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ABSTRACT — Medical image analysis for semantic segmentation using deep learning technology has been extensively 

developed. One of the notable architectures is U-NET, which has demonstrated high accuracy in segmentation tasks. Further 

advancements have led to the development of ELU-NET, which aims to enhance model efficiency. ELU-NET achieves 

relatively good accuracy; however, further comparative analysis of both models is necessary. The comparison between these 

models is based on accuracy, storage usage, and processing time in performing semantic segmentation of pancreatic cancer 

images. The pancreatic cancer images utilized in this study are sourced from the PAIP 2023 Challenge, consisting of 

hematoxylin and eosin (H&E)-stained images. Experiments were conducted by varying the number of filters and model 

depth for both architectures. The evaluation was performed using a dataset of 57 pancreatic cancer images. The experimental 

results indicated that U-NET achieved the highest accuracy at 92.8%, slightly outperforming ELU-NET, which attained 

89.7%. However, ELU-NET is significantly more efficient in terms of storage usage (8.1 MB for ELU-NET compared to 

93.31 MB for U-NET) and processing time (4.0 s for ELU-NET and 5.3 s for U-NET). Although ELU-NET exhibited 

slightly lower accuracy than U-NET, it surpassed U-NET considerably in terms of storage efficiency (by 85.21 MB) and 

processing speed (by 1.3 s). These findings suggest that ELU-NET is not superior to U-NET in accuracy. However, given 

the storage size ratio of 1:11.51 and the processing time ratio of 1:1.325 between ELU-NET and U-NET, the 3.1% accuracy 

difference represents a reasonable trade-off. 
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I. INTRODUCTION 

According to the World Health Organization (WHO), 

cancer remains one of the leading causes of mortality 

worldwide [1]. Various types of cancer pose serious threats to 

global health, necessitating targeted interventions and 

treatment strategies. Among the most lethal types is pancreatic 

cancer, which is associated with a particularly low survival 

rate—approximately 10% [2]. This indicates that only a small 

proportion of patients survive beyond five years after the initial 

diagnosis. One of the primary reasons for this low survival rate 

is the lack of adequate treatment, especially in terms of early 

detection. 

Early detection of pancreatic cancer plays a crucial role in 

improving patient survival rates [3]. Pancreatic cancer often 

remains asymptomatic in its early stages, leading to diagnosis 

only at advanced stages when treatment becomes significantly 

more challenging and less effective. Early detection facilitates 

the identification of cancer at an earlier phase, allowing for 

more timely and effective treatment interventions. Raising 

awareness of early detection and advancing diagnostic 

technologies are essential steps in increasing survival rates 

among pancreatic cancer patients. 

Cancer detection is a pivotal step in the overall cancer 

treatment process. Accurate and timely detection enables 

doctors to establish precise diagnoses, which serve as the 

foundation for effective treatment strategies. One of the most 

critical aspects of cancer detection is early diagnosis, as it 

significantly enhances the probability of successful treatment. 

However, despite its importance, early detection faces 

numerous challenges in practical implementation. A major 

obstacle is the predominance of manual analysis performed by 

pathologists [4], [5]. Manual detection introduces challenges 

related to subjectivity and the inherent limitations of human 

expertise. Subjectivity arises as medical image analysis relies 

heavily on the knowledge and experience of individual 

pathologists. Two pathologists examining the same image may 

arrive at different diagnoses, influenced by their varying levels 

of expertise and interpretation of the image. 

Beyond subjectivity, another significant limitation is the 

physical and mental constraints of pathologists. Like other 

highly precise and concentration-intensive professions, 

pathologists cannot work continuously without experiencing 

fatigue [6]. Long hours spent analyzing complex medical 

images may lead to decreased concentration and accuracy, 

ultimately impacting the quality of diagnostic assessments. 

This fatigue factor becomes even more critical in scenarios 

where pathologists are required to analyze a large volume of 

cases, increasing the risk of diagnostic errors. 

