

extracted white blood cell image, as shown in Figure 6.

Figure 6 illustrates the segmented areas from the previous

process, ensuring that the image is more focused on the

segmented object, revealing clearer details after the object has

been separated from the background. Once all segmentation

processes were completed, the final segmentation results were

applied to the entire white blood cell image dataset.

Figure 7 presents five examples of successfully segmented

and classified white blood cell images. Each image represents

different types of white blood cells—lymphocytes, neutrophils,

eosinophils, and monocytes—that have undergone

segmentation. The segmentation process effectively isolated

white blood cells from the background, enhancing the visibility

of each cell’s shape and structure. This preprocessing step is

crucial before proceeding with classification using the CNN

model.

After the data balancing, image resizing, and segmentation

processes were completed, the next step was pixel value

normalization. Normalization is an essential step to ensure that

input data maintains uniform values, particularly in terms of

consistent pixel sizes. Pixel value normalization was performed

on the white blood cell image dataset used for training,

validation, and testing. This was achieved by dividing each

pixel value in the images by 255.0, thereby converting the pixel

value range from [0.255] to [0.1].

C. CNN MODEL

At this stage, the development of a CNN model for white

blood cell image classification was conducted. The CNN

architecture employed for this classification task is presented in

Table II.

As shown in Table II, the CNN architecture designed in this

study was specifically structured for white blood cell image

classification while considering both efficiency and

Figure 2. Dataset samples.

Figure 3. Dataset sharing distribution.

EN-81

 Jurnal Nasional Teknik Elektro dan Teknologi Informasi
 Volume 14 Number 1 February 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Dede Kurniadi: Comparison of Optimizer Use ...

effectiveness. The initial layer consists of a Conv2D layer with

16 filters of size 3 × 3, which aims to extract fundamental

features such as edges and simple patterns from input images

of 120 × 120 pixels. Subsequently, each convolutional layer

was followed by max pooling to reduce data dimensionality,

thereby decreasing the number of parameters and mitigating the

risk of overfitting while enhancing computational efficiency.

The separable convolution layer was utilized to capture more

complex patterns with fewer parameters, ensuring a balance

between accuracy and computational cost. To stabilize training,

batch normalization layers were applied after certain

convolutional layers, facilitating faster training convergence

and gradient stability. Additionally, dropout was implemented

before the fully connected layer to prevent overfitting by

randomly deactivating neurons during training. The selection

of these architectural components reflects the balance between

complexity and generalization capability for the white blood

cell image classification task.
Following the architectural design, the next step involved

training the model using both training and validation data with
the previously built model. At this stage, adjustments were
made to the use of optimizers on the parameters used. The
development of the study method was carried out using Kaggle
Notebooks, with the T4 GPU provided by the platform utilized
to accelerate the model training process. The software tools
utilized included Python 3.8, TensorFlow and Keras 2.8 for
CNN model development, and several supporting libraries such
as NumPy 1.21, Pandas 1.3, Matplotlib, and Seaborn for data
analysis and visualization. The optimizers utilized in this study

included RMSProp, SGD, and Adam. The batch size was set to
32 to balance computational efficiency, learning stability, and
model generalization capability [33]. A learning rate of 0.0001
was adopted to ensure stable and gradual parameter updates.
The findings indicate that this learning rate effectively
prevented divergence or excessively slow learning [34]. The
number of epochs was set to 30, which was deemed sufficient
to achieve convergence without overfitting, particularly given
the implementation of regularization techniques such as
dropout and batch normalization.

As presented in Table III, the results indicate that the Adam
optimizer yielded the best performance, achieving a training
accuracy of 98.65% and a validation accuracy of 97.94%, along
with the lowest loss values of 4.35% for training data and 6.35%
for validation data. RMSProp also demonstrated competitive
performance but was slightly inferior to Adam, with a training

(a)

(b)

Figure 4. Data distribution comparison, (a) before balancing, (b) after balancing.

Figure 5. Image resizing process.

Figure 6. Image segmentation process.

Figure 7. Sample of five images from the segmentation process.

