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ABSTRACT Ensuring the quality of surface rainfall records is crucial for obtaining highly representative data and facilitating further comprehensive
analysis. Given that surface rainfall observations are predominantly conducted using conventional gauges, they are still susceptible to human errors
that can significantly impact data quality. Among various types of errors that may arise, the issue of zero rainfall records is relatively overlooked.
Prolonged zero rainfall periods may introduce uncertainty, as mistyped missing data can be erroneously replaced with zero values. The challenge in
handling this issue is complicated by the absence of sufficient evidence to conclusively determine the validity or suspicion of consecutive zero rainfall
periods. Therefore, we implemented the Affinity Index, altitude difference, and maximum distance approaches to detect and evaluate (validate or
reject) any potential invalid sequences of prolonged zero values in the rainfall dataset. The Affinity Index quantifies the agreement of rain and non-rain
events between two meteorological stations, functioning as a metric to evaluate the similarity of their rainfall patterns. Utilizing daily data from 682 rain
gauge stations in East Java, Indonesia, spanning from January 2010 to December 2019, we identified two major concerns: zero rainfall accumulation
during the peak of the rainy season (December/January/February) and extended dry spells lasting more than 180 days. To address the first issue, we
flagged the corresponding station and excluded it from the dataset. For the second issue, we established reference stations for each target station
to enable meaningful comparisons. The study found that 8.8% of stations detected zero rainfall accumulation during the peak of the rainy season.
Regarding prolonged dry spells, we successfully assessed 98% of extended dry spell events in East Java. The majority of these events were considered
valid, while around 3% were deemed dubious.

KEYWORDS Quality control; Daily; Rainfall; Dry spell; Reference stations.

© The Author(s) 2025. This article is distributed under a Creative Commons Attribution-ShareAlike 4.0 International license.

1 INTRODUCTION

Serving as ground truth, near-surface precipitation ob-
servation plays an essential role in providing the most
representative rainfall data. Therefore, evaluations of
other precipitation data products (such as remote sens-
ing and reanalysis) and assessments of numerical mod-
els rely on ground-based data (Feng et al., 2004). How-
ever, near-surface precipitation data is still suscepti-
ble to human errors, particularly when obtained from
conventional gauges. Common types of issues found
in the records include atypical values, outliers, missing
data, duplicated records, and inhomogeneities (Durre
et al., 2010; Vicente-Serrano, S.M. et al., 2010; Terán-
Chaves, 2021). The source of errors can stem from vari-
ous aspects of the data life cycle, including instrumen-
tal issues, observer errors, data transmission problems,
key entry mistakes, and errors in the data validation
process. Additionally, challenges arise from changing
data formats and data summarization (WMO,2018). All
these errors present in the data have a substantial im-
pact on data quality, potentially affecting the precision
of subsequent analysis (Scherrer, 2011).

As the importance of data quality gains widespread ac-
knowledgement, there has been a growing number of
studies focusing on precipitation data quality control.
These studies have contributed to significant advance-
ments in quality control methods (Durre et al., 2010;
Vicente-Serrano, S.M. et al., 2010; Hamada et al., 2011;
Llabrés-Brustenga, 2019; Terán-Chaves, 2021), there
by enhancing the reliability and accuracy of precipita-
tion measurements. Despite these advancements, cer-
tain aspects of data errors, particularly those related to
zero rainfall records, remain challenging. Consecutive-
prolonged zero rainfall periods may introduce uncer-
tainty, as mistyped missing data can be erroneously re-
placed with zero values, subsequently impacting cli-
mate analysis, particularly concerning extreme indices
such as consecutive dry days (CDD) and consecutive
wet days (CWD) (Hunziker, 2017). Unlike non-zero rep-
etition, identifying zero repetition poses a substantial
challenge. The issue arises from insufficient evidence
to judge prolonged zero rainfall as incorrect without
other independent measurements, such as known rain-
fall records or historic flood/drought events (Hamada
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Figure 1 East Java as the study area, blue points indicate the lo-
cations of rain gauges

et al., 2011; Lewis, 2021). On the other hand, the avail-
ability of auxiliary data may be limited to some extent,
adding to the distinct challenges that necessitate fur-
ther exploration.