To overcome the challenges of manual cancer detection, 

technological approaches have been explored [7]. The 

advancement of technology has facilitated the development of 

automated early cancer detection systems using deep learning 

[8]. A specific branch of deep learning tailored for image 

analysis is convolutional neural networks (CNNs), which have 

been extensively researched in medical image analysis [9]. 

CNN-based image analysis has demonstrated promising 

accuracy levels. 

CNNs require medical images for analysis, with one of their 

key applications being semantic segmentation. To achieve 

semantic segmentation, CNNs are designed based on specific 

architectures. One of the widely used CNN architectures for 

semantic segmentation is U-NET [10]. U-NET was specifically 

designed for semantic segmentation in medical images and was 

originally developed for segmenting differential interference 
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contrast (DIC)-stained HeLa cell images. U-NET has 

demonstrated superior accuracy in semantic segmentation 

compared to other models within similar research contexts. 

While U-NET achieves high accuracy, it demands 

substantial computational resources [11]. Specifically, U-NET 

comprises approximately 31 million parameters, reflecting its 

complexity and significant computational requirements. This 

large number of parameters enables U-NET to capture intricate 

details in segmentation tasks, which serves as a major 

advantage. However, this also results in higher memory 

consumption and longer execution times, reducing its 

efficiency for real-world applications. 

In pursuit of a more lightweight yet effective model, ELU-

NET was developed. ELU-NET builds upon U-NET while 

reducing the number of parameters significantly without 

compromising segmentation performance [12]. One of the 

innovations introduced in ELU-NET is the incorporation of 

deep skip connections, allowing for more efficient image 

information processing. In a prior study, U-NET was integrated 

with the VGG16 architecture in the encoder section, leading to 

a model with only 600,000 parameters—a drastic reduction 

compared to the 31 million parameters in U-NET. 

VGG16 is a deep learning architecture originally designed 

for image classification tasks and has proven highly effective 

in handling various types of image data [13]. By incorporating 

VGG16 into ELU-NET, the model achieves a balance between 

high accuracy and parameter efficiency, enabling broader 

applicability in resource-constrained environments.  
Despite the reduced number of parameters, ELU-NET does 

not exhibit diminished accuracy compared to U-NET. In 
certain studies, ELU-NET integrated with VGG16 has 
achieved a Dice coefficient accuracy of 0.96, surpassing U-
NET’s accuracy of 0.92. The Dice coefficient is a commonly 
used evaluation metric in image segmentation research, 
alongside the Jaccard index, as it effectively measures the 
alignment between model predictions and ground truth labels 
[14]. 

The impressive performance of ELU-NET was derived 
from a dataset containing brain organ images, enabling the 
model to achieve superior segmentation accuracy over U-NET. 
Nevertheless, to comprehensively validate ELU-NET’s 
advantages, further comparisons using diverse medical image 
datasets are required. This ensures that ELU-NET’s superiority 
in accuracy and efficiency is consistently demonstrated across 
different conditions and data types. Therefore, in this study, 
ELU-NET and U-NET are being compared using pancreatic 
cancer images from the PAIP 2023 Challenge. This challenge 
provides hematoxylin and eosin (H&E)-stained pancreatic 
cancer images, and since U-NET has already been proven 
effective for segmenting H&E images [15], this comparison 
will offer crucial insights into the relative performance of U-
NET and ELU-NET in this specific context. 

In this study, the evaluation of both models is not limited to 
segmentation accuracy but also considers the number of 
parameters, model file size, and inference time. This 
comprehensive evaluation provides deeper insights into the 
strengths and weaknesses of each architecture, as well as their 
potential clinical applications where a balance between 
accuracy and efficiency is required. 

