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ABSTRACT Volcanic mudflow floods occur when rainfall runoff combines with volcanic material and flows downstream. These

devastating events cause significant damage to infrastructure, disrupt economies, and result in injuries and casualties. One area where

the flow of volcanic material greatly affects the situation is the Rejali River, which receives a substantial amount of volcanic debris from

Mount Semeru. To address this issue and begin mitigating the associated risks, it is crucial to start by mapping the potential distribution

of volcanic mudflow floods. Therefore, this study aimed to assess factors impacting volcanic mudflow flood susceptibility and to create

a corresponding susceptibility map. The study employed the Analytical Hierarchy Process (AHP) and the Technique for Order Preference

by Similarity to Ideal Solution (TOPSIS) to determine the influence of various factors and classify the areas, respectively. These methods

were integrated with the Geographic Information System (GIS) to enhance the analysis. The weighted analysis results showed that the

most impactful factors conditioning volcanic mudflow floods, in descending order, were rainfall (42.40%), land cover (13.89%), elevation

(13.39%), slope (12.51%), distance from the river (7.09%), soil type (6.58%), and rock distribution (4.13%). The TOPSIS calculation further

highlighted that rainfall intensity between 104.03 and 109.65 mm day-1 had the greatest influence on susceptibility. The successful

integration of AHP and TOPSIS methods with GIS helped develop a volcanic mudflow flood susceptibility model with an outstanding

accuracy of 0.969. The model showed that approximately 46.40% of the areas along the Rejali River exhibited very high susceptibility to

volcanic mudflow floods, while an additional 16.21% indicated high susceptibility and substantial risk in most regions. Therefore, the

generated susceptibility map offered important insights for shaping future mitigation strategies and influencing policy decisions.
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1 INTRODUCTION

Semeru Mountain, a notable volcano in Indone-

sia, is a significant threat due to its frequent erup-

tions. These eruptions produce vast quantities

of volcanic material, potentially triggering mud-

flow flood during heavy rainfall. Furthermore, the

Meteorology,Climatology, andGeophysicsAgency

(BMKG) has recently issued an extreme weather

alert. This alert amplifies the potential for catas-

trophic mudflow flood in the Semeru area, specif-

ically in the hard-hit Rejali watershed. Mitigation

of potential losses necessitates the development

of a mudflow flood susceptibility map. This map

serves as a critical tool, providing vital informa-

tion about potential volcanic mudflow flood dis-

tribution in the area (Armijon et al., 2018).

Hydrological and hydraulic modeling software,

such as HEC-HMS and HEC-RAS, are widely used

for detailed analyses of volcanic mudflow flood

susceptibility (Akay, 2021). However, using Ge-

ographic Information System (GIS)-based meth-

ods to identify volcanic mudflow flood suscepti-

bility is a novel and challenging approach. GIS

simplifies this process by incorporating various

flood-related factors in an overlay method (Mey-

dani et al., 2022). It also utilizes high-resolution

topographic data, hence ideal for modeling flood

susceptibility (Irawan et al., 2019). Adistinctmod-

eling approach focuses on geomorphological fac-

tors like rainfall intensity, slope, elevation, soil

type, rock distribution, land cover, and river dis-
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tance (Costache et al., 2020; Ulfiana, 2020; Ulfiana

and Sari, 2020). These seven factors influence vol-

canic mudflow flood occurrence, but their signifi-

cance varies by location.

Various statistical and multicriteria models, such

as frequency ratio (FR), weight of evidence (WoE),

fuzzy logic (FL), evidential belief function (EBF),

index of entropy (IoE), analytical hierarchy pro-

cess (AHP), principal component analysis (PCA),

technique for order preference by similarity to

an ideal solution (TOPSIS), and VIKOR have been

used to model volcanic mudflow flood suscep-

tibility (Khosravi et al., 2019). AHP is consid-

ered simple yet effective for handlingmultiple fac-

tors. However, it requires expert judgment, which

can introduce bias and potentially lower accuracy,

forming its limitations (Nyimbili et al., 2018).

To address this concern, the use of an ensemble

approach combining the Analytic Hierarchy Pro-

cess (AHP) with other methods is crucial (Ulfi-

ana, 2020; Ulfiana and Sari, 2020). One such suc-

cessful application of this approach is the AHP-

TOPSIS method, which enables accurate predic-

tion of flood susceptibility (Tabarestani and Afza-

limehr 2021).