Fundamentally, there are twomain approaches to iden-
tifying potential errors in precipitation data: the first
involves data from a single station, while the second
employs data frommultiple stations, allowing compar-
ison with neighboring stations (Estévez et al., 2022).
Nevertheless, the first method is considered insensi-
tive since the intermittent nature and high variability
of daily rainfall do not allow reliable confidence inter-
vals to be estimated from the historical data of the sta-
tion under consideration (Sciuto, 2009). Moreover, the
first method requires a long period of data to cover the
highest temporal variability of rainfall ever recorded.
Therefore, our focus will be on the second method,
which involves a comparison between the target sta-
tion and its corresponding neighboring stations as ref-
erences. Many studies have demonstrated the crite-
ria for defining neighboring stations based on param-
eters that gauge the similarity between the target and
reference stations. Blenkinsop et al. (2017) employed
Percentage Correct Statistics, later known as the Affin-
ity Index (AI) (Lewis, 2021), as a measure of match-
ing statistics, illustrating the concordance of rain and
non-rain events between target and reference stations.
Besides AI, numerous studies use parameters such as
maximum distance range, height difference, and corre-
lation to capture the representative closure of rainfall
characteristics between stations. However, the use of
correlation may be less useful due to the high variabil-
ity in daily rainfall data, including the presence of zero
values (Sciuto, 2009).

Regarding the state-of-the-art as mentioned above re-
lated to precipitation data quality control, this study
aims to identify issues related to zero rainfall values in
East Java, Indonesia and proposes methods to evaluate
(validate or reject) any potentially invalid sequences of
prolonged zero rainfall values based on the neighbor-

ing stations approach. Through this investigation, we
seek to contribute to the refinement of precipitation
data quality control methods and enhance our under-
standing of the challenges associated with zero rainfall
records.

2 METHODS

2.1 Study Area

This study focuses on East Java, Indonesia, utilizing
daily rainfall data from 682 rain gauges maintained by
the National Agency for Meteorology, Climatology and
Geophysics (BMKG). The dataset covers 10 years, start-
ing from 1 January 2010 to 31 December 2019, with
less than 10% of missing data annually. However, the
amount of missing data may increase as a result of the
quality control measures proposed in this study. The
observation network consists of standard Observato-
rium rain gauges,which collect rainfall over specific in-
tervals and are meticulously measured by trained ob-
servers employing calibrated measuring instruments.
The spatial distribution of these gauges, depicted in
Figure 1, reveals a relatively sparse network, with an
average density of 1 gauge per 62 square kilometers
and an average inter-station distance of 129.5 km. East
Java’s topography is defined by a mountainous ter-
rain extending east-west, while its northern region is
predominantly lowlands (Supari, 2012). Being part of
Java Island, East Java’s climate is principally shaped by
the wet northwest monsoon from November to March
(NDJFM) and the dry southeast monsoon from May to
September (MJJAS) (Aldrian and Susanto, 2003).

2.2 Assessment of Data Quality

Conducting a preliminary data quality analysis offers
an initial insight into the condition of the dataset.
We utilize the Quality Index (Q) proposed by Llabrés-
Brustenga (2019) and select parameters most relevant
to our research. TheQ index employed here represents
the completeness of the data, the distribution of gaps
within the dataset, and the proportion of monthly non-
zero precipitation accumulation. We opted not to use
the outlier and weekly data cycle indicators mentioned
in Llabrés-Brustenga (2019), as our research focuses
more on identifying dubious prolonged dry spell peri-
ods. Calculated using Equations 1 to 3 for each station
annually, theQ index produces values ranging from0 to
100. Values greater than 80 indicate acceptable quality,
while those below 50 suggest very low quality.

