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ABSTRACT — Early screening for coronary heart disease (CHD) remains insufficiently addressed, underscoring the need 

for a more effective screening tool. Previous studies have reported a classification accuracy of only 72.73%, which is 

inadequate. This study aimed to develop and evaluate a machine learning model or diagnose CHD using facial texture 

features and to compare the performance across different facial regions to provide recommendations for improvement. The 

research involved constructing a machine learning model that extracted texture features from six facial regions of interest 

(ROIs) using the gray level co-occurrence matrix (GLCM) and employed an artificial neural network (ANN) algorithm. The 

datasets were full-face images of CHD patients (positive) and healthy people (negative). The face parts identified were the 

right crow’s feet, right canthus, nose bridge, forehead, left canthus, and left crow’s feet. A total of 132 (72 positive and 60 

negative CHD) datasets were divided into 80% (n = 106) training data and 20% (n = 26) testing data. The developed model 

achieved a notable accuracy of 76.9%. The findings revealed that two facial regions—canthus and forehead—demonstrated 

excellent accuracy of 80.97% and 90%, respectively. Meanwhile, the crow’s feet and nose bridge regions showed good 

accuracies at 73.50% and 65%, respectively. Based on the results, this research has proven to be able to become a model for 

early CHD screening with good accuracy and faster execution. 

KEYWORDS — Coronary Heart Disease, Facial Texture Feature, Artificial Neural Network, Region of Interest.

I. INTRODUCTION 

Coronary heart disease (CHD) is a prevalent cardiovascular 
condition and remains one of the leading causes of mortality 
worldwide [1], [2]. Despite its severity, there is a significant 
gap in public awareness and early screening efforts for CHD. 
Many individuals are reluctant to participate in routine health 
check-ups due to a lack of understanding, insufficient 
awareness, and financial barriers. In rural areas, medical 
resources are often scarce, and even in urban centers, there are 
substantial challenges, such as high costs, extended waiting 
times, and other obstacles [3]. As a result, heart disease may 
advance unnoticed until it reaches a critical stage, potentially 
leading to severe complications. Therefore, preventive 
strategies, including early diagnosis, are crucial. 

Existing diagnostic techniques for CHD include coronary 

angiography, electrocardiograms (ECG), blood tests, treadmill 

tests, computed tomography (CT) scans, and magnetic 

resonance imaging (MRI) scans [4]. However, many of these 

methods are costly and less efficient, and some are even 

invasive [5]. These factors make it challenging for many 

individuals to access early cardiac screenings, particularly due 

to economic constraints and the limitations of current 

technology. There is a pressing need for a more efficient and 

cost-effective CHD screening tool to enhance public 

accessibility and awareness of CHD early detection. 

Machine learning program offers a consistent, rapid, and 

accurate method for diagnosing CHD [5]. By harnessing expert 

capabilities, this system aids in assessing CHD risk and 

offering effective follow-up recommendations with high 

precision. This technology, achievable through artificial 

intelligence, ensures efficient and accurate diagnosis. Existing 

artificial intelligence research for the prediction of heart disease 

mostly uses text data in the form of medical records as a 

parameter for determining decisions. The disadvantage of such 

methods is their low efficiency. Using facial images can be one 

solution to this problem [6], [7]. The diagnostic process can be 

significantly expedited by using facial images, making it a 

highly efficient tool for early CHD screening. 

Each individual’s face is a unique bioidentity identifier for 

humans. It gives information about age, gender, race, 

consciousness, mood, and health state [8]. The leading theory 

of this study is the correlation between facial texture and 

disease status, as evidenced in quantitative and qualitative-

based studies [3], [6]–[9]. In the previous study, visualization 

tests have shown that the forehead and nose are more effective 

as the region of interest (ROI) for detecting CHD risk than other 

facial areas [6]. In contrast, the left and right eye regions 

yielded inconsistent results, and the ear was the least effective. 