2 STUDY LOCATION

This study was conducted on the Rejali River Basin

in the Mount Semeru area, spanning approxi-

mately 13,094.06 hectares based on the author’s

geographic information system analysis. Accord-

ing to Safitri et al. (2021), this geographical loca-

tion was situated at 8° 06’ 30” S latitude and 112°

55’ E longitude, as shown in Figure 1. The highest

elevation in this area, as per the Digital Elevation

Model (DEM) data, was 3609.27 m above sea level.

The Rejali watershed upper reaches were located

in the Mount Semeru area, extending through the

Perak Sumberwuluh Deck and ending in Jugosari

Village, Candipuro District. The selection of this

location stems from its historical relevance, par-

ticularly the volcanic mudflow flood that ensued

on December 4, 2021, following the eruption of

Mount Semeru (Oktavia et al., 2022).

3 METHODS

The study on volcanic mudflow flood susceptibil-

ity is divided into four stages, as shown in Figure

2. The first stage was creating and classifying a

map of volcanic mudflow flood susceptibility fac-

tors for the TOPSIS process. The second involved

calculating the weight of each volcanic mudflow

flood susceptibility factor from the respondents’

interviews using the AHP process. The third stage

involved mapping volcanic mudflow flood suscep-

tibility with the AHP-TOPSIS method. The final

stage validated this model using an area under the

curve (AUC) value based on a Disaster-Prone Area

map, which served as a volcanic mudflow flood in-

ventory.

3.1 Selection of volcanic mudflow flood factors

This study used seven key factors influencing vol-

canic mudflow flood susceptibility to create the

initial map, all of which had been previously iden-

tified as having significant impact on such events

(Ulfiana, 2020). Specifically, these factors included

DEMNAS data (elevation and slope), Digital To-

pographyMap (BIG 2019) (land use, soil type, river

distance, and rock distribution), rainfall intensity

data, and volcanic mudflow flood inventory data,

as shown in Table 1. The final data processing step

was to convert the data into raster format to stan-

dardize the resolution. The natural breaksmethod

was then used to categorize elevation and rainfall

into five classes (Akay,2021). Other factors such as

slope, land use, soil type, river distance, and rock

distribution were classified based on established

regulations (Darmawan et al., 2017). These classi-

fications facilitated the interpretation of the sus-

ceptibility level (Seejata et al., 2018).

The elevation factor, indicating the vertical dis-

tance of an area from sea level, was inversely re-

lated to volcanic mudflow flood probability. Areas

with higher elevations had lower flood probabil-

ities (Khosravi et al., 2018). As shown in Figure

3(a), the classified elevation map revealed varied

ranges: 46.37% of the land was between 0 and 292

m; 28.49% between 292 and 617 m; 17.05% be-

tween 617 and 1153 m; 5.84% between 1153 and

2028 m; and 2.25% above 2028 m.

The slope factor, the ratio of horizontal to verti-

cal distance, significantly impacted runoff (Pur-

nawali, 2018). Figure 3(b) displayed the slope

map of the Rejali watershed, derived from DEM-

NAS data processing. This classification under-

scored that 44.22% of the terrain had slopes be-
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Figure 1 Location of Rejali River

Figure 2 Flowchart of stages

tween 0 and 8%; 22.81% between 8 and 15%;

8.56% between 15 and 25%; 13.30% between 25

and 45%; and 11.11% had slopes over 45%. These

statistics classified the Rejali watershed as a ramp,

highlighting its vulnerability to volcanic mudflow

floods.
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Table 1. Data types and sources for volcanic mudflow flood susceptibility factors

No Data Type Source Information

1. Elevation

2. Slope

DEMNAS

https://tanahair.indonesia.go.id/demnas/#/demnas
Resolution 8 m

3. Land Use

4. Type of Soil

5. Distance to River

6. Rock Distribution

RBI BIG 2019

https://tanahair.indonesia.go.id/portal-web/download/perwilayah
Scale 1:25,000

7. Rainfall Water Resources Management Unit of Lumajang Regency Ten years (2012-2021)

8. Volcanic Mudflow Flood Inventory
Meteorology, Climatology, and Geophysics Agency

https://magma.esdm.go.id/v1/gunung-api/peta-kawasan-rawan-bencana
Resolution 8 m

Land use, which represents how living beings uti-

lize their surroundings tomeet their needs, played

a crucial role in this analysis (Pratiwi, 2020). Fig-

ure 3(c) presents the land use map of the Rejali

watershed, derived from the RBI map, providing

valuable insights. The map indicated that the

composition of land use in the area consisted of

31.77% forest, 36.07% rice fields, 16.97% grass-

lands, 4.54% settlements, 1.46% vacant land, and

9.19% sand. The dominant land uses were rice

fields and forests.