II. METHODOLOGY 

This section discusses aspects related to the research, 

including research data, image processing, model training, and 

model testing  

A. RESEARCH DATA 

This study used data provided by the organizers of the PAIP 

2023 Challenge. To obtain the data, registration is required to 

participate in the challenge and complete a form to access the 

data. The challenge registration is conducted on the website 

https://2023paip.grand-challenge.org/. After registering for the 

challenge, an account must be registered on the page 

http://wisepaip.org/challenge2023 using the same email as on 

the challenge page. The data are then downloaded according to 

the research needs. The PAIP 2023 Challenge is the first 

challenge series from PAIP that uses a dataset consisting of 

images of pancreatic cancer or tumors. 

The data specifications provided by the challenge 

organizers are shown in Table I. There are 53 training data 

samples with labels, consisting of 50 pancreatic and 3 

colorectal images. These 53 data samples have the same 

dimensions, namely 1,024 × 1,024. The images include 

magnifications of 0.250 mpp (micron per pixel) and 0.500 mpp. 

Since the majority of the images are pancreatic images with a 

magnification of 0.250 mpp, this study used pancreatic images 

with a magnification of 0.250 mpp. 

The validation and test data from the PAIP 2023 Challenge 

were not used in this study because these datasets did not 

contain annotation labels required for the model training stage. 

Without labels, the data cannot be effectively used for training 

or validating model performance, as labels are essential for 

measuring the model’s prediction accuracy against the ground 

truth. Therefore, this study only utilized the training data 

provided by the PAIP 2023 Challenge, consisting of pancreatic 

images with a magnification of 0.250 mpp. This training data 

includes labels that enable the model to learn specific patterns 

relevant to pancreatic image segmentation tasks. A complete 

specification of the data used in this study, including the 

number and dimensions of the images, is presented in Table II. 

 An example of an image used in this study is shown in 

Figure 1 and Figure 2. Figure 1 is an H&E-stained image from 

a patient diagnosed with pancreatic cancer. Darker-colored 

spots representing cells can be observed; however, not all dark-

colored cells are cancerous. This can be seen in Figure 2, which 

is the annotation label of Figure 1. The white areas in Figure 2 

represent cancerous cells, while the black areas represent the 

background or non-cancerous cells. 

In accordance with Table II, the training and validation data 

consist of 36 images. The training and validation data were 

randomly shuffled during training to avoid the occurrence of 

overfitting. At the same time, ten images were used for testing. 

Image preprocessing was subsequently carried out on these 46 

images.  

B. IMAGE PREPROCESSING 

In this study, image preprocessing was conducted primarily 

to enhance image quality. This process affects the accuracy of 

the trained model. High-quality images help the model 

recognize important patterns, thereby improving its 

performance in medical image segmentation. One commonly 

used image preprocessing technique is image normalization. 

Normalization can be performed using various methods, one of 

which is histogram equalization [16]. This technique aims to 

enhance image contrast by distributing pixel intensity more 

evenly, making image details more prominent. The histogram 

equalization process in this study was performed using the 

OpenCV library. OpenCV is a commonly used image-

processing library in the field of computer vision. 
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The training data used in this study is relatively small, 

consisting of only 36 images. These images were used for both 

training and validation. The division of images into training and 

validation data was performed randomly, with a training-to-

validation ratio of 80:20. Thus, out of 36 images, 

approximately 29 were used for training, while the remaining 7 

were used for validation. Due to the limited amount of data, 

image augmentation was performed to increase the number of 

available images.  

Image augmentation in this study was performed by 

applying several simple transformations, including vertical 

flipping, horizontal flipping, and a combination of both [17]. 

By applying these transformations, each original image 

generated three new images after augmentation, increasing the 

total number of images from 36 to 144. Each augmented image 

retained the original dimensions of 1,024 × 1,024 pixels. An 

example of an image augmentation result is shown in Figure 3. 