Several studies have shown a strong association between high 

plasma total or low-density lipoprotein (LDL) cholesterol 

levels and various conditions such as (CHD), insulin resistance, 

diabetes mellitus (DM), hypertension, stroke, dyslipidemia, 

obesity, and hyperuricemia, especially in individuals with 

xanthelasma [10], [11]. LDL functions as the main transporter 

of cholesterol, triglycerides, and other lipids throughout the 

body [12]. Xanthelasma palpebrarum (XP), which is 

characterized by black plaques at the inner corner of the eyelids, 

especially on the upper eyelid, consists of xanthoma cells—

foamy histiocytes with intracellular lipid deposits in the upper 

reticular dermis [10], [12]. Xanthelasma is known as a marker 

of atherosclerosis, a major cause of cardiovascular disease [12]. 

In addition, patients with CHD often exhibit certain facial 

features such as forehead wrinkles, typical balding hair patterns, 

thickening of the upper eyelids, and ear creases [11], [13]. 

Other studies have also identified additional facial indicators in 

CHD patients, including preauricular folds, corneal arches, and 

acrochordons [14]. 
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Several studies, particularly in China, have explored the 

application of facial imaging to identify CHD [6], [7]. The 

related study still used eight parts of the face such as the outer 

corner of the eye (crow’s feet) right and left, the inner corner 

of the eye (canthus) right and left, the nose, forehead, right 

auricle, dan left auricle [6]. The performance of the 

classification model in that study was also classified as less 

high, at around 72.73%. ROIs with bad performance 

contributions, such as auricles, were still used [6]. A recent 

study [4] used six areas of the frontal face to develop several 

classification models using the outer corner of the eye (crow’s 

feet) right and left, the inner corner of the eye (canthus) right 

and left, nose, and forehead without auricle. The best model 

performance was achieved at around 92.8% of the area under 

curve (AUC). Based on these findings, improvement is 

essential to increase the overall performance of the system 

through ROI selection. According to previous relevant research, 

not all parts of the face represent or correlate with 

cardiovascular health conditions, so only a few ROIs 

correlating positively were selected. Selecting the right ROIs 

based on facial skin texture can better discriminate CHD 

patients from healthy individuals [6].  

Based on this background, an analysis of the performance 

of each ROI is required. It is one of the basic theories for 

enhancing the accuracy of this technology, as the inclusion of 

components with low accuracies will deteriorate diagnostic 

accuracies. This research is essential because the selection of 

parts of the area with high accuracy will optimize the accuracy 

of the diagnosis system. The novelty given in this study is a 

modification of the use of ROIs with six locations, which was 

done by eliminating the ear part. That way, besides the main 

goal of improving the performance, this research can augment 

the system’s efficiency. Therefore, the study of facial part 

selection analysis for basic diagnostic purposes is an effort to 

improve the performance and efficiency of CHD diagnostic 

methods by utilizing various facial textures. 

This study sought to create and evaluate a machine learning 

model for diagnosing CHD by utilizing facial images, 

specifically focusing on the texture features of facial skin. 

Additionally, it seeks to compare the performance of different 

facial regions to provide recommendations for enhancing the 

efficiency and effectiveness of CHD diagnosis applications that 

rely on facial images. Through this research, a machine 

learning model can be produced to develop early screening 

technology for CHD that is very efficient in increasing access 

to and awareness about CHD in the community. 

II. RELATED WORKS 

Researchers in China have recently conducted studies on 

disease detection with artificial intelligence technology, 

particularly in CHD diagnosis by facial imagery. CHD 

detection has been developed with a method utilizing eight 

facial features, encompassing the right side and left canthus, 

nose bridge, left and right crow’s feet forehead, and the two 

earlobes [6]. This study used the gray level co-occurrence 

matrix (GLCM) for the features extraction algorithm, then 

classified them into two classes (positive or negative) using a 

decision tree and random forest algorithm. However, this 

method still has not yet achieved a high accuracy, with the 

highest accuracy recorded at approximately 72.73% when 

utilizing the random forest algorithm. Higher accuracy is 

needed to create ready-made medical technology in society. 

