
 JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

p-ISSN 2301–4156 | e-ISSN 2460–5719 Haposan Yoga Pradika Napitupulu: Fog Computing-Based System for …

© Jurnal Nasional Teknik Elektro dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

DOI: 10.22146/jnteti.V13i1.10095

Fog Computing-Based System for Decentralized Smart
Parking System by Using Firebase
Haposan Yoga Pradika Napitupulu1, I Gde Dharma Nugraha1

1 Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia

[Received: 5 October 2023, Revised: 29 November 2023, Accepted: 8 December 2023]

Corresponding Author: Haposan Yoga Pradika Napitupulu (email: haposan.yoga@ui.ac.id)

ABSTRACT — The growth of vehicle number is unavoidable whilst the availability of parking is not directly proportional

with this condition. Nowadays, many shopping centers do not have sufficient parking spot, causing customers to have

difficulty in finding available parking spots. Research has been conducted to tackle the issue of finding available parking

spots. Much of this research proposed the narrowband-Internet of things (NB-IoT) as a fog node. For communication

purposes, this NB-IoT-based fog node has some shortcomings, such as security and privacy, lower data rate, higher cost in

development, dependency with wireless system, and only covers one area. In this research, the fog computing was proposed

to decentralize smart parking system by using Firebase to cover several areas or malls in one system and interface. Instead

of using NB-IoT, this research employed decentralized local server as a fog node to deliver a fast data exchange. Firestore

database (Firebase) was also used to secure, manage, and analyze the data in the cloud. Conjunctively, the Android

application was created as a user interface to book and find the availability of parking spots. The Android application was

built using Android Studio and implemented authentication to keep the data access secure and private. The testing scenario

was done following the design unified modeling language (UML). The research results confirmed that the fog computing

system successfully supported the decentralized smart parking system and was able to be implemented for covering several

areas or malls in one system.

KEYWORDS — Smart Parking, Fog Node, Firebase, MySQL.

I. INTRODUCTION

The growth of vehicle number today is inevitable.

Unfortunately, the increasing number of vehicles does not align

with the availability of parking spots. Every day, vehicles are

being manufactured and produced to meet the demand. On the

other hand, the land for parking spots is limited and not able to

be produced. For instance, there are many shopping complexes

and malls in many big cities which do not have enough parking

spots. This condition can cause a significant inconvenience for

customers, particularly those who visit these malls for the first

time. It can be frustrating since they must spend a considerable

amount of time and navigate a wide area to find available

parking spots. This condition benefits none of the customers as

they must sacrifice their time to do unintended work and is

detrimental to the malls since they can get bad ratings from

customers. In addition to customers, the parking spot problem

will also affect parking staff working at that mall.

Today, by utilizing technology, people can easily navigate

through a mall and find the right parking spot. It will allow

them to make decisions by leveraging information and save

their priceless time. One of the most common types of

information technology used today is cloud computing. It

allows people process and store data in one place in the cloud.

It eliminates the requirement of separate servers and enables

them to work seamlessly. The goal is to ease people in finding

available parking spots. It will reduce congestion and improve

the customer experience. This technology not only displays the

availability of parking spots, but also provides customers with

information regarding the rates of the facility. This information

will be displayed on the building’s website and in the mobile

applications.

 Aside from cloud computing, there is a great combination

and arrangement to address the request of huge amount of

connection and low latency, namely fog computing nodes. The

Internet of vehicle (IoV) has emerged as a new resource

management system that can improve utilization of system

resources and vehicle service quality [1], [2]. Another study has

shown a promising function of smart parking [3]. The result

showed that vehicular fog computing was able to deliver ultra-

low latency packages to the clients and vehicles [3].

There are potential applications for fog computing node

such as smart home surveillance which existing system used

home gateway for smart parking application, delivery service,

and smart retail, it is able to be replaced by using fog node and

narrowband-Internet of things (NB-IoT) system [4]. The

system proposed in [4] used NB-IoT system in which each

sensor of NB-IoT had a unique ID for each parking spot. Each

car must be installed with the NB-IoT tracking sensors. The

NB-IoT at the parking spot would be in sleep mode unless a car

with NB-IoT came to the parking spot. A study has

demonstrated that the use of a centralized management in the

infrastructure of vehicle-based fog computing enables a quick

decision-making process [5]. It can be inferred from prior

studies that fog computing is essential and has big potential to

support decentralized smart parking systems to cover several

malls or areas.

Previous studies have used NB-IoT for intelligent parking

systems [6]–[10]. These result studies have shown that using

NB-IoT for fog computing is a promising way to solve parking

problems since NB-IoT is similar to fog computing in a way it

reduces communication delay. Additionally, NB-IoT has a

wide range of coverage and can cover vertically, allowing it to

cover every corner of the parking lot. It also has a low power

consumption, high efficiency, and is easy to operate. An

intelligent parking system enhances people’s convenience as it

can resolve the problem of locating available parking spots.