TABLE II

CNN ARCHITECTURE

Layer (Type) Output Form Parameter#

conv2d (None, 120, 120, 16) 448

max_pooling2d (None, 60, 60, 16) 0

separable_conv2d (None, 60, 60, 32) 688

batch_normalization (None, 60, 60, 32) 128

max_pooling2d_1 (None, 30, 30, 32) 0

separable_conv2d_2 (None, 30, 30, 64) 2400

batch_normalization_1 (None, 30, 30, 64) 256

max_pooling2d_2 (None, 15, 15, 64) 0

separable_conv2d_4 (None, 15, 15, 128) 8896

batch_normalization_2 (None, 15, 15, 128) 512

max_pooling2d_3 (None, 7, 7, 128) 0

dropout (None, 7, 7, 128) 0

separable_conv2d_6 (None, 7, 7, 256) 34176

batch_normalization_3 (None, 7, 7, 256) 1024

max_pooling2d_4 (None, 3, 3, 256) 0

Flatten (None, 2304) 0

dense_ (Dense) (None, 512) 1180160

dense_1 (Dense) (None, 128) 65664

dense_2 (Dense) (None, 64) 8256

dense_3 (Dense) (None, 4) 260

Total params: 1.397.028

Trainable params: 1.396.068

Nontrainable params: 960

EN-82

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Numberr 1 February 2025

Dede Kurniadi: Comparison of Optimizer Use ... p-ISSN 2301–4156 | e-ISSN 2460–5719

accuracy of 98.63%, a validation accuracy of 96.87%, and a
higher validation loss compared to Adam. The SGD optimizer
exhibited the lowest performance among the three, with a
training accuracy of 83.46% and a validation accuracy of
87.57%, as well as substantially higher loss values of 40.39%
for training data and 30.73% for validation data. In terms of
computational efficiency, the training time required for each
optimizer was as follows: SGD took 3.82 minutes, Adam
required 3.59 minutes, and RMSProp needed 3.82 minutes.
Based on these results, the Adam optimizer provided the best
overall performance with superior computational efficiency
compared to the other optimizers.

Following the optimizer evaluation, the optimal CNN
model was identified using the Adam optimizer with a batch
size of 32, a learning rate of 0.0001, and 30 epochs. The
performance of the optimal CNN model, comparing accuracy
and loss metrics between training and validation data, is
illustrated in Figure 8.

Figure 8, generated from program processing, depicts the
accuracy and loss trends throughout model training. The
accuracy graph indicates that training accuracy (blue line)
steadily increases from 0.3 to nearly 1.0 by epoch 20, while
validation accuracy (orange line) rises rapidly during the initial
epochs (0–5) before stabilizing near the training accuracy. This
pattern suggests strong model generalization without signs of
overfitting. In the loss graph, training loss (blue line) sharply
decreases in the early training phase (0–5 epochs), reflecting
the optimizer’s effectiveness in minimizing errors. Validation
loss (orange line) follows a similar trend with minor
fluctuations in the early epochs (3–5) before stabilizing,
indicating weight adjustments in response to validation data.
The consistent loss reduction approaching zero by the final
epochs signifies effective model convergence. Overall, these
trends demonstrate that the model achieves high accuracy and
low loss with optimal performance, supported by the
effectiveness of the optimizer in managing the training.

D. EVALUATION

This stage is conducted to assess the model’s performance

in predicting test data that has never been seen before. The

optimal model, obtained from parameter tuning experiments,

was tested to evaluate its generalization capability. To compute

accuracy, precision, recall, F1 score, and specificity values, a

confusion matrix evaluation was conducted using the

RMSProp, Adam, and SGD optimizers, as illustrated in Figure

9.

Figure 9 was generated through computational processing,

visualizing the model’s classification results in the form of a

confusion matrix. Based on Figure 9, the Adam optimizer

demonstrates the best performance in classifying white blood

cells. Adam exhibits high accuracy with minimal

misclassification errors, particularly in neutrophils, which are

occasionally misclassified as eosinophils. This can be

attributed to Adam’s use of momentum and adaptive weighting,

enhancing stability and accelerating convergence despite

indistinct inter-class features. RMSProp also performs well but

exhibits slightly higher misclassification in eosinophils due to

its focus on adaptive learning rate adjustments. While this

contributes to stability, it is less effective in distinguishing

classes with similar features. Conversely, SGD shows the

highest misclassification rate, particularly in differentiating

eosinophils and neutrophils, as its weight update mechanism is

simpler and more sensitive to learning rate settings, making it

less effective in handling visually similar classes. After

extracting the values of TP, TN, FP, and FN from the confusion

matrix, accuracy, precision, recall, F1 score, and specificity

were calculated using (10) to (14).