Additionally, the fact that some groups of people consider 

earlobes to be private renders them ineffective. 

Another research is about the feasibility of a deep learning 

model to classify CHD using the facial image [7]. This study 

has proven that facial images can help in the prediction of CHD 

using the deep convolutional neural network and Diamond-

Forrester classification algorithm. The ROIs used in this study 

were the cheeks, forehead, nose, around the eyes, mouth, 

earlobes, and chin. The highest performance result of this study 

was around 73% of the AUC for the deep learning method. 

Further studies are needed to improve prediction performance 

so that technology is more useful and applicable in the medical 

world.  

Another study developed machine learning models to 

evaluate the risk of CHD by analyzing facial texture features, 

utilizing the GLCM algorithm [4]. The study focused on 

specific facial ROIs, including the outer eye corners (crow’s 

feet), the inner eye corners (canthus), the nose, and the forehead. 

These features were then classified using support vector 

machine (SVM), decision tree, and artificial neural network 

(ANN) algorithms. Six GLCM features—contrast, 

dissimilarity, homogeneity, energy, correlation, and angular 

second moment (ASM)—were extracted from the ROI images. 

The ANN model outperformed the others, achieving the 

highest performance with an AUC score of 92.8%. Recent 

research indicates that optimizing a CHD prediction model 

based on facial analysis requires further investigation to 

identify the most relevant facial areas with the highest accuracy. 

III. METHODOLOGY 

This research was conducted at Universitas Negeri 

Semarang, Indonesia commencing on June 1, 2021, and 

concluding in June 2022. The datasets were mainly collected 

from Dr. Kariadi Hospital and Diponegoro National Hospital 

in Semarang, Indonesia. In addition, datasets were also taken 

from residents domiciled in Jawa Tengah who matched the 

inclusion requirements. The tools used in this research included 

the ASUS Vivobook personal computer with Core i7 and 12 

GB RAM processor, iPhone 8 Plus smartphone with a 

resolution of 12 MP camera, and Fuji XA3 camera. While the 

software was Anaconda Navigator application version 3, 

Spyder (Python 3.9), Orange Python 3, Microsoft Excel 2016, 

and OpenCV. This research methodology consisted of data 

acquisition, preprocessing, feature extraction, training and 

testing model, and classification analysis. 

A. DATASETS 

The inclusion criteria for positive samples comprised 

Indonesian men and women aged between 20 and 59 years who 

were positively diagnosed with CHD by cardiologists and were 

available to support medical documentation. The facial images 

were taken using devices with a minimum resolution of 13 MP 

for DSLR or 48 MP for smartphone rear cameras, showing full 

face views from the neck upwards (front, right, left, and top). 

The exclusion criteria for positive samples comprised 

individuals with serious facial diseases or conditions that were 

visibly apparent, as well as those with blurry or unclear facial 

images where the facial texture was not discernible. Similarly, 

for negative samples, the inclusion criteria comprised 

Indonesian men and women aged between 20 and 59 years, 

who were negatively diagnosed with CHD by a cardiologist, 

along with the same image resolution and quality requirements. 

Exclusion criteria for negative samples are similar to that for 
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positive samples, disqualifying individuals with visible serious 

facial conditions or unclear facial photos. 

The datasets collected are primary data from researchers in 

the form of full-face images of CHD patients (positive) and 

healthy individuals (negative). The sampling technique used 

was accidental sampling. Images were selected through 

inclusion and exclusion criteria formulated with cardiologists 

so that the data collected were valid. Inclusion criteria are 

criteria by which the subject of the study can be used as a 

research sample because it qualifies as a sample. Meanwhile, 

the exclusion criteria are criteria when the research sample 

cannot be a sample because it does not qualify as a research 

sample.  

ROIs are areas of the image that will be further processed. 