EN-44

JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

Haposan Yoga Pradika Napitupulu: Fog Computing-Based System for … p-ISSN 2301–4156 | e-ISSN 2460–5719

Other studies have built a decentralized smart parking with

fog computing [11], [12]. The proposed idea is similar to other

research findings which used IoT by placing the sensor in a

parking lot and installing the sensor in the car. Building a

gateway as a decentralized system for communication of each

sensor in the parking area is intended for exchanging data and

collecting the sensor’s data that are physically collected in the

parking area. Then, the data are stored in the cloud. However,

the use of NB-IoT has disadvantages regarding security and

privacy and lower data rate. Whereas a study has emphasized

that the confidentiality of vital data must be protected [13].

Developing smart parking are also costly due to the

requirement of equipping each parking lot in every mall with

NB-IoT modules. Despite its high cost, NB-IoT still relies on

connectivity, hence, the operation will likewise go down when

the wireless connectivity is down. Looking at previous research,

most of them still focused, most of them focused solely on the

development of smart parking for one coverage area only.

This research proposes a system based on fog computing

for decentralized smart parking systems by using Firestore

(Firebase) data system to cover several areas or malls in one

system and interface. This system is designed to be used in

parking lots located at malls. Currently, malls are equipped

with sensors which can identify the availability of parking spots.

The sensors collect the data of available parking spots, which

are subsequently delivered to the local server as a fog node for

faster update. Therefore, each mall will send the data of the

parking lot to its local server as a decentralized system which

keeps the data secure since it is stored into MySQL at the local

server. The proposed system serves not only one mall, but

several malls which are listed into application. Then, the fog

node will be linked into the cloud. In this research, Firebase

was used to collect all the data and to do cloud computing. This

cloud is also used to manage data. Firebase offers

authentication in reading and writing data which can secure the

data. The reservation used an Android application as a user

interface, and it was connected into Firebase. This method can

secure the data since there are two layers of authentication to

access the data. The first authentication is in the fog node, while

the second is in the cloud. In addition, the update will be faster

since the fog node is in one network along with the sensor. The

structure of the paper is as follows: Section 2 discusses fog

computing and smart parking, Section 3 provides design and

implementation, Section 4 provides the result and analysis, and

Section 5 provides conclusion.

II. FOG COMPUTING AND SMART PARKING

A. SMART PARKING

Smart parking is a type of parking system that uses various

technologies to manage the garage efficiently. A lot of research

has been done and many cities are starting and developing

smart parking projects. This concept aims to help drivers utilize

information and communication technology to efficiently find

a satisfactory parking spot.

This system is also described as a smart system that aids

drivers to know the presence or absence of a vehicle in a

parking spot. This system will find an available parking spot by

using sensors and it will lead the drivers to that available spot.

In addition, smart parking involves the utilization of a system

to locate available parking spots remotely. The IoT and fog

computing aim to reduce the time required to find the vacant

parking spot by enabling a platform. In addition to time

reduction, the implementation of this system will also result in

a reduction in fuel consumption and carbon dioxide (CO2)

emissions, which are adverse effects of vehicles in urban areas

and unmanaged parking lots [14].

The present development of smart parking primarily relies

on fog computing. It can also be referred to as vehicular fog

computing (VFC). This finding is emerging and promising. The

use of fog computing for transportation can provide lightweight

and ubiquitous computing at the vehicle network edge [15].

B. FOG COMPUTING

Nowadays, the trend of the revolution of information is

currently surging. Technologies such as artificial intelligence

(AI), IoT, cloud computing, and big data are permeating all

areas of the social economy and significantly impacting human

lives. With the technology of cloud computing, large amounts

of data are kept, analyzed, and managed in the cloud. The

pressure on cloud data centers is also increasing due to the

surge of data applications. Therefore, the search for new

models of computing became an important research topic.

There is a layer between cloud layer and the end device

namely “fog layer” which has been introduced by fog

computing. The distributed computing model is used by fog

computing. Fog nodes are distributed to the edge of end devices

to perform data processing, computation, and communication,

thereby effectively relieving the computing pressure of cloud

data centers. Fog computing is a cloud computing advanced

service to address and solve problems such as lack of mobility

and latency [14], [16]. There are three layers which are mainly

used in fog computing: cloud layer, fog layer, and user layer.

Fog servers are part of fog layer placed around a physical

building.

The framework of fog computing enables end-to-end

storage of critical data and computing services on cloud servers

by creating a fog layer with precise storage and capabilities of

computing between cloud servers and adding them to

application terminals. The fog layer is then moved to a fog

server near the device. To filter and process the data uploaded

by the user layer, fog computing is fortified with many

communication devices, data storage and computing. Thus, it

is effectively reducing the computing load and storage pressure

of cloud servers.

C. FIRESTORE DATABASE

Firebase is a development platform for web and mobile

applications. It offers a variety of services: data management,

data analysis, authenticating process, web hosting, storage

system, and database called Firestore database. Firestore

database allows users to save and sync between applications in

real-time because this database system is based on cloud-hosted

NoSQL. It provides detailed documentation and cross platform

software development kits (SDKs) to help build and ships apps

on Android. Firebase can synchronize with a local server

and utilizes JSON data for real-time synchronization.