According to the model evaluation results in Table IV, the

Adam optimizer provides the best performance among the three

tested optimizers. Adam achieves an accuracy of 97.37%,

indicating that the model correctly classified most images,

although accuracy alone is insufficient for comprehensive

performance evaluation. A recall of 97.43% demonstrates the

model’s effectiveness in correctly identifying all white blood

cells, minimizing the risk of false negatives, which could be

crucial in medical applications, such as failure to diagnose

severe conditions. A precision of 97.42% indicates that the

model accurately classifies white blood cells into the correct

category, reducing false positives that could lead to

overdiagnosis and unnecessary medical procedures. With an

F1-score of 97.42%, the model maintains a well-balanced

trade-off between recall and precision, which is crucial for

avoiding misdiagnoses, including underdiagnosis and

overdiagnosis. Finally, a specificity value of 99.11%

demonstrates the model’s ability to avoid misclassifying

negative cases, further reducing false positives and reinforcing

the reliability of automated diagnostic results for medical

professionals.

Subsequently, an evaluation using the ROC AUC curve was

conducted to assess the model’s capability to distinguish

between positive and negative classes based on the area under

the ROC curve. The ROC curve illustrates the model’s

performance for each class by comparing the true positive rate

(TPR) and the false positive rate (FPR). The ROC curve results

for the three optimizers are presented in Figure 10.

Figure 10 was generated through a computational process

that visualizes the model evaluation metrics using the ROC

curve and AUC values. Based on Figure 10, the y-axis

represents the TPR, which indicates the proportion of correctly

identified positive cases from the total actual positive class

instances. The x-axis represents the FPR, denoting the

proportion of misclassified negative instances from the total

actual negative class instances. The blue, green, red, and purple

lines illustrate the model’s performance at different threshold

values, while the dashed black line represents the performance

TABLE III

TRAINING, VALIDATION AND LOSS FOR EACH OPTIMIZER

Optimizer
Accuracy

(%)

Loss

(%)

Validation

Accuracy

(%)

Validation

Loss (%)

RMSProp 98.63 5.08 96.87 13.02

SGD 83.46 40.39 87.57 30.73

Adam 98.65 4.35 97.94 6.35

Figure 8. Accuracy and loss graph results.

EN-83

 Jurnal Nasional Teknik Elektro dan Teknologi Informasi
 Volume 14 Number 1 February 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Dede Kurniadi: Comparison of Optimizer Use ...

of a random classifier. The ROC analysis results for the four

classes of white blood cells indicate that the Adam optimizer

demonstrated the best performance, achieving an average AUC

of 1.00, signifying excellent class differentiation capability.

The RMSProp optimizer ranked second with an average AUC

of 0.992, reflecting strong performance but slightly lower than

Adam. The SGD optimizer exhibits the lowest average AUC of

0.959, indicating suboptimal performance in distinguishing

between the classes compared to Adam and RMSProp.

Therefore, Adam was determined to be the most effective

optimizer for white blood cell classification.

From a practical perspective, the Adam optimizer is the

most suitable choice for automated diagnostic systems in

medical facilities with adequate computational resources.

However, in resource-constrained environments, RMSProp or

even SGD may be considered as more efficient alternatives. For

real-world applications, further model training using data from

diverse medical institutions could enhance generalization and

reliability, ensuring the system’s optimal contribution to

accurate and trustworthy medical diagnostics.

Based on the study’s findings, the classification of white

blood cell images using the Adam optimizer with CNN

 (a) (b) (c)

Figure 9. Confusion matrix, (a) Adam optimizer, (b) RMSProp optimizer, (c) SGD optimizer.

TABLE IV

 MODEL EVALUATION OF EACH OPTIMIZER

Optimizer Accuracy Recall Precision F1 Score Specificity

RMSProp 0.9630 0.9641 0.9641 0.9637 0.9875

SGD 0.8741 0.8780 0.8749 0.8750 0.9579

Adam 0.9737 0.9743 0.9742 0.9742 0.9911

 (a) (b) (c)

Figure 10. ROC Curve and AUC Value, (a) Adam optimizer, (b) RMSProp optimizer, (c) SGD optimizer.

TABLE V

 COMPARISON OF RESEARCH RESULTS

Research Method Accuracy (%) Precision (%) Recall (%) F1 Score (%) Specificity (%) AUC

This study
CNN dan optimizer

Adam
97.37 97.42 97.43 97.42 99.11 99.00

[8] CNN fully connected 96.84 96.39 96.26 - 97.35 -

[9]
Meta learning dan color

constancy
96.47 95.61 95.61 95.61 - -

[10] Decision tree 92.20 - - - - -

[11] Con-SVM 85.96 - - - - -

[12] KNN 94.30 - - - - -

[13] DDRNet 91.98 - - 96.00 - -

EN-84

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Numberr 1 February 2025

Dede Kurniadi: Comparison of Optimizer Use ... p-ISSN 2301–4156 | e-ISSN 2460–5719

architecture demonstrated superior performance compared to

previous studies employing different methods. Table V

provides a comparative analysis between this study and the

previous study.