Therefore, this study used ROIm, ROI before preprocessing 

derived from manual cropping, and ROIt, ROI after 

preprocessing derived from segmentation results. Six ROIm 

were taken manually for each respondent. The facial parts 

identified were the outer corner of the left and right eyes 

(crow’s feet), the inner corner of the right and left eyes 

(canthus), nose, and forehead. The ROIs were in a resolution of 

400 × 400 pixels. Figure 1 shows the ROIs used in this research. 

The total datasets used were 132 images of 60 negatives and 72 

positives. The datasets were then divided randomly into 80% 

(n = 106) as training data and the remaining 20% (n = 32) as 

testing data. The characteristics of the datasets used are shown 

in Table I. 

B. PREPROCESSING 

Images that were originally in RGB color were converted 

into grey levels. Starting from the thresholding of each face 

block. Thresholding used the threshold value of T as a 

benchmark to determine whether pixel on the image was 

converted to black or white. The thresholding was done with a 

3 × 3 kernel, as delineated in (1) [15]. 

 𝑇ℎ(𝑥) = {
𝑥       𝑖𝑓 |𝑥| ≥ 𝜆
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (1) 

In addition to skewness and color spacing, grayscale images 

are also segmented by binary threshold [16]. Visual inspection 

of the distribution shows that the threshold for the feature can 

provide a better classification. This research employed hard 

thresholding by selecting coefficients that exceeded a specified 

threshold λ and setting all other coefficients to zero. The next 

operation was the morphological operation of the image 

through a closing process, which was a combination of dilation 

and continued erosion. This process was used to cover or 

remove small holes in the surface. The closing process is useful 

for smoothing the contours and removing small holes so that 

the texture of an object is easier to recognize. The closing 

process is defined in terms of Minkowski addition (⊕) and 

subtraction (⊖) [17]. After the closing operation, black and 

white images were used as segmentation areas for grayscale 

images to obtain ROIs. The distinction between the textures of 

healthy and CFD respondents may be subtle to the unaided eyes; 

however, this classification is more distinguishable through 

quantitative methods. The characteristic focused on and 

obtained in this research was the texture of the skin. The texture 

feature is the regularity of certain patterns from the 

arrangement of pixels on the image. Segmentation of facial 

texture between healthy respondents and respondents with 

CHD is shown in Figure 2. 

 𝐶𝑙𝑜𝑠𝑖𝑛𝑔 (𝐴, 𝜎) = ((𝐴 ⊕ 𝜎) ⊖ 𝜎). (2) 

C. TEXTURE FEATURES EXTRACTION 

Texture extraction was performed using the GLCM 

algorithm, initially introduced by Haralick in 1973 for feature 

extraction from terrain images [18]. GLCM analyses spatial 

patterns within an image by examining the relationship 

between pairs of pixels, considering their grayscale intensity, 

distance, and directions [18]. At angle directions of 0°, 45°, 90°, 

and 135°, the relationship between pixels was examined using 

this approach. Therefore, all features in (3) to (8) were 

calculated in all directions. The distance parameter refers to the 

distance between these pixel pairs in a particular direction. In 

terms of smooth images, a smaller distance results in capturing 

smoother and more local texture patterns, while a larger 

distance captures rougher and more global texture patterns. In 

this research, a 5-pixel distance was used. For 400 × 400-pixel 

images, this distance is considered relatively small but not 

negligible because GLCM will capture local texture patterns 

but spread over a small region. It can provide a sense of texture 

details without reaching a truly global scale. This matrix is 

TABLE I 

CHARACTERISTICS OF DATASETS 

Class Average 

Methods of 

Diagnosis 
Gender 
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%
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CHD 21-62 (42.5) years 83.3 16.67 36.37 18.19 

Healthy 22-36 (30) years 0 100 31.81 13.63 

 

Figure 1. ROIs: (a) right crow’s feet, (b) right canthus, (c) nose bridge, (d) 
forehead, (e) left canthus, (f) left crow’s feet. 