The Firestore database is more flexible since the data are

saved in the form of a document with an arrangement inside

collection and subcollection. It is quite different compared to

MySQL. In MySQL, the column or table’s structure must be

described. In the Firestore database, every document inside this

cloud can have its own structure. Thus, it offers greater

flexibility. However, it is suggested that the structure of the

data in each document should be defined as the same as others

so that it can make querying easier [17].

EN-45

 JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

p-ISSN 2301–4156 | e-ISSN 2460–5719 Haposan Yoga Pradika Napitupulu: Fog Computing-Based System for …

Not only is flexible, but the Firestore database is also

expressive querying, allowing the data to be filtered and sorted

in a group using an expressive and simple query interface. The

user can easily update the data in real-time due to the Firestore

database’s capability to do this by using the powerful SDKs. In

a contradictory way, the Firestore database is also able to

offline support. The query data that are actively used will be

cached in the device and they will be able to be written, read,

and detected. Upon reconnecting the device to the internet, the

data will be synchronized directly [17]. In addition, the

Firestore database provides robust security and privacy as it is

able to implement authentication and authorization access rules

easily by integrating identity and access management (IAM),

Web Client SDKs, and Firebase Authentication into the cloud

[17].

The authentication system in the Firebase is easy to use and

only needs minimal modification to it. Firebase Authentication

integrates directly into Firebase Database. Furthermore, cloud

computing enables the management and processing of data

over long periods of time, as well as the capability to undertake

comprehensive data analysis [18], [19]. Thus, Firebase

Database facilitates control access to the data. Firebase also has

built-in security at the data node level.

D. MySQL

MySQL is an open-source relational database management

system (RDBMS) which is the most widely used [20]. It is used

as software as a service (SaaS) over the cloud and described as

a RDBMS. This database management system was released in

1995 and is currently supported by Oracle Corporation. As the

most well-known database management system, it can support

hosting service providers for instance WebHost Manager

(WHM), Bluehost, GoDaddy, and Rackspot.

In addition, some renowned social media platforms are

utilizing MySQL, such as YouTube and Facebook. Similarly,

Amazon uses databases in MySQL in the cloud through hosting

to provide service to its customers. Aside from having

advantages, it also has limitations in terms of reliability,

security, usability, and performance.

Some private organizations have database management

systems for special purposes, despite there being many kinds of

RDBMS which support the cloud in the market. However,

research market study shows that MySQL is the most popular

RDBMS in the cloud, with over 10 million installations.

MySQL also utilizes unencrypted connections between

client and server by default [21]. This feature is essential for

the safe and secure management of parking. It uses client name

or IP address, username, and password. In the updated MySQL

version 5.0 and higher even have the ability to check the

complex string which is used as a password. However, MySQL

has a vulnerability in regards to the security, including

operation mode, padding way, and key derivation which is part

of inner encryption principles [22]. MySQL has also been

implemented in an integrated control system because MySQL

is a useful database management system that will make

documentation and reporting easier [23].

Therefore, not only did it implement MySQL, but this

research also implemented the Firestore database to provide

more layers of security. In addition, the real-time

synchronization of MySQL to Firebase was connected using

JsonNode, with the purposes of securing and protecting the data.

The security of MySQL and Firestore database at the cloud

layer can manage the parking database safer and more securely

compared with other methods that only use NB-IoT.

III. DESIGN AND IMPLEMENTATION

A. ARCHITECTURE

The built architecture system in this research is shown in

Figure 1. The system was built based on decentralized fog

computing, consisting of an existing parking system which in

this research was assumed already exist. The data were stored

into each local server with MySQL for each mall, meaning that

every mall had a local server as a storage system based on

MySQL. In this research, local servers were currently built in

local computers with several databases as a representation of

local servers at several malls. The fog node can reduce the

latency of parking lot availability that will be updated in the

cloud. Each local server was connected into the cloud by using

Firebase Database. In the cloud layer of Firestore database, all

the data were secured using authentication to prevent

unauthorized access. All the data also can be managed and

analyzed in the cloud layer, so it will make it easy to get data

insight for future purposes.

The connection from the local server into Firestore database

was implemented using Node.js. The built Android application,

namely smart parking application, was then connected into the

cloud as the user interface that allowed users to interact with

the system and to obtain some information such as availability

of parking spot, selection of mall, selection of parking lot, and

reservations for desired parking spots. Then, the connection

from the built smart parking application to the cloud layer of

Firestore database was secured by implementing the

authentication for the rule of reading and writing. In addition to

authentication for reading and writing, authentication was

implemented for user registration and login attempts.

B. SYSTEM DESIGN

The system design was built and separated into three

different universal multi language (UML). It consists of

flowchart of user, pseudocode of system, and class diagram, as

shown in Figure 2, Figure 3, and Figure 4, respectively.