The infiltration process was notably affected by

soil type, with higher soil moisture leading to re-

duced infiltration rates (Budiarti et al., 2018). Fig-

ure 3(d) presents the soil type map of the Rejali

watershed,derived from theRBImap, revealing in-

sightful information. The map indicated that the

area consisted of 17.05% andosol soil, 6.65% allu-

vial soil, 56.46% mediterranean soil, and 19.83%

grumusol soil. The predominant soil type in the

region was mediterranean soil.

The factor of river distance, which gauged how

close an area was to a river, suggested that shorter

distances increased volcanic mudflow flood risks.

(Saputra et al., 2020). The river distance map,

derived from the Indonesian Earth Map and pro-

cessed with the Buffer tool in ArcMap software,

was shown in Figure 3(e). It showed that 0.20% of

areas were within 0 to 3 m from the river, 10.79%

were within 3 to 168 m, 9.07% within 168 to 333

m, 8.47% within 333 to 500 m, and a substantial

71.46% more than 500 m away.

The rock distribution factor, referring to a min-

eral’s resistance to abrasion or susceptibility to

being scratched, also affected flooding potential

(Larasati, 2017). The rock distribution map clas-

sification in Figure 3(f) reported 0.60% alluvial,

0.15% breakthrough rocks, 0.71% Mount Kepolo

Parasite Deposits, a significant 79.35% Mount Se-

meru Parasite Deposits, 0.19% Mandalika forma-

tions, 16.57% Mount Semeru parasite lava, and

2.42% Mount Kepolo parasite lava.

Lastly, rainfall intensity was a critical factor for

volcanicmudflowflood,with higher intensities in-

creasing flood risks (Hidayah et al., 2022). The

processed rainfall data, using the IDW (Inverse

Distance Weighted) Interpolation process in Ar-

cMap software, was shown in Figure 3(g). The

classification revealed 14.16% of areas within the

94.50 to 98.86 class, 18.66% within the 98.87 to

104.03 class, 28.71% within the 104.04 to 109.65

class, 22.82% within the 109.66 to 114.93 class,

and 15.64% within the 114.94 to 123.76 class. The

Rejali watershed predominantly experienced rain-

fall intensities between 104.03 and 109.65

3.2 Analytical Hierarchy Process (AHP) method

AHP, a decision-making method proposed by

Thomas L. Saaty, incorporated multiple factors

(Lappas and Kallioras, 2019). This method re-

quired expert opinions from a predetermined set

of respondents. For the purposes of this study,

15 respondents with occupations relevant to river

mudflow floods were carefully selected. This

included 5 practitioners from the Brantas River

Basin Agency (BBWS Brantas), 4 members from

the Department of Public Works and Housing, and

6 from the Water Resources Management Unit

of Lumajang Regency (UPT PSDA Lumajang Re-

gency).

The respondents were tasked with assigning im-

portance values to each factor, which ranged from

1 (least influential) to 9 (highly influential). These
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3 Classification of mudflow flood susceptibility factors
(a) Elevation (b) Slope (c) Landuse (d) Type of Soil (e) Distance to river (f) Rock Distribution (g) Rainfall

values were based on their knowledge and under-

standing of volcanic mudflow flood susceptibility

(Khosravi et al., 2018; Seejata et al., 2018).

The weight criteria were calculated using a pair-

wise comparison matrix measuring n × n, de-

rived from the respondents’ comparative evalua-

tion data. A value of one was assigned when the

criteria appeared in the same row and column. A

normalized matrix was then created by dividing

each element by the total addition in the same

column. Eigenvalues were found by dividing the

sum of the elements in each row by the number

of parameters used. To ensure that the weight

calculation results were consistent and suitable

for use in the study, a consistency test was con-

ducted. This was crucial, considering that the data

obtained from the questionnaire were subjective

(Lappas and Kallioras, 2019). For the comparison

matrix to be acceptable, the consistency ratio (CR)

value must be ≤ 0.1. The formulas for the consis-

tency index (CI) andCRwere sequentially depicted

in Equations (1) and (2).
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Figure 4 Hierarchical assessment importance scale
Source: (Ulfiana and Sari, 2020)

CI =
λmaks− n

n− 1
(1)

Where λ max s is the most significant value of

eigenvalue andn is themultiplicity of factors used.