 

Figure 2. Segmentation of facial texture between healthy respondents and 
respondents with CHD. 
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created by counting the number of times a pixel with gray level 

value i appears in a particular spatial relationship with another 

pixel with gray level value j. Each element (i, j) of the matrix 

represents the number of instances of this pixel pair, which 

describes the image’s spatial distribution of gray levels. Figure 

3 is an example of a GLCM matrix for a pair of pixels in angle 

direction of 0° with a distance of 1 pixel [19]. 

A higher contrast value indicates a greater variability in the 

image. Dissimilarity quantifies the distance between pixel pairs 

within a specific image region. Homogeneity, also known as 

inverse different moment (IDM), looks at how uniformly 

distributed the elements are throughout an image area. In the 

GLCM, energy is calculated as the sum of the squared elements 

with values between 0 and 1, where a higher value indicates a 

more uniform texture. With values ranging from 1 to -1, 

correlation evaluates the relationship between a pixel and its 

neighbor throughout the image. Finally, angular second 

moment (ASM) measures the uniformity of the image’s gray 

levels; higher ASM values indicate a greater pixel similarity. 

These features’ mathematical equations are described in (3) to 

(8) [4], [20].   

 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑ |𝑖 − 𝑗|2𝑝(𝑖, 𝑗)𝑗𝑖  (3) 

 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ ∑ 𝑝𝑖,𝑗|𝑖 − 𝑗|𝑗𝑖  (4)               

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑡𝑦 = ∑ ∑
𝑝𝑖,𝑗

1+(𝑖−𝑗)2𝑗𝑖    (5)   

 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑝𝑖,𝑗
2

𝑖,𝑗  (6) 

 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑
(𝑖−𝜇𝑖)(𝑗−𝜇)𝑝(𝑖,𝑗)

𝜎𝑖𝜎𝑗
𝑗𝑖  (7) 

 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 = ∑ ∑ 𝑝𝑖,𝑗
2

𝑗𝑖  (8) 

where P denotes the probability matrix in GLCM, i denotes the 

reference pixel, j denotes the neighborhood pixel, and µi, µj, σi, 

σj denotes the mean and standard deviation of Pi,j. 

D. TRAINING AND TESTING MODEL 

The dataset split test was divided into 80% (n = 106) of the 

dataset for the training set and the rest 20% (n = 26) was used 

for the testing set. The split method was chosen because it has 

a higher level of data testing accuracy during the simulation. 

The dataset comprised six parts obtained from the facial image. 

The training and testing data distribution was done randomly 

and automatically using Orange Python 3 software. The 

training set, also called model development, is a grouping based 

on the unique features obtained from the feature extraction 

process. 

Based on the characteristics of feature values from several 

feature matrices above, the model learned to make 

classification rules. ANN algorithm was used to make 

classification rules when the model was trained. In the testing 

phase, the classification rule becomes the basis for decision-

making for prediction. ANN functions by adjusting the weights 

(w) and biases (b) of the connections to ensure that the outputs 

align with the inputs. The general equations used in this process 

are shown in (9) until (12) [21]. 

𝑦1 = 𝑓1(𝑤1𝑝 + 𝑏1) 
(9) 

𝑦2 = 𝑓2(𝑤2𝑦1 + 𝑏2) 
(10) 

                         :         :  

              𝑂 = 𝑦𝑛 = 𝑓𝑛(𝑤𝑛𝑦𝑛−1 + 𝑏𝑛), 
(11) 

Where 𝑝 = [

𝑝1

:
𝑝𝑟

] , 𝑏1 = [
𝑏1

𝑖

:
𝑏𝑟

𝑖
] , 𝑎𝑛𝑑 𝑤𝑖 =

[
𝑤11

𝑖 ⋯ 𝑤1𝑟
𝑖

⋮ ⋱ ⋮
𝑤𝑠1

𝑖 ⋯ 𝑤𝑠𝑟
𝑖

]. 

(12) 

The evaluation process involves testing the classification 

model on a fresh dataset using the Orange 3 application to 

gauge its effectiveness. For this assessment, 20% of the dataset, 

equivalent to 26 samples, was reserved for testing. During this 

stage, visual tools like the confusion matrix and the receiver 

operating characteristic (ROC) curve were utilized to present 

the outcomes. These visualizations help assess the  accuracy of 

each ROI and guide the selection of the most effective ROIs. 