Figure 1. Architecture of fog computing for the built smart parking.

EN-46

JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

Haposan Yoga Pradika Napitupulu: Fog Computing-Based System for … p-ISSN 2301–4156 | e-ISSN 2460–5719

Figure 2 shows a flowchart diagram at the user side. In the

first stage, the user opened the smart parking application that

had also been made in this research using Android Studio. After

opening the smart parking application, a new page appeared, it

showed the user login interface. At this stage, the user must

input the registered name along with the password. If the user

had not had a username yet, the user must be registered first,

and they would be brought to the new page of registration

interface. After completing the registration in registration

interface, the smart parking app would bring the user into login

interface again and it would allow the user to input and use the

registered username and password. After successfully logging

in, a new page would show a list of several malls. Here, the user

must select a mall that they would visit. After selecting the mall,

the smart parking application would provide a list of parking

spots in the chosen mall along with the availability of those

parking spots. The user could continue by choosing a parking

spot or just looking at it. After selecting a parking spot and user

would like to book an available parking spot, the smart parking

application would lead the user into the payment page. Here,

there were several payment methods which the user could use.

After the user made the payment, a new page would show

“payment successful” notification which notified the user that

the booking of chosen parking spot had been already paid.

Figure 3 shows an activity diagram of the process in this

smart parking system. The required data were assumed to

already exist on the local server where the data came from an

installed parking sensor on site. The data coming from the

parking sensors were received and stored into MySQL on the

local server. Furthermore, the data from the local server were

processed to the cloud layer which was the Firestore database.

Subsequently, the data were sent to the user smart parking

application. If there were any data changes which could come

from someone making a reservation and payment, the data were

reverted to the cloud in order to update the availability of

parking spot which had already been booked by the user. Then

the cloud would send the instruction to the individual local

server and notify administrators.

Figure 4 shows the relationship of the activity among the

things, which is also called as a class diagram. Customers, as

the user of the smart parking application, had a relationship

with the mall. The consumers had the option to select a specific

mall to view the availability of parking spots, and the mall

offered the corresponding parking lot data. Customers also had

relationship with Event Booking. This Event Booking would

have a connection with required items, which the required item

for this activity was the availability of parking spots that came

from the individual local server from each mall to be executed

during the booking and payment process.

C. GRAPHICAL USER INTERFACE (GUI)

This research also developed and built an Android

application namely smart parking application. This application

is a part of this research and has a function for interacting

Figure 2. Flowchart of universal multi language (UML) system user.

Figure 3. Flowchart of universal multi language (UML) system user.

EN-47

 JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

p-ISSN 2301–4156 | e-ISSN 2460–5719 Haposan Yoga Pradika Napitupulu: Fog Computing-Based System for …

between user and the system. The graphical user interface (GUI)

in this research was built by using Android Studio, so the smart

parking application could run on smart phone with Android

operating system.

Figure 5(a) shows the registration page of the smart parking

application. The user which has not registered, must register

from this page. In this page, the user must input some required

data such as email, password, user full name, license plate,

vehicle type, and password confirmation. Password

confirmation is done by retyping the password. It is essential in

case the user unconsciously mistyped their password.

Figure 5(b) shows the list of the mall. In this page, the smart

parking application showed every mall along with the amount

of available parking spots. It is intended to allow users to know

the availability of parking spots in each mall, so they can decide

their destination and put the availability of parking spots as a

part of their consideration. Here, the user can choose the

preferred mall and press the “Select” button for further

processing. The further processing is to select the parking spot.

Aside from two presented GUI in Figure 5, there are several

GUI pages for supporting this smart parking system which was

already built in this Android smart parking application using

Android Studio.

1) HOMEPAGE DISPLAY OF THE APPLICATION

The homepage display includes columns for the username,

password, login button, and registration button. This page is

designed for the purpose of logging in. Once the user has an

account, they can directly input the username and password

then click the “Login” button. Although the user does not

currently have an account, they can click on the register button,

which will redirect them to the new registration page.

2) LIST MALL PAGE

The page consists of malls that have been registered into the

smart parking system. Hence, this page shows several malls

along with the number of available parking spot at each listed

mall.

3) CHOOSE THE PARKING LOT PAGE

In this page, the user can choose an available parking spot.

Each parking spot is provided with information regarding the

type of vehicles that can be parked there, since several malls

have parking spots specifically designed for sedans, due to the

lower ceilings. Therefore, choosing a preferred parking spot,

the users must see the information of that parking spot.

4) BOOKING CONFIRMATION PAGE

In this page, the smart parking application shows the

payment process, so the user can decide which payment method

they want to use. In this page, there is a “Confirm” button and

a “Cancel” button. The “Confirm” button functions to confirm

the order, while the “Cancel” button functions to cancel the

order and leads the user to the previous page of parking spot

selection.

5) SUCCESSFUL PAGE

This page shows if the booking is successful. After

successfully booking, the application sends feedback of

updated data into the Firestore database cloud. The MySQL

local server is updated subsequently.