Subsequently, an image with dimensions of 1,024 × 1,024 

was cropped into 16 smaller sections, each with dimensions of 

256 × 256 pixels. These cropped images were then used as 

training or validation data. Before being used for model 

training, the images were shuffled and converted into a NumPy 

array. This conversion ensured that the images were in a format 

compatible with the model. Consequently, the images were 

ready to be used as training data for the U-NET and ELU-NET 

models. 

C. MODEL TRAINING 

In this study, model training included several important 

stages, from model creation using the Keras library to model 

training and saving the trained model. Model preparation 

involved designing various model variations, each tested to 

determine the best configuration. The variations included 

model depth and the number of initial filters in the convolution 

process, ensuring that each model type received the same 

variations.  

Model depth is a crucial attribute because, in the ELU-NET 

study, a depth of 5 was found not to be the optimal depth [12]. 

This prompted further research to confirm whether depth 5 was 

indeed the best or if another depth would be more effective. 

Meanwhile, the number of initial filters was considered an 

additional attribute because another study suggested that U-

NET models with fewer initial filters could achieve higher 

accuracy than those with larger filter sizes [11]. 

In the U-NET architecture, the proposed model depth is 5 

[10], with an initial convolutional filter size of 64. Conversely, 

in the ELU-NET architecture, the model depth is set to 5 with 

an initial filter size of 8 [12]. Based on these studies, to 

determine the best model using data from the PAIP 2023 

Challenge, several model versions with varying depths and 

initial filter numbers were created. A detailed description of the 

tested model versions is presented in Table III.  

In the U-NET architecture, the proposed model depth is 5 

[10], with an initial convolutional filter size of 64. Conversely, 

in the ELU-NET architecture, the model depth is set to 5 with 

an initial filter size of 8 [12]. Based on these studies, to 

determine the best model using data from the PAIP 2023 

Challenge, several model versions with varying depths and 

initial filter numbers were created. A detailed description of the 

tested model versions is presented in Table III.  

The model depth in this study refers to the number of down-

sampling stages in the model’s contractive path. In the U-NET 

architecture, this depth determines the number of convolutional 

layers at each level before up-sampling in the expansive path. 

Examples of different depths in the U-NET architecture are 

shown in Figure 4, with architectures presented in ascending 

depth order (4, 5, and 6). In Figure 4, the value of n represents 

the number of initial filters at each convolutional stage. 

Consequently, the highest number of filters in the deepest 

convolutional layer is 8n for a depth of 4. 

The model training process was conducted using Kaggle 

Notebooks, which provides a T4 graphics processing unit 

(GPU) to accelerate model training. Before training 

commenced, the model needed to be compiled. At this stage, 

several model configurations were incorporated, including the 

addition of the Adam optimizer with a learning rate of 1 × 10-4 

[18], the binary cross-entropy loss function [12], and accuracy 

metrics to evaluate model performance. Once the model was 

TABLE I 

PAIP 2023 DATA SPECIFICATION 

Data 

Classification 

Image Size 

(Pixel) 

Number of 

Pancreatic 

Images 

Number of 

Colon 

Images 

Training 

1,024 × 1,024 

50 3 

Validation 10 - 

Testing  20 20 

Total 80 3 

TABLE II 

RESEARCH DATA SPECIFICATION 

Data 

Classification 

Image Size 

(Pixel) 

Number of Pancreatic 

Images 

Training 

1,024 × 1,024 
36 

Validation 

Testing 10 

Total 46 

 

 

Figure 1. H&E-tinted Image on Pancreas  

 

Figure 2. Label for Figure 1. 
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compiled, the next step was to train the model using the 

predefined configurations. 

During the training phase, several key parameters were 

utilized, including a batch size of 8, 40 epochs, a validation split 

of 0.2, and an early stopping callback. Early stopping was 

implemented to prevent overfitting, meaning that the training 

process would be halted if the validation loss started to increase. 

An increase in validation loss during training indicates that the 

model is beginning to overfit the training data [19].  