The classification outcomes were then analyzed, sorted, and 

interpreted to draw meaningful conclusions. The confusion 

matrix records the comparison between predicted and actual 

labels, illustrating the four potential scenarios: a) true positive 

(TP) represents the number of CHD patients predicted correctly 

as CHD sufferers; b) true negative (TN) represents the number 

of healthy patients predicted correctly as healthy patients; c) 

false positive (FP) represents the number of healthy patients 

predicted incorrectly as CHD sufferers; d) false negative (FN) 

represents the number of CHD patients predicted incorrectly as 

healthy patients. These classifications are essential for 

evaluating the accuracy and reliability of the predictive model. 

The model’s performance is typically evaluated using 

several key metrics, including the area under the (AUC) of the 

ROC, classification accuracy (CA), precision, recall, and the 

F1 score. The AUC indicates the model’s effectiveness in 

distinguishing between positive and negative instances. The 

true positive rate (TPR), also known as recall, represents the 

proportion of actual positive cases that the model correctly 

identifies. On the other hand, the false positive rate (FPR) 

quantifies the fraction of negative cases that are mistakenly 

classified as positive. CA measures the percentage of correct 

predictions, both positive and negative, across the entire dataset. 

Precision assesses the accuracy of positive predictions by 

comparing the number of TP to the total positive predictions 

 

Figure 3. GLCM matrix for angle direction of 0° and a distance of 1 pixel. 

. 
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made. The F1 score then synthesizes recall and precision into a 

single metric, offering a balanced overview of the model's 

predictive performance. Accuracy providing an overall view of 

the model’s performance. However, imbalanced datasets can 

appear misleading accuracy, as it may inflate performance if 

one class dominates. Precision, on the other hand, calculates 

the proportion of TP predictions out of all positive predictions 

made since making it useful when minimizing FP is critical. It 

is valuable in applications such as rare disease diagnosis, 

reducing the number of incorrect positive diagnoses is 

important. Recall assesses the model’s ability to identify all 

actual positive cases, which is crucial when minimizing FN is 

important. Recall is commonly prioritized in fields like fraud 

or disease detection, where identifying as many TP cases as 

possible is essential. F1 score is the harmonic mean of precision 

and recall, offering a balanced measure when there is a trade-

off between these two metrics. Detailed formulas for these 

metrics are provided below. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝐹𝑁+𝑇𝑃)
 (13) 

 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

(𝑇𝑁+𝐹𝑃)
 (14) 

 𝐶𝐴  =
(𝑇𝑃 + 𝑇𝑁 )

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
 (15) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑇𝑃 

(𝑇𝑃+𝐹𝑃)
 (16) 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 (𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
.  (17) 

The ROC curve is generated from values obtained through 

calculations involving a confusion matrix, depicting the 

relationship between the FPR and the TPR. This graph is used 

to evaluate the effectiveness of prediction results. In 

classification models, the ROC curve serves as a visualization 

tool that helps assess and select classification performance on 

a binary scale ranging from 0 to 1. A diagonal ROC curve, 

which aligns with the 45° line or baseline, signifies poor model 

performance. Conversely, a curve above the baseline indicates 

a more effective classification model. Thus, a larger AUC 

indicates better performance. An AUC of 0.5 signifies no 

ability to discriminate between classes, while an AUC of 1.0 

denotes perfect classification accuracy. Figure 4 illustrates the 

concept of the AUC [22].  

E. CLASSIFICATION ACCURACY ANALYSIS 

The analysis was carried out through data tabling and 

visualized with a bar chart. Data analysis was done by 

calculating the accuracy of each ROI and categorizing accuracy 

values based on the interval scale that had been designed based 

on [23]. A score ranging from 80% to 100% is classified as very 

good, indicating excellent performance. Scores between 71 and 

80% are categorized as good, reflecting above-average 

performance. A score ranging from 61% to 70% is considered 

fair, suggesting moderate performance. Scores in the range of 

51% to 60% fall into the poor category, indicating below-

average results. Finally, a score ranging from 0% to 50% are 

deemed very poor, signifying inadequate performance. This 

scale helps assess and classify the quality or success of an 

evaluation. The score of the prediction results in relation to the 

total number of predictions that have been made is called 

accuracy. When recommending the ROI for future research, 

categorization is used as a selection process. 