D. RELATIONAL DATABASE MANAGEMENT SYSTEM
(RDBMS)

RDBMS is based on the relational model, which is why it

is called relational database management system. The most

commonly used database is this system. It comprises numerous

tables. Every table in RDBMS must implement a primary key.

Data can be accessed easily in RDBMS since it consists of a

collection of an organized set of tables. Everything in RDBMS

is saved in the form of relations.

RDBMS was implemented for MySQL and stored into each

local server of each mall for the availability of parking spot data.

On the other hand, the user data, and its history of parking, were

stored into a different database which was at the provider of the

smart parking application. Tables were used by RDBMS to

store data. A table is a collection of connected data elements

that uses rows and columns to hold information. Each table

represents a real-world entity, such as a person, location, or

event, about which data are gathered. The logical perspective

of the database is the orderly collection of data into a relational

table.

Figure 4. Universal multi language (UML) system class diagram.

.

 (a) (b)

Figure 5. Graphical user interface (GUI) of the smart parking system, (a)
registration page, (b) list of malls page.

EN-48

JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

Haposan Yoga Pradika Napitupulu: Fog Computing-Based System for … p-ISSN 2301–4156 | e-ISSN 2460–5719

Figure 6 shows the RDBMS of this smart parking research

project. This RDBMS shows the relationship between

databases. One of the main concerns addressed in this research

is the development of a smart parking system that can be

implemented in many coverage areas. This smart parking

system is designed to be connected to various local servers in

different malls. This study utilized a total of six databases.

1) USER DATABASE (DB1 CREATE USERNAME)

This database contained users’ data which was saved during

registration. It consisted of username, password, email, license

plate, and vehicle type. This database was stored into the

Firestore database.

2) MALL DATABASE (DB2 LIST MALL)

This database contained registered malls along with the

number of their available parking spots. Mall database was also

stored into the Firestore database. The number of available

parking spots was updated from MySQL local server from the

mall.

3) PARKING DATABASE OF MALL A (DB3 MALL A)

This database contained the list of identity of parking spots

along with their availability and remarks at mall A. The

remarks indicated whether the parking spots were suitable for

parking all types of vehicles or specific types of vehicles. This

database was stored on the mall local server. Then, it was

passed through the Firestore database.

4) PARKING DATABASE OF MALL B (DB4 MALL B)

This database contained the list of identity of parking spots

along with their availability and remarks at mall B. The remarks

indicated whether the parking spots were suitable for parking

all types of vehicles or specific types of vehicles. This database

was stored on the mall local server. Then, it was passed through

the Firestore database.

5) PARKING DATABASE OF MALL C (DB5 MALL C)

This database contained the list of identity of parking spots

along with their availability and remarks at mall C. The remarks

indicated whether the parking spots were suitable for parking

all types of vehicles or specific types of vehicles. This database

was stored on the mall local server. Then, it was passed through

the Firestore database.

6) DATABASE OF PARKING HISTORY (DB1 PARKING
HISTORY)

This database contained the history of parking of the user.

It consisted of the username, the history of the mall, the history

of the parking spot, the time of entry, the time of exit, cost spent,

vehicle type, and the license plate. This history parking was

used for business analytics purposes. This database was stored

in the Firestore database since the Firestore database has an

analytics function which can support this purpose.

E. IMPLEMENTING AUTHENTICATION IN FIREBASE

One of the issues addressed in this research is security and

privacy concern. This fog computing-based decentralized

smart parking system utilizing Firestore database (Firebase)

implemented an authentication system based on a blocking

function that allowed and blocked users when registered into

the application. It also allowed and blocked users when signed

into the application. Below is the code of this authentication.

const functions = require('firebase-

functions');

exports.beforeCreate =

functions.auth.user().beforeCreate((user,

context) => {

});

exports.beforeSignIn =

functions.auth.user().beforeSignIn((user,

context) => {

});

In addition to implementing authentication for registration

and login, this research also incorporated the utilization of IP

address tracking to monitor any suspicious activity within the

smart parking system. This approach monitors the users’ IP

address during the login process and compares it with the IP

address of subsequent requests. The code is implemented as

shown below.

exports.beforeSignIn =

functions.auth.user().beforeSignIn((user,

context) => {

 return {

 sessionClaims: {

 signInIpAddress: context.ipAddress,

 },

 };

});

In the condition if the requestor attempted to access

resources which authentication required with Firebase

Authentication, the smart parking system compared the

requestor IP address with the IP used to try to login. Below is

the code of this method.

app.post('/getRestrictedData', (req, res) =>

{

 // Obtain the past ID token.

 const idToken = req.body.idToken;

 // ID token verification, if revoked then

check and its payload will be decoded.

 admin.auth().verifyIdToken(idToken,

true).then((claims) => {

 // IP address during requesting

 const requestIpAddress =

req.connection.remoteAddress;

Figure 6. RDBMS of this research.