The entire model training process was conducted using the 

aforementioned hyperparameters. The primary differences 

among the tested models lay in the number of initial filters and 

the model depth. The variations in initial filter numbers and 

model depths explored in this study are presented in Table III. 

By testing these different combinations, this study aims to 

identify the most optimal model configuration for medical 

image segmentation in the PAIP 2023 Challenge.  

D. MODEL TESTING 

Model testing was conducted after all models were 

developed in accordance with the specifications listed in Table 

III. This testing phase is crucial for evaluating the model’s 

performance in semantic segmentation. Once the model was 

constructed, the next step was to test it using the prepared test 

dataset. The model was utilized to predict input images, and 

these predictions were then compared with the ground truth. 

Ideally, the model should generate predictions that accurately 

correspond to the ground truth. 

The comparison between the predicted results and the 

ground truth was performed using the Jaccard index, a 

commonly used metric for measuring accuracy in semantic 

segmentation [20]. The Jaccard index quantifies the similarity 

between two images, specifically between the regions predicted 

by the model and the actual regions in the ground truth. The 

formula for computing the Jaccard index is presented in (1). 

The Jaccard index ranges from 0 to 1, where a value of 1 

indicates that the model perfectly predicts the ground truth, 

whereas a value of 0 signifies that the model fails to predict the 

ground truth entirely. Technically, the Jaccard index is 

computed by calculating the ratio of the intersection area to the 

union area of the predicted image and the ground truth image. 

 𝐽(𝐴, 𝐵) =
(𝐴∩𝐵)

(𝐴∪𝐵)
=

𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
. (1) 

The accuracy calculation of semantic segmentation using 

the Jaccard index can be performed with the aid of a confusion 

matrix. In the context of semantic segmentation, the model’s 

predicted output is a binary image, where a pixel value of 0 

represents the background, and a pixel value of 1 represents the 

 

Figure 3. Image augmentation with flip. 

 

TABLE III 

MODEL VARIATION OF U-NET AND ELU-NET 

Architecture Type 
Number of 

Filters 
Number of Depths 

U-NET 

32 

4 

5 

6 

64 

4 

5 

6 

128 

4 

5 

6 

ELU-NET 

4 

4 

5 

6 

8 

4 

5 

6 

16 

4 

5 

6 

 

Figure 4. Example of the number of depths of the U-NET architecture. 
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region of interest (ROI). The ground truth image is also a binary 

image, with values of 0 and 1 corresponding to the same 

classifications as the predicted image. Accordingly, the 

comparison between the predicted output and the ground truth 

is conducted by computing the confusion matrix. This matrix 

facilitates the classification of each pixel in the image into four 

categories: true positive (TP), false positive (FP), true negative 

(TN), and false negative (FN). The arrangement of the 

confusion matrix values for semantic segmentation is shown in 

Table IV.  

The testing process was conducted by randomly selecting 

57 images with dimensions of 256 × 256 pixels from the test 

dataset. Each image was then processed by the model to 

generate predictions, which were subsequently compared with 

the ground truth. After predicting all 57 images, the Jaccard 

index was computed for each image, and the mean of these 

values was taken as the final accuracy score of the tested model. 

This average value provides an overall representation of the 

model’s capability in performing segmentation on the test 

dataset. 

Apart from accuracy, several other attributes are assessed 

in model evaluation, including the number of parameters, 

model file size, and execution time required to make 

predictions on 57 images. The number of parameters and file 

size are part of the model properties that provide information 

about its complexity and physical size. Meanwhile, execution 

time measures the model’s efficiency in making predictions, 

which is a crucial factor when deploying the model in real-

world applications. 

Execution time testing was conducted using the central 

processing unit (CPU) provided by Kaggle. The use of the CPU 

during the evaluation phase ensures that the model is not only 

accurate but also efficient in terms of processing time. The 

execution time evaluation mechanism starts from loading the 

pre-trained model to predicting 57 medical images, with time 

measurement beginning at model loading and ending after the 

final image prediction. 