IV. RESULTS AND DISCUSSION 

A. TRAINING AND TESTING MODEL 

The model was built by extracting texture feature scores 

from the training data to create classification guidelines. The 

ANN was trained using these guidelines to predict the 

likelihood CHD. The model divided potential outcomes into 

two risk categories: low risk, which is negative, and high risk, 

which is positive. 

The training process involved labeling the dataset with 

positive and negative indicators of CHD. Following this step, 

the Keras library was imported. Keras was utilized to 

implement the neural network algorithm on top of TensorFlow 

for creating machine learning models. The next step involved 

configuring the hidden layers of the model, specifically by 

adding two hidden layers. Two activation functions were 

assigned: rectified linear unit (ReLu) for the hidden layers and 

sigmoid for the output layer. The fitting function was 

subsequently utilized to compile the ANN model, which was 

trained over 200 epochs; this denotes the number of iterations 

the algorithm executed over the entire training dataset. Finally, 

metrics like CA, AUC, precision, recall, and the F1 score were 

used to evaluate the model’s performance. 

The amount of data in the datasets and the number of epochs 

entered into the program determined the duration of the 

learning process. The more datasets and the number of epochs, 

the longer the learning process will take. The time for model 

execution in this study showed relatively fast results, with 

results of 20.13 s. The learning process displayed loss and 

accuracy values, meaning that higher loss values correspond to 

lower accuracy, and vice versa. After the learning process was 

complete, the program continued directly by testing the model 

with the existing test dataset and then displaying the results for 

each data. 

B. MODEL EVALUATION 

The confusion matrix obtained from the testing process on 

models using the ANN algorithm is described in Figure 5, 

obtained from Orange3 application. The testing results on the 

model with the application of the ANN algorithm, as shown in 

Figure 5, indicated the results from 26 testing data, comprising 

 

Figure 4. Illustration of area under curve (AUC). 

. 
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8 correct predictions for data with negative labels and 12 

correct predictions for data with positive labels. In addition, 1 

wrong prediction for data with positive labels and 5 false 

predictions for data with negative labels were found. In total, 

the model could make 20 correct predictions and 6 wrong 

predictions, with an accuracy percentage of 76.9%. 

Apart from the CA, model evaluation can also be done by 

looking at several other quantities of data testing results, 

namely AUC, precision, recall, and F1 score. A binary value 

was used to measure this amount, with the lowest value being 

0 and the highest score being 1. The complete evaluation’s 

outcomes with the weighted average over classes obtained from 

Orange3 application are depicted in the bar chart in Figure 6. 

C. ROI PERFORMANCE ANALYSIS 

Each testing data used had a label or actual condition from 

the data, which was between positive and negative related to 

CHD conditions. Predictions are values that represent the 

results of the classification task by the model created. 

Predictions are concluded based on the comparison of negative 

and positive values. A higher value between negative and 

positive determines the result of the classification prediction 

tends to have a positive or negative conclusion. 

The model’s ROC curve is depicted in Figure 7. The 

conformity between the data label (actual condition) and the 

model’s prediction is the basis for drawing the prediction 

results’ conclusion. When the labels of the data and the 

predictions match, the predictions are correct. The data of each 

ROI was tested by selecting 26 datasets at random using a split 

method with six ROIs to eliminate the possibility of the 

application system taking an unbalanced number of ROIs. This 

study chose to go into detail on 6 left crow’s feet, 7 left canthus, 

2 right canthus, 4 forehead, 4 right crow’s feet, and 3 nose 

bridge data. 