r

EN-49

 JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

p-ISSN 2301–4156 | e-ISSN 2460–5719 Haposan Yoga Pradika Napitupulu: Fog Computing-Based System for …

 // IP address when signing-in

 const signInIpAddress =

claims.signInIpAddress;

 // Determine whether the request IP

address origin is suspicious in comparison to

the session IP addresses. The current request

timestamp and the auth_time of the ID token

can provide additional indications of abuse,

particularly if the IP address changes

abruptly. If there is a sudden geographical

shift in a short period of time, it will give

stronger indications of suspected abuse.

 if

(!isSuspiciousIpAddressChange(signInIpAddress,

requestIpAddress)) {

 // Unusual IP address change. Re-

authentication is required. You can also call

admin.auth(.revokeRefreshTokens(claims.sub) to

revoke all user sessions.

 res.status(401).send({error:

'Unauthorized access. Please login again!'});

 } else {

 // Invalid Access. Attempt to return

data.

 getData(claims).then(data => {

 res.end(JSON.stringify(data);

 }, error => {

 res.status(500).send({ error: 'Server

error!' })

 });

 }

 });

});

IV. RESULTS AND DISCUSSION

A. DATABASE IN MySQL

This research used MySQL as the platform to create a

database. The database was divided into three databases:

parking_mall_a, parking_mall_b, and parking_mall_c. In the

parking_mall_a, parking_mall_b, and parking_mall_c

databases, there is only one table containing parking_spot,

availability, and remarks as shown in Table I. In the

parking_spot column, there was an identification for every

parking spot in the mall. Meanwhile, the availability column

indicated the availability of parking spots, whether they are

available.

Last, column remarks showed the information of parking

spots, whether they could be used for certain vehicles or all

types of vehicles. Remark “none” means that parking spots can

be used for all types of vehicles. In this research, it was

assumed that the data had been inputted into the server.

B. FIREBASE

Firebase is a backend as a service (BaaS) offered by Google

to make it easier for application developers to develop an

application (web and mobile). In this smart parking research

project, Firebase was used as a cloud. The necessary data from

fog nodes were stored into the cloud and the cloud also had

capability to authenticate the activity. In this Firestore database,

data can be managed, secured, and analyzed.

Figure 7 presents all databases in Firebase such as

db_customer, db_customer containing username, password,

and other things that were previously registered into the

application. The detailed contents of db_customer consist of

name, license_plat, password, username, and vehicle_type.

Figure 7 also depicts a database of parking spots in mall A.

It was assumed that parking spots were already present on the

server. There were five parking spots in mall A. Each parking

spot contained information on its availability, name, and

information on whether it could b e used for all types of

vehicles or only certain vehicles. For example, the remarks in

LotA3 indicate “none”, suggesting that the parking spots are

suitable for all types of vehicles. Conversely, remarks in the

LotA5 parking spot say “sedan”, indicating that this spot is only

designated for sedans and not other vehicles. These

arrangements are also implemented into the database of parking

spots in mall B and mall C.

C. TESTING

After everything was built and compiled together, starting

from creating a database on the local server, connecting the

database on the Firestore database, and connecting the Android

Application, then testing was carried out following the UML

design. The results of the testing are shown in Table II.

Table II shows the testing results. There were several test

scenarios that represented how the system worked based on the

UML, starting with a test scenario of users registered as new

users and ending up with connecting Firebase Cloud to the app.

The results of all scenarios showed PASS, suggesting that the

system works well.

This research proposed fog computing in decentralized

smart parking systems by using Firebase to cover several areas

or malls in one system and interface. It means that the system

can accommodate multiple parking lots from several malls into

one system along with security and privacy by implementing

authentication in Firebase. The system also offers a higher data

rate since it is connected to internet network infrastructure that

allows people to see and book the available parking spots in

advance at their desired malls. This feature is beneficial for

them since they do not need to search for parking spots upon

their arrival. However, there are disadvantages associated with

this parking system, particularly when the internet connection

is down, the parking system is not able to be used. However,

to address this issue, the manual system can serve as a viable

alternative.

TABLE I

DATABASE OF PARKING LOT OF MALL A

parking_spot Availability Remarks

LotA1 TRUE sedan

LotA2 TRUE none

LotA3 FALSE none

LotA4 TRUE none

LotA5 FALSE sedan

Figure 7. All databases which are listed in the Firebase and mall’s parking spot
database.

EN-50

JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

Haposan Yoga Pradika Napitupulu: Fog Computing-Based System for … p-ISSN 2301–4156 | e-ISSN 2460–5719

V. CONCLUSION

The smart parking system commonly uses NB-IoT, and it

has already been proposed by some researchers. However, it

has some disadvantages such as the matter of security and

privacy, lower data rate, higher cost in the development,

dependencies with wireless systems, and only covers one area.