Table V indicates that the combination of CNN and the

Adam optimizer achieved the highest performance in white

blood cell image classification compared to earlier

methodologies. With accuracy, recall, precision, F1 score, and

AUC values of 97.37%, 97.43%, 97.42%, 97.42%, and 99%,

respectively, this model outperformed other approaches,

including fully connected CNN, which was reported in prior

studies with an accuracy of 96.84% [8], as well as meta-

learning and color constancy methods, which achieved an

accuracy of 96.47% [9]. Lower performance was also observed

in classical methods such as decision trees with an accuracy of

92.2% [10], Convolutional SVM (Con-SVM) with 85.96% [11],

and KNN with 94.3% [12]. Another study utilizing DDRNet

reported an accuracy of 91.98% [13]. Although DDRNet

demonstrated a strong ability to handle complex features, its

overall performance remained inferior to CNN with the Adam

optimizer in this study. These findings highlight that the CNN-

Adam combination provides a more adaptive solution for

medical image analysis. This study confirms that this

combination represents the optimal approach for white blood

cell image classification.

V. CONCLUSION

This study has found that among the three tested

optimizers—Adam, RMSProp, and SGD—the Adam optimizer

demonstrated the best performance in training the CNN model

for white blood cell classification. Based on the evaluation

using a confusion matrix, Adam achieved an accuracy of

97.37%, recall of 97.43%, precision of 97.42%, F1 score of

97.42%, and specificity of 99.11%. These values indicate that

Adam outperformed the other optimizers across all evaluation

metrics. Compared to RMSProp, Adam exhibited a

performance advantage with an accuracy difference of 1.07%,

recall of 1.02%, precision of 1.01%, F1 score of 0.95%, and

specificity of 0.36%. Meanwhile, the performance gap between

Adam and SGD was significantly larger, with an accuracy

difference of 10.96%, recall of 9.63%, precision of 9.93%, F1

score of 9.92%, and specificity of 3.32%. Additionally, the

ROC-AUC curve analysis showed that the values for each class

exceeded 90%, indicating that the model effectively

differentiates between classes and falls within the category of

excellent classification. Based on these findings, implementing

the model into a web-based system is recommended, enabling

image uploads and real-time classification to support practical

applications in the medical field. However, this study has

certain limitations, particularly in evaluation, as further

validation with external datasets and testing in real-world

clinical environments are required to ensure the model’s

effectiveness in actual clinical applications.

CONFLICTS OF INTEREST

The authors declare that during the research and writing of

this scientific article entitled “Comparison of Optimizer Use in

White Blood Cell Classification Employing CNN,” the writing

team has no conflict of interest with any party.

AUTHORS’ CONTRIBUTIONS

Conceptualization, Dede Kurniadi and Rifky Muhammad

Shidiq; methodology, Dede Kurniadi; software, Rifky

Muhammad Shidiq; validation, Dede Kurniadi and Asri

Mulyani; writing-original draft, Dede Kurniadi and Rifky

Muhammad Shidiq; writing-reviewing and editing, Dede

Kurniadi, Rifky Muhammad Shidiq, and Asri Mulyani;

visualization, Rifky Muhammad Shidiq; supervision, Dede

Kurniadi; funding, Dede Kurniadi (Institut Teknologi Garut).

ACKNOWLEDGMENT

The present research was made possible by the financial

support and resources provided by the Institut Teknologi Garut.

In addition, gratitude is extended to all individuals and entities

who have contributed to and supported this endeavor, either

directly or indirectly, throughout the research process.

REFERENCES

[1] B.J. Bain, “Performing a blood count,” in Blood Cells: A Practical Guide,

6th ed. West Sussex, United Kingdom: John Wiley & Sons Ltd, 2022, ch.
2, pp. 17–63.

[2] W. King, K. Toler, and J. Woodell-May, “Role of white blood cells in

blood- and bone marrow-based autologous therapies,” Biomed Res. Int.,

vol. 2018, no. 1, pp. 1–8, Jul. 2018, doi: 10.1155/2018/6510842.