CR =
CI

RI
(2)

Where CI is the consistency index and RI is the cal-

culation value of Saaty in Table 2.

Table 2. Current calculation values (RI)

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

3.2.1 Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS) method

TOPSIS is a method used for problem-solving. It

operates on the principle that a decision should

be as close as possible to the positive ideal solu-

tion and as far away as possible from the nega-

tive ideal solution. By taking into account both

the positive and negative aspects of each alterna-

tive, this method offers a comprehensive evalua-

tion. The advantage of TOPSIS is its simplicity and

rationality in computation, making it an efficient

tool for analysis and decision-making, particularly

when dealing with multiple criteria and alterna-

tives (Pathan et al., 2022). The steps performed in

the TOPSIS method follow Equations (3) through

(9) (Ching-Lai Hwang, 1981).

rij =
xij√
Σm
i=1x

2
(3)

Where (i) and (j) are the rows and columns on the

TOPSISmatrix, rijwas thenormalizedmatrix (i) (j),

and xij is the decision matrix (i) (j).

yij = wi rij (4)

Where wi is the weight of several factors (i).

A+ = (y1+, y2+, ..., y+p ) (5)

A− = (y1−, y2−, ..., y−p ) (6)

Where y1+ is themax value of yij and y1
- is themin

value of yij.

D+
i =

√
Σn
i=1(y

+
i − yij)2 (7)

D−
i =

√
Σn
i=1(yij − y−i )

2 (8)

Where Di
+ is the distance of the Ai class with the

positive ideal solution andDi
- is the distance of the

Ai class with the negative ideal solution.

Vi =
D−

i

(D−
i +D+

i )
(9)

3.2.2 Hybrid AHP-TOPSIS

The susceptibility of volcanic mudflow flood in

the Rejali River was determined using the AHP-

TOPSIS method. The process began by employ-

ing the Analytic Hierarchy Process (AHP) method,

which involved identifying factors based on exist-

ing field conditions and a comprehensive review of

prior literature studies. Once these factors were

established, evaluationwas conducted through in-

terviews with a select group of respondents. This

constituted a critical phase of the AHP process, as

it provided an influence weight for each individual

factor. The weights of the factors were then an-

alyzed using the Technique for Order Preference
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by Similarity to Ideal Solution (TOPSIS) method.

The objective was to classify these factors based

on their priority, effectively determining the pri-

ority class.

3.2.3 Insecurity Index and Validation

The AHP-TOPSIS calculation results were incor-

porated into each map of the volcanic mudflow

flood susceptibility factors using ArcGIS. These

maps were then overlaid and classified into four

categories, including highly susceptible, mod-

erately susceptible, less susceptible, and non-

susceptible. The validation process employed

the Area Under Curve (AUC) methodology, which

compared the flood susceptibility analysis data

with the volcanic mudflow flood maps obtained

from the UPT PSDA Lumajang Regency. AUC val-

ues were represented graphically and range from

0.5 (imperfect) to 1 (excellent) (Hariati et al.,

2018). The AUC value signified model quality,

where values greater than 0.5 indicated no signif-

icant difference, those between 0.7 and 0.8 were

acceptable, between 0.8 and 0.9 excellent, and 0.9

or above outstanding (Hidayah et al., 2022).

4 RESULTS

4.1 The AHP method result

The consistency test fromAHP obtained a value of

CR=0.067. Since it is less than 0.1, the data is con-

sistent and feasible for this study. The most po-

tential factor in triggering volcanic mudflow flood

was rainfall, accounting for 42% of the total factor

value. The rest distribution of theweighing factors

was the land cover 14%, the elevation and slope

13%, the distance of rivers and soil types 7%, and

the distribution of rocks 4%, as shown in Figure 6.

4.2 The TOPSIS method result

In this study, susceptibility levelswere divided into

five classes, specifically (1) very low, (2) low, (3)

medium, (4) high, and (5) very high. These clas-

sifications were determined through the TOPSIS

method, which distinguished the seven influenc-

ing factors into two types, benefit and cost. Fac-

tors categorized under ’benefit’ implied that the

higher the class of the factor, the greater its in-

fluence on volcanic mudflow flood. This included

rainfall, soil type, and rock distribution. However,

the ’cost’ category showed that the higher the class

of the factor, the lesser its influence on volcanic

mudflows. This category comprised slope, eleva-

tion, land cover, and distance from the river. Table

3 and 4 showed the AHP-TOPSIS process.