This research proposes fog computing based on a decentralized

smart parking system using Firebase to cover several different

areas or malls. This smart parking research project used a

decentralized local server as a fog node to deliver a fast data

exchange. Aside from that, this smart parking research used the

Firestore database (Firebase) to authenticate, secure, manage,

and analyze data in the cloud. Whilst the smart parking Android

application was used as a GUI to interact with users, show the

information, find the parking spot’s availability, and book the

available parking spot. This smart parking application was built

using Android Studio. The result of this research demonstrates

that the built and proposed system works well and can be

implemented for covering several areas or malls in one system.

For future works, it is suggested to implement and connect the

system directly to the malls’ servers, test execution times, and

conduct comparative analysis. In addition, it is essential to

determine an economic feasibility study for the real

implementation, given that the local servers are built into local

computers using several databases in this research.

CONFLICTS OF INTEREST

During conducting, designing, testing, and providing the

outcome of this research, the authors state that there is no

conflict of interest.

AUTHORS’ CONTRIBUTIONS

Conceptualization, Haposan Yoga Pradika Napitupulu;

methodology, Haposan Yoga Pradika Napitupulu; software,

Haposan Yoga Pradika Napitupulu; validation, Haposan Yoga

Pradika Napitupulu; analysis, Haposan Yoga Pradika

Napitupulu. writing, Haposan Yoga Pradika Napitupulu;

visualization, Haposan Yoga Pradika Napitupulu; supervision,

I Gde Dharma Nugraha.

REFERENCES

[1] A.J. Kadhim and J.I. Naser, “Proactive load balancing mechanism for fog

computing supported by parked vehicles in IoV-SDN,” China Commun.,

vol. 18, no. 2, pp. 271–289, Feb. 2021, doi: 10.23919/JCC.2021.02.019.

[2] M. Kong, J. Zhao, X. Sun, and Y. Nie, “Secure and efficient computing

resource management in blockchain-based vehicular fog computing,”
China Commun., vol. 18, no. 4, pp. 115–125, Apr. 2021, doi:

10.23919/JCC.2021.04.009.

[3] Y. Zhang, C.-Y. Wang, and H.-Y. Wei, “Parking reservation auction for

parked vehicle assistance in vehicular fog computing,” IEEE Trans. Veh.

Technol., vol. 68, no. 4, pp. 3126–3139, Apr. 2019, doi:
10.1109/TVT.2019.2899887.

[4] C. Tang et al., “Towards smart parking based on fog computing,” IEEE

Access, vol. 6, pp. 70172–70185, Nov. 2018, doi:

10.1109/ACCESS.2018.2880972.

[5] F.H. Rahman et al., “Street parked vehicles based vehicular fog

computing: TCP throughput evaluation and future research direction,”

2019 21st Int. Conf. Adv. Commun. Technol. (ICACT), 2019, pp. 26–31,
doi: 10.23919/ICACT.2019.8701912.

[6] X. Lin et al., “Application research of NB-IoT technology based on fog

computing in intelligent parking system,” 2019 IEEE 3rd Adv. Inf. Manag.

Commun. Electron. Automat. Control Conf. (IMCEC), 2019, pp. 1496–
1503, doi: 10.1109/IMCEC46724.2019.8984053.

[7] Y.-C.P. Chang, S. Chen, T.-J. Wang, and Y. Lee, “Fog computing node

system software architecture and potential applications for NB-IoT

industry,” 2016 Int. Comput. Symp. (ICS), 2016, pp. 727–730, doi:

10.1109/ICS.2016.0150.

[8] M.A. Hoque and R. Hasan, “Towards an analysis of the architecture,

security, and privacy issues in vehicular fog computing,” 2019
SoutheastCon, 2019, pp. 1–8, doi:

10.1109/SoutheastCon42311.2019.9020476.

[9] S. Nguyen, Z. Salcic, and X. Zhang, “Big data processing in fog - smart

parking case study,” 2018 IEEE Int. Conf. Parallel Distrib. Process. Appl.

TABLE II

TESTING DOCUMENTATION

Test Scenario Test Case Test Step Result Status

Users register as

new user.
Registering new user.

Input all data, press button

register, ensure data registered

into firebase.

Data stored into firebase. PASS

Check log in. Checking validity log in. Input right and wrong data.

If result right, then will go to next

GUI. If wrong, it will tell that

username or password is not

recognised.

PASS

Users open the app.
User open app and click

available button.
1. user open the app. It will show the app. PASS

User open mall

option.

User open mall option with

click choose mall option.
1. User choose the mall. User is on the selected mall. PASS

User open parking

spot option.

User open parking mall

option at the selected mall.

1. Users choose the mall.

User can choose parking spot. PASS

2. Users choose the parking

spot at the selected mall.

Load data from

database.

Load database from

firebase so we can see the

parking availability.

Users open the parking spot and

will show the parking

availability.

User can book parking spot. PASS

User open payment

method.

User open payment

method.

User open payment method

after choosing the parking spot.

User can process the payment

method and will show “payment

success.”

PASS

Connecting Local

MySQL into

Google Cloud.

Test reading the database,

table, and data via Google

Cloud.