The result of data testing was subsequently calculated as the 

average or the mean for each ROI to determine the prediction 

performance on each part of the face image used. The average 

accuracy of each ROI showed that from the six parts analyzed 

through computational experiments, three ROIs had prediction 

accuracy with excellent categories: the left crow’s feet, right 

canthus, and forehead. At the same time, the other three ROIs, 

including the left canthus, right crow’s feet, and nose bridge 

were categorized as having good prediction accuracy. Right 

canthus was the ROI with the highest prediction accuracy at 

95.50%, while right crow’s feet and nose bridge were the ROIs 

with the lowest prediction accuracy at 65%. Although the three 

ROIs were classified into the category of good accuracy, the 

accuracy score obtained was still not high enough, around 

65%–66.43%. At the same time, the other three ROIs with 

excellent accuracy were the left crow’s feet, right canthus, and 

forehead, which had prediction accuracy of 82%, 95.50%, and 

90%, respectively. The accuracy of each ROI of these values is 

shown in Figure 8. 

The names of the facial regions were used to group the 

results of each ROI based on the findings of the earlier research. 

Since ROIs on crow’s feet and canthus have two sides—right 

and left—the average accuracy is shown for ROI performance 

analysis. Table II presents the outcomes. 

The results of the research showed that there were two 

facial regions with very high accuracy, namely the canthus and 

forehead, achieving accuracies of 80.97% and 90%, 

respectively. Meanwhile, two other facial regions were 

categorized as having high accuracy, namely the crow’s feet 

and nose bridge, with accuracies of 73.50% and 65%, 

respectively. Compared to previous research, there are 

modifications or differences in the system developed in this 

study. The differences lie in the dataset, classification 

algorithm, and the selection of ROIs used. The previous study 

used a total of 1,528 ROI datasets from the Chinese ethnicity, 

whereas this study used 132 ROI datasets from the full 

Indonesian ethnicity. In terms of the classification algorithm, 

this study employed ANN, while the previous research used 

random forest and decision tree algorithms. Regarding the 

selection of ROIs, the previous study used 8 ROIs, whereas this 

study used 6 ROIs. The results of the average percentage of 

accuracy for each ROI are visualized in Figure 9. 

 

Figure 5. Output in the confusion matrix. 

 

 

Figure 6. Performance output of the confusion matrix. 

 

Figure 7. ROC curve of this model. 
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 The results also show differences in relation to the 

proposed method modification. This study had a slightly higher 

average ROI. Additionally, each ROI used in this research 

produced accuracy with a significant difference. This aspect 

needs to be examined through further research by increasing 

the quantity and diversity of the dataset to see if there are any 

differences or influences related to the amount of the dataset on 

accuracy. Along with the development of the algorithm, it is 

essential to conduct testing that incorporates modified deep-

learning algorithms to observe the differences.  

V. CONCLUSION 

The research findings indicate that the machine learning 

model designed for diagnosing CHD, using texture features 

from six facial regions and employing the ANN algorithm, 

demonstrates strong performance, attaining an accuracy rate of 

76.9%. The research results indicated that two parts of the face 

had excellent accuracy, namely the canthus and forehead, with 

80.97% and 90% accuracy, respectively. The other two parts of 

the face were categorized into good accuracy, namely crow’s 

feet and nose bridge, with an accuracy of 73.50% and 65%, 

respectively. Based on the research results, the developed 

machine learning model is capable of diagnosing CHD only 

through a facial photo uploaded and processed in a short time 

of about 20.13 s. Therefore, the target of designing a model that 

is easy to use and fast in execution compared to clinical 

methods has been realized. Although it is easier and faster, the 

current CHD diagnosis model cannot replace the existing 

clinical method, as it still needs further development before it 

can be deemed suitable for implementation. The benefit of this 

research is to create a better path of discovery in future research. 

In addition, this program has proven to be able to become a 

model for early screening of CHD with good accuracy. It is 

recommended that further research increases the number of 

datasets and conduct trials of implementing deep-learning 

algorithms that have the potential to get better model accuracy. 
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