4.3 AHP-TOPSIS Analysis

Figure 6 showed the weight comparison of flood

conditioning factors between the AHP and AHP-

TOPSIS methods. The pattern remained simi-

lar, but a slight shift in weight magnitudes was

observed. With the AHP-TOPSIS method, rain-

fall and land use factors saw minor weight in-

creases compared to weights derived from the

AHP method alone. Conversely, the weights of

the other five factors (slope, elevation, soil type,

river distance, and rock distribution) were slightly

higher in the AHP method. This weight shift from

AHP to AHP-TOPSIS was due to the values of the

negative and positive factors in each area. There-

fore, the TOPSIS method reduced the influence of

expert judgment.

The AHP-TOPSIS method assessed the suscepti-

bility index of volcanic mudflow floods according

to their severity. The susceptibility results for the

volcanic mudflow flood in the Rejali River were as

follows: 6.02% of the area, or 776,166 ha, was un-

protected, 22.07% or 2,847,474 ha less suscepti-

ble; 9.30%or 1,200,007 hamoderately susceptible,

16.21% or 2,090,991 ha susceptible and 46.40%

or 5,986,913 ha highly susceptible. The volcanic

mudflow flood susceptibility map was shown in

Figure 6.

Table 5 showed the results of ten direct survey

sample points carried out in the field to measure

the thickness of volcanic mudflow deposits based

on the flood vulnerability map. Susceptibility lev-

els were validated according to coordinate posi-

tion. Field height sampling data served as valida-

tion data for the model, describing susceptibility

levels. Most surveys were conducted at high and

very high susceptibility levels, with altitudes be-

tween 0.8m and 2.8m. From the ten data samples,

a thickness of 1.5 m of volcanic mudflow was de-

termined as the boundary between high and very

high susceptibility.
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Table 3. TOPSIS method results

Class

Criterion Factors

Rainfall

(mm)

Slope

(%)

Elevation

(m)
Soil Type Land Use Rock Distribution

Distance from river

(m)

Classification

1 94.5 – 98.9 0 - 8 0 - 292

Regosol,

Litosol,

Organosol,

Renzyme

Settlement Alluvial 0 - 3

2 98.9 – 104.0 8 - 15 292 - 617 Andosol, Grumosol Farmland
Volcanic mudflow Parasite

G semeru & G Kepolo
3 - 168

3 104.0 – 109.6 15 - 25 617 - 1153 Mediterran-ean Land

Sand /

Vacant lots /

gardens

Deposits of Parasite

G semeru & G Kepolo
168 - 333

4 109.6 – 114.9 25 - 45 1153 - 2028 Latosol Shrubs Breakthrough Rocks 333 - 500

5 114.9 – 123.8 >45 >2028 Alluvial Forest Mandalika Formation >500

Area (ha)

Benefit Cost Cost Benefit Cost Benefit Cost

1 1855 5767.28 6073.72 0 594.86 78.72 26.86

Class

Criterion Factors

Rainfall

(mm)

Slope

(%)

Elevation

(m)
Soil Type Land Use Rock Distribution

Distance from river

(m)