Open terminal in Google Cloud.
Google Cloud can read the data

from Local MySQL.
PASS

Connecting

Firebase Cloud to

the App.

Test reading and writing

into database Firebase

Cloud.

Test on App and Firebase

Cloud.

App can write and read data from

Firebase.
PASS

EN-51

 JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI
Volume 13 Number 1 February 2024

p-ISSN 2301–4156 | e-ISSN 2460–5719 Haposan Yoga Pradika Napitupulu: Fog Computing-Based System for …

Ubiquitous Comput. Commun. Big Data Cloud Comput. Soc. Comput.

Netw. Sustain. Comput. Commun.
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), 2018, pp. 127–134, doi:

10.1109/BDCloud.2018.00031.

[10] B. Cheng, J. Fuerst, G. Solmaz, and T. Sanada, “Fog Function: Serverless

fog computing for data intensive IoT services,” 2019 IEEE Int. Conf. Serv.

Comput. (SCC), 2019, pp. 28–35, doi: 10.1109/SCC.2019.00018.

[11] E.C. Anderson, K.C. Okafor, O. Nkwachukwu and D.O. Dike, “Real time

car parking system: A novel taxonomy for integrated vehicular
computing,” 2017 Int. Conf. Comput. Netw. Inform. (ICCNI), 2017, pp.

1–9, doi: 10.1109/ICCNI.2017.8123788.

[12] M. Celaya-Echarri et al., “Building decentralized fog computing-based

smart parking systems: From deterministic propagation modeling to

practical deployment,” IEEE Access, vol. 8, pp. 117666–117688, Jun.
2020, doi: 10.1109/ACCESS.2020.3004745.

[13] J.-E. Park and Y.-H. Park, “Fog-based file sharing for secure and efficient

file management in personal area network with heterogeneous wearable

devices,” J. Commun. Netw., vol. 20, no. 3, pp. 279–290, Jun. 2018, doi:

10.1109/JCN.2018.000040.

[14] A.M.S. Maharjan and A. Elchouemi, “Smart parking utilizing IoT

embedding fog computing based on smart parking architecture,” 2020 5th
Int. Conf. Innov. Technol. Intell. Syst. Ind. Appl. (CITISIA), 2020, pp. 1–

9, doi: 10.1109/CITISIA50690.2020.9371848.

[15] X. Huang, D. Ye, R. Yu, and L. Shu, “Securing parked vehicle assisted

fog computing with blockchain and optimal smart contract design,”
IEEE/CAA J. Automatica Sinica, vol. 7, no. 2, pp. 426–441, Mar. 2020,

doi: 10.1109/JAS.2020.1003039.

[16] A.M. Farooqi, M.A. Alam, S.I. Hassan, and L. Ansari, “Approaches of

shared smart parking model in fog and roadside cloud environment: A

detailed survey,” 2021 6th Int. Conf. Commun. Electron. Syst. (ICCES),

2021, pp. 914–924, doi: 10.1109/ICCES51350.2021.9489178.

[17] Y. Sukmana and Y. Rosmansyah, “The use of Cloud Firestore for

handling real-time data updates: An empirical study of gamified online
quiz,” 2021 2nd Int. Conf. Electron. Commun. Inf. Technol. (CECIT),

2021, pp. 1239–1244, doi: 10.1109/CECIT53797.2021.00220.

[18] K.S. Awaisi et al., “Towards a fog enabled efficient car parking

architecture,” IEEE Access, vol. 7, pp. 159100–159111, Nov. 2019, doi:

10.1109/ACCESS.2019.2950950.

[19] J. Tuvakov and K. Park, “On the fog node model for multi-purpose fog

computing systems,” 2018 IEEE 9th Annu. Inf. Technol. Electron. Mob.
Commun. Conf. (IEMCON), 2018, pp. 1211–1214, doi:

10.1109/IEMCON.2018.8614845.

[20] H.-L. Shieh, W.-S. Chang, S.-F. Lin, and S.-B. Jhang, “A motorcycle

parking lot management system based on RFID,” 2013 Int. Conf. Fuzzy

Theory Appl. (iFUZZY), 2013, pp. 268–272, doi:
10.1109/iFuzzy.2013.6825448.

[21] I. Zoratti, “MySQL security best practices,” 2006 IET Conf. Crime Secur.,

2006, pp. 183–198.

[22] L. Zhang, J. Fan, and Y. Zhou, “The security analysis of MySQL’s

encryption functions,” 2015 Int. Conf. Comput. Sci. Mech. Automat.

(CSMA), 2015, pp. 5–8, doi: 10.1109/CSMA.2015.8.

[23] H.Y.P. Napitupulu, “Design and realization of integrated control system

based on Microsoft Visual Basic .Net and Mitsubishi’s programmable

logic controller (PLC) through ethernet cable,” 2023 Int. Conf. Comput.
Sci. Inf. Technol. Eng. (ICCoSITE), 2023, pp. 290–295, doi:

10.1109/ICCoSITE57641.2023.10127819.

EN-52