[3] N. Dong, M. Zhai, J. Chang, and C. Wu, “A self-adaptive approach for

white blood cell classification towards point-of-care testing,” Appl. Soft

Comput., vol. 111, pp. 1–13, Nov. 2021, doi: 10.1016/j.asoc.2021.107709.

[4] M.A. Ali, F. Dornaika, and I. Arganda-Carreras, “White blood cell

classification: Convolutional neural network (CNN) and vision
transformer (ViT) under medical microscope,” Algorithms, vol. 16, no.

11, pp. 1–17, Nov. 2023, doi: 10.3390/a16110525.

[5] T.A. Sadoon and M.H. Ali, “An overview of medical images

classification based on CNN,” Int. J. Curr. Eng. Technol., vol. 10, no. 6,

pp. 900–905, Nov./Dec. 2020, doi: 10.14741/ijcet/v.10.6.1.

[6] E.M. Dogo, O.J. Afolabi, and B. Twala, “On the relative impact of

optimizers on convolutional neural networks with varying depth and
width for image classification,” Appl. Sci., vol. 12, no. 23, pp. 1–36, Dec.

2022, doi: 10.3390/app122311976.

[7] P. Mooney, “Blood cell images.” Kaggle. Access date: 13-Mar-2024.

[Online]. Available: https://www.kaggle.com/datasets/

paultimothymooney/blood-cells

[8] K.G. Kannan et al. “Classification of WBC cell classification using fully

connected convolution neural network,” J. Phys., Conf. Ser., vol. 2466,

No. 1, Apr. 2023, Art. No 012033, doi: 10.1088/1742-

6596/2466/1/012033.

[9] E. Rivas-Posada, M.I. Chacon-Murguia, J.A. Ramirez-Quintana, and C.

Arzate-Quintana, “Classification of leukocytes using meta-learning and
color constancy methods,” J. Ilmiah Tek. Elekt. Komput. Inform., vol. 8,

no. 4, pp. 486–499, Dec. 2022, doi: 10.26555/jiteki.v8i4.25192.

[10] C. Panjaitan, Y. Panjaitan, D. Sitanggang, and S.W. Tarigan, “Image

processing for detection of dengue virus,” J. Sis. Inf. Ilmu Komput. Prima,

vol. 7, no. 2, pp. 26–34, Feb. 2024, doi:

10.34012/jurnalsisteminformasidanilmukomputer.v7i2.4799.

[11] A. Ekiz, K. Kaplan, and H.M. Ertunç, “Classification of white blood cells

using CNN and Con-SVM,” in 2021 29th Signal Process. Commun. Appl.

Conf. (SIU), 2021, pp. 1–4, doi: 10.1109/SIU53274.2021.9477962.

[12] Z.E. Fitri, L.N.Y. Syahputri, and A.M.N. Imron, “Classification of white

blood cell abnormalities for early detection of myeloproliferative

neoplasms syndrome based on k-nearest neighbor,” Sci. J. Inform., vol. 7,
no. 1, pp. 136–142, May 2020, doi: 10.15294/sji.v7i1.24372.

[13] M. Jawahar, L.J. Anbarasi, S. Narayanan, and A.H. Gandomi, “An

attention-based deep learning for acute lymphoblastic leukemia

classification,” Sci. Rep., vol. 14, pp. 1–20, Jul. 2024, doi:

10.1038/s41598-024-67826-9.

[14] Y. Shao et al., “An improved BGE-Adam optimization algorithm based

on entropy weighting and adaptive gradient strategy,” Symmetry, vol. 16,
no. 5, pp. 1–16, May 2024, doi: 10.3390/sym16050623.

[15] R. Elshamy, O. Abu-Elnasr, M. Elhoseny, and S. Elmougy, “Improving

the efficiency of RMSProp optimizer by utilizing Nestrove in deep

learning,” Sci. Rep., vol. 13, pp. 1–16, May 2023, doi: 10.1038/s41598-

023-35663-x.

[16] Y. Tian, Y. Zhang, and H. Zhang, “Recent advances in stochastic gradient
descent in deep learning,” Mathematics, vol. 11, no. 3, pp. 1–23, Feb.

2023, doi: 10.3390/math11030682.

EN-85

 Jurnal Nasional Teknik Elektro dan Teknologi Informasi
 Volume 14 Number 1 February 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Dede Kurniadi: Comparison of Optimizer Use ...

[27] I. Markoulidakis et al., “Multiclass confusion matrix reduction method

and its application on net promoter score classification problem,”
Technologies, vol. 9, no. 4, pp. 1–22, Dec. 2021, doi:

10.3390/technologies9040081.