By integrating accuracy assessment, the number of 

parameters, file size, and execution time, a comprehensive 

evaluation of each model’s performance can be obtained. This 

holistic evaluation is then used to determine the optimal model 

for the semantic segmentation of a pancreatic cancer medical 

image. 

Accuracy calculation in this study is limited to the Jaccard 

index. Other accuracy metrics, such as the Dice coefficient, 

were not utilized due to resource constraints in the evaluation 

process.  

III. RESEARCH RESULTS 

The models developed with various configurations, 

including different initial filter numbers and depths, were 

evaluated based on multiple performance metrics. These 

metrics include prediction accuracy, which was compared with 

the ground truth. Besides accuracy measured using the Jaccard 

index, other evaluation metrics include the number of 

parameters used by the model, model size, and execution time 

required to predict 57 images. 

The results presented in Table V indicate that some data 

points are missing due to computational resource limitations. 

These constraints are particularly evident in the U-NET 

architecture with a depth of 6, where no results were obtained 

for all filter variations. Additionally, for U-NET with an initial 

filter count of 128, the model could not be constructed for all 

intended depth levels. In contrast, for the ELU-NET 

architecture, all combinations of filter numbers and depths 

were successfully built and tested, demonstrating that this 

model is more flexible and applicable under limited 

computational resources compared to U-NET. 

Models highlighted in blue represent the models 

recommended by the respective researchers. Based on the 

evaluation, the ELU-NET model outperforms U-NET in terms 

of accuracy, parameter count, execution time, and model size. 

Despite a parameter reduction of up to 97%, an execution time 

of 11.6 s, and a file size of 372.61 MB, ELU-NET maintains 

comparable accuracy to U-NET. 

Overall, the U-NET model achieves higher accuracy than 

ELU-NET. The best-performing U-NET model achieved an 

accuracy of 0.928 (92.8%) with 32 filters and a depth of 5, 

whereas the best ELU-NET model attained an accuracy of 

0.897 (89.7%) with 8 filters and a depth of 5. This accuracy 

difference was achieved by U-NET at the cost of greater 

resource utilization, including a higher parameter count, which 

led to increased execution time and model size. ELU-NET, 

with a 3.1% lower accuracy, reduced the number of parameters 

by 91.6%, resulting in a decreased execution time of 1.3 s and 

a model size of 85.21 MB. While these reductions in 

parameters, execution time, and model size are significant, they 

come with the trade-off of a slight reduction in accuracy. This 

trade-off is reasonable, given that the primary goal of ELU-

NET development was to create a more efficient version of U-

NET. 

Focusing solely on accuracy, the U-NET model 

outperforms ELU-NET. This advantage is reflected in U-

NET’s ability to produce more precise predictions for medical 

image segmentation tasks. However, this accuracy advantage 

comes at a significant computational cost. U-NET requires a 

longer execution time and has a larger model size than ELU-

NET due to its complex architecture, which incorporates a 

greater number of parameters to capture image details more 

comprehensively. 

On the other hand, ELU-NET provides a more efficient 

approach in terms of execution time and model size by 

leveraging an enhanced skip connection mechanism from U-

NET, namely the deep skip connection. Although ELU-NET 

yields slightly lower accuracy than U-NET, the difference is 

not substantial. The accuracy gap between the best models of 

each architecture, as reported in Table V, is approximately 

3.1%. 

To validate these findings, a visual inspection of the model 

predictions was conducted. This qualitative evaluation 

involved comparing the model-generated predictions against 

the ground truth. Although visual inspection is not the primary 

evaluation method, it is essential for ensuring that ELU-NET 

produces results closely aligned with U-NET. 