2 2444 2975.51 3730.84 4831.09 4728.61 2489.13 1414.65

3 3760.82 1116.46 2233.43 7395.78 1395.92 10492.67 1188.96

4 2989.24 1735.08 765.24 0 2224.28 20.25 1109.96

5 2048 1449.08 294.28 871.69 4164.23 25.38 9367.02

Decision Normalization Matrix

1 0.306 0.828 0.808 0.000 0.087 0.007 0.003

2 0.404 0.427 0.496 0.544 0.690 0.231 0.147

3 0.621 0.160 0.297 0.833 0.204 0.973 0.124

4 0.494 0.249 0.102 0.000 0.325 0.002 0.115

5 0.338 0.208 0.039 0.098 0.608 0.002 0.975

Weighted Normalization Matrix

1 12.98 10.37 10.82 0.00 1.21 0.03 0.02

2 17.11 5.35 6.65 3.58 9.59 0.95 1.04

3 26.33 2.01 3.98 5.48 2.83 4.02 0.88

4 20.93 3.12 1.36 0.00 4.51 0.01 0.82

5 14.34 2.60 0.52 0.65 8.44 0.01 6.91

The Ideal Solution

A+ 26.33 2.01 0.52 5.48 1.21 4.02 0.02

A- 12.98 10.37 10.82 0.00 9.59 0.01 6.91

Table 4. Levels of volcanic mudflow flood susceptibility

Class D+ D- Preferences (V) Susceptibility Rate

1 20.00 10.85 0.35 very low susceptible

2 14.76 10.38 0.41 low susceptible

3 3.91 20.57 0.84 medium susceptible

4 9.42 16.37 0.63 high susceptible

5 16.83 13.03 0.44 very high susceptible

4.4 Model Validation

The validation test using a model accuracy graph

in very susceptible areas obtained an AUC value of

0.608 for AHP, indicating a low accuracy and was

not acceptable. By using AHP-TOPSIS, the AUC

value increased to 0.723 or higher than 0.7. There-

fore, the AUC value was acceptable (Hidayah et al.,

2022), as shown in Figure 7. The analysis results

was in line with previous literature studies (Ul-

fiana, 2020; Ulfiana and Sari, 2020) which estab-

lished that rainfall is a significant factor in flood

susceptibility.
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Figure 5 Graph of volcanic mudflow flood susceptibility factors

Figure 6 Volcanic mudflow flood susceptibility level map

5 DISCUSSIONS

The AHP method heavily depended on judgment

and opinion of decision makers assigning subjec-

tive values to standards and alternatives, leading

to potential biases and inconsistencies. Decision-

makers could interpret and assess differently,

possibly yielding different results (Kanani-Sadat

et al., 2019). However, when AHP was paired

with TOPSIS, susceptibility levels were influenced

by both negative and positive factors within each

Table 5. Thickness of the volcanic mudflow deposit at the
survey point

No.
Coordinate Point Volcanic mudflow

Deposits (m)
Susceptibility Rate

X Y

1 723178.397 9096714.470 0.80 high

2 722594.111 9096306.779 2.00 very high

3 722527.921 9095659.590 1.80 very high

4 722699.426 9095342.865 2.80 very high

5 722916.863 9094773.216 2.50 very high

6 723496.677 909429.497 1.90 very high

7 723747.003 9094010.954 2.20 high

8 724136.540 9093250.903 0.80 high

9 724604.895 9092522.032 1.50 high

10 725582.940 9089926.918 1.60 very high

Figure 7 AUC validation result

area, with positive solutions representing the best

performance for each criterion. This study found
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rainfall to be the most influential factor in both

AHP alone and its combination with TOPSIS due

to its role in modulating volcanic activity (Far-

quharson and Amelung, 2020). The validation

test showed that the AHP-TOPSIS combination

was more accurate than AHP alone, suggesting

it as a more effective method for modeling the

mudflow flood susceptibility map (Pathan et al.,

2022). Integrating TOPSIS with AHP reduced the

influence of expert judgment, dealing with uncer-

tainty through sensitivity analysis and thereby en-

hancing model accuracy (Menon and Ravi, 2022).

Though AHP-TOPSIS proved successful, potential

modifications to this multicriteria analysis were

being considered, such as Fuzzy-TOPSIS, allow-

ing for the aggregation of expert opinions without

needing a consensus among them (Ziemba et al.,

2020).

6 CONCLUSION

In conclusion, the occurrence of volcanic mud-

flow floods along the Rejali River, originating from

Mount Semeru, has resulted in substantial prop-

erty loss and disruptions to the local economy.

The unique topography of the study area, charac-

terized by flat terrain, presented challenges in ef-

fectively mapping the extent of volcanic mudflow

floods. However, in this study, susceptibility mod-

eling using the AHP-TOPSIS method effectively

outlined the factors that influenced volcanic mud-

flowfloods. Thismethod aided in the development

of mitigation strategies in response to eruptions

fromMount Semeru. TheAHP-TOPSISmethod fa-

cilitated the estimation of flood potential in the

area, and when combined with GIS, accurate map-

ping was achieved. This information played a cru-

cial role in predictive actions and land use plan-

ning aimed at reducing the impact of floods caused

by eruptions from Mount Semeru. In this study,

twomethodswere employed tomap volcanicmud-

flow flood susceptibility, both yielding high AUC

validation results. The TOPSIS method effec-

tively reduced the subjectivity inherent in theAHP

method, identifying rainfall as the primary trigger

for volcanicmudflowfloods compared to other fac-

tors. Each method provided a more detailed anal-

ysis by leveraging the strengths of the respective

techniques. Future studies should strive to en-

hance accuracy by incorporating DEM data with a

higher resolution to generate more detailed maps.
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