[28] Ş.K. Çorbacıoğlu and G. Aksel, “Receiver operating characteristic curve

analysis in diagnostic accuracy studies: A guide to interpreting the area

under the curve value,” Turkish J. Emerg. Med., vol. 23, no. 4, pp. 195–
198, Oct. –Dec. 2023, doi: 10.4103/tjem.tjem_182_23.

[29] V.R. Joseph, “Optimal ratio for data splitting,” Stat. Anal. Data Min., ASA

Data Sci. J., 15, no. 4, pp. 531vol. –538, Aug. 2022, doi:

10.1002/sam.11583.

[30] T. Wongvorachan, S. He, and O. Bulut, “A comparison of undersampling,

oversampling, and SMOTE methods for dealing with imbalanced

classification in educational data mining,” Information, vol. 14, no. 1, pp.
1–15, Jan. 2023, doi: 10.3390/info14010054.

[31] C. Yang et al., “Impact of random oversampling and random

undersampling on the performance of prediction models developed using

observational health data,” J. Big Data, vol. 11, pp. 1–18, Jan. 2024, doi:

10.1186/s40537-023-00857-7.

[32] A. Semma et al., “Writer identification: The effect of image resizing on

CNN performance,” in 6th Int. Conf. Smart City Appl., 2021, pp. 501–
507, doi: 10.5194/isprs-archives-XLVI-4-W5-2021-501-2021.

[33] T.A.A.H. Kusuma, K. Usman, and S. Saidah, “People counting for public

transportations using you only look once method,” J. Tek. Inform., vol. 2,

no. 1, pp. 57–66, Jun. 2021, doi: 10.20884/1.jutif.2021.2.2.77.

[34] T.S. Nabila and A. Salam, “Classification of brain tumors by using a

hybrid CNN-SVM model,” J. Appl. Inform. Comput., vol. 8, no. 2, pp.
241–247, Dec. 2024, doi: 10.30871/jaic.v8i2.8277.

EN-86

[17] L. Alzubaidi et al., “Review of deep learning: Concepts, CNN

architectures, challenges, applications, future directions,” J. Big Data, vol.
8, pp. 1–74, Mar. 2021, doi: 10.1186/s40537-021-00444-8.

[18] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for

image recognition at scale,” in 9th Int. Conf. Learn. Represent., 2021,

pp. 1–22.

[19] I. Adjabi, A. Ouahabi, A. Benzaoui, and A. Taleb-Ahmed, “Past, present,

and future of face recognition: A review,” Electronics, vol. 9, no. 8, pp.
1–52, Aug. 2020, doi: 10.3390/electronics9081188.

[20] W. Di, A. Bhardwaj, and J. Wei, Deep Learning Essentials. Birmingham,

United Kingdom: Packt, 2018.

[21] Y. Wang, Z. Xiao, and G. Cao, “A convolutional neural network method

based on Adam optimizer with power-exponential learning rate for
bearing fault diagnosis,” J. Vibroengineering, vol. 24, no. 4, pp. 666–678,
Jun. 2022, doi: 10.21595/jve.2022.22271.

[22] Q. Tong, G. Liang, and J. Bi, “Calibrating the adaptive learning rate to

improve convergence of ADAM,” Neurocomputing, vol. 481, pp. 333–

356, Apr. 2022, doi: 10.1016/j.neucom.2022.01.014.

[23] S. Nagendram et al., “Stochastic gradient descent optimisation for

convolutional neural network for medical image segmentation,” Open
Life Sci., vol. 18, no. 1, pp. 1–15, Aug. 2023, doi: 10.1515/biol-2022-
0665.

[24] Z. Wang, E. Wang, and Y. Zhu, “Image segmentation evaluation: A

survey of methods,” Artif. Intell. Rev., vol. 53, pp. 5637–5674, Dec. 2020,
doi: 10.1007/s10462-020-09830-9.

[25] Y. Said, A.A. Alsheikhy, T. Shawly, and H. Lahza, “Medical images
segmentation for lung cancer diagnosis based on deep learning
architectures,” Diagnostics, vol. 13, no. 3, pp. 1–15, Feb. 2023, doi:

10.3390/diagnostics13030546.

[26] V. Chaudhary, P.K. Buttar, and M.K. Sachan, “Satellite imagery analysis

for road segmentation using U-Net architecture,” J. Supercomput., vol.
78, pp. 12710–12725, Jul. 2022, doi: 10.1007/s11227-022-04379-6.