TABLE IV 

CLASSIFICATION OF CONFUSION MATRIX VALUES IN SEMANTIC 

SEGMENTATION 

 Ground Truth Value 

Positive (1) Negative (0) 

P
re

d
ic

ti
o

n
 

V
a

lu
e 

Positive (1) True Positive 
False 

Positive 

Negative (0) 
False 

Negative 

True 

Negative 
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In Figure 5, the segmentation results generated by ELU-

NET closely resemble the actual ground truth. Similarly, Figure 

6 shows that U-NET’s predictions are also near the ground truth. 

However, there are differences in how the two models handle 

specific regions. For example, ELU-NET performs well in 

certain image areas but misclassifies some small regions as 

cancerous cells. Conversely, U-NET also makes good 

predictions but, in some cases, exhibits over-segmentation by 

predicting areas that should not be classified as cancer cells. 

Based on this qualitative assessment, the differences in 

predictions between the two models are not visually significant. 

Although U-NET achieves higher numerical accuracy, ELU-

TABLE V 

MODEL TESTING RESULT 

Architecture 
Number of 

Filters 

Number of 

Depth 

Number of 

Parameters 

Accuracy 

(Jaccard Index) 

Execution 

Time (s) 

Model Size 

(MB) 

U-NET 

32 

4 1,926,149 0.903 4.3 23.26 

5 7,760,645 0.928 5.3 93.31 

6 - - - - 

64 

4 7,698,437 0.889 12.3 92.53 

5 31,032,837 0.829 15.6 372.61 

6 - - - - 

128 

4 - - - - 

5 - - - - 

6 - - - - 

ELU-NET 

4 

4 52,053 0.867 2.9 0.916 

5 163,109 0.851 3.9 2.25 

6 580,337 0.824 5.2 7.47 

8 

4 205,769 0.854 3.4 2.76 

5 644,697 0.897 4.0 8.1 

6 2,313,537 0.830 6.3 28.26 

16 

4 818,193 0.812 5.2 10.1 

5 2,570,417 0.867 5.5 31.2 

6 9,238,529 0.857 9.1 111.34 

 

Figure 5. Prediction results with ELU-NET. 

 

Figure 6. Prediction results with U-NET. 
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NET still produces reasonably comparable predictions while 

offering computational efficiency, which should not be 

overlooked. 

The differences in test results between the two models are 

primarily attributed to the development of “skip connections”. 

The ELU-NET architecture represents an extension of U-NET 

that specifically focuses on enhancing the “skip connections” 

of the U-NET model. Previous studies, such as U-NET++, also 

explored modifications to U-NET, particularly in terms of skip 

connections. U-NET++ introduced various model 

configurations with different depths, demonstrating that the 

influence of “skip connections” allows shallower models to 

achieve accuracy comparable to deeper models. Previous study 

introduced modifications by adding and removing certain skip 

connections, similar to the approach taken in the U-NET++ 

architecture [12]. 

IV. CONCLUSION 

Both architectures, U-NET and ELU-NET, achieved high 

accuracy in semantic segmentation. The best-performing 

models from each architecture attained accuracy exceeding 

89%. Among the best models from each architecture, U-NET 

demonstrated higher accuracy compared to ELU-NET. 

However, this superior accuracy came at the cost of greater 

resource utilization. In contrast, ELU-NET was able to produce 

a model with lower resource consumption, albeit with slightly 

reduced accuracy compared to U-NET. This accuracy 

difference is considered reasonable, given that the primary goal 

of ELU-NET is to develop a more resource-efficient variant of 

U-NET while maintaining satisfactory accuracy. This is 

evident from the best ELU-NET model, which achieved an 

accuracy of 89.7%. 

The dataset used in this study was relatively small for 

training a deep learning model, necessitating further research, 

particularly in collecting additional research data comprising 

H&E-stained pancreatic cancer images. Additionally, 

alternative data augmentation methods could be explored to 

enhance the dataset. However, from a different perspective, 

limited data availability could serve as an avenue for innovation 

in developing deep learning architectures capable of learning 

effectively from minimal data. 
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