Q =
1

3

(
P +Qgaps+Qm

0

)
(1)

Qgaps = 100− 100
2 ∗ ngap + Lmax

gap

n
(2)

Qm
0 = 100− 100

(m0

m

)
(3)
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(a) (b)

(c) (d)

Figure 2 Data Quality Index: a) Q Index of stations in East Java; b) Average data availability (P) across all stations in East Java; c) Average
data gaps (Qgaps) across all stations in East Java; d) Average non-zero months (Qm

0 ) across all stations in East Java

In Eq.1-3, which focuses on a yearly period despite the
data sometimes being identified in days or months,
the following terms are defined: Q represents the data
quality index assigned to each station for every year
of the samples (%); P indicates the percentage of an-
nual data available (%);Qgaps reflects the yearly distri-
bution of data gaps (%); ngap denotes the total num-
ber of empty days in each year within the dataset
(days), where factor 2 in the equation accounts for the
weighted impact of the number of empty days; Lmax

gap

represents the maximum consecutive spell of empty
days in a yearly period (days); n indicates the number
of days within a year (days); Qm

0 represents the per-
centage of months in a year with non-zero rainfall ac-
cumulation (%); m0 indicates the number of complete
months in a year with zeromonthly precipitation accu-
mulation and m denotes the number of months in the
year for the given series.

2.3 Quality Control of Prolonged Zero Rainfall Records

The methodology presented here aims to assess pro-
longed, consecutive zero rainfall records by comparing
sequences from the target station to those from ref-
erence stations. The prolonged dry spells that will be
inspected further are those equal to or extending 180
days. This threshold is attributed to themonsoon activ-
ity that typically changes direction and affects rainfall
characteristics over six months (Mulsandi, 2024). Each
target station can have up to 10 reference stations,with

a maximum distance threshold of 50 km from the tar-
get station (Lewis et al., 2021). However, in the study
region, the actual maximum distance is found to be 35
km. The maximum altitude difference is set to ±200 m,
taking into account the orography of the study region
(Sciuto, 2009). TheAI index, set at 0.8 or higher, is used
to characterize the daily rainfall patterns between the
target and reference stations. It serves as a matching
statistic for non-rain (dry) and rain (wet) conditions be-
tween these stations (Eq. 4-6) (Blenkinsop et al., 2017;
Lewis, 2018, 2021). The use of AI is based on the con-
sideration that other alternative criteria, such as corre-
lation, may not be representative due to the existence
of zero values in the data. In order to proceed with the
AI,we should first convert daily rainfall data into binary
form: zero if daily rainfall is less than 1 mm and one if
it is 1 mm or more.

AI = I1 + I2 (4)

I1 = Fr [Yt = 0,Yr
t = 0] (5)

I2 = Fr [Yt = 1,Yr
t = 1] (6)

Referring to Eq.4 through Eq.6, Fr represents the fre-
quency of events; Yt represents the dry (0) or wet (1)
condition of the target station, while Y r

t represents the
same condition in reference stations.

149



Journal of the Civil Engineering Forum Vol. 11 No. 2 (May 2025)

(a) (b)

Figure 3 a) Proportion of stations detecting zero monthly precipitation accumulation during DJF; b) General pattern of rainfall in East
Java, identified as monsoonal, typically peaks during December to February (DJF) (BMKG, 2022b)

The neighboring check is not performed if the final
analysis yields fewer than three reference stations. To
minimize the effect of the seasonal cycle, we divide our
reference station detection into wet (NDJFMA) and dry
(MJJASO) season periods. For the flagging criteria, we
adopt the procedure outlined by Lewis (2021), employ-
ing a 15-day moving window. A sequence of 15 days of
consecutive zero periods is then considered dubious if
the average occurrence of wet days from all reference
stations is equal to or greater than three days. Lewis
(2018) identified this threshold as Type E events, where
likely false dry events are detected during the valida-
tion of a dry spell rule base with a 20% threshold. Thus,
a 15-day period of dry days is likely to be categorized
as false if at least 20% (three days) of the reference se-
quence is identified as wet days.

3 RESULTS

3.1 Data Quality Index

The 10-year average of the data quality index across
every station in East Java surpasses the threshold for
good quality, as shown in Figure 2a. More than 80% of
the stations have a quality index exceeding 90%. The
quality index ranges from 83.3% to 99.2%, with a mean
across all stations reaching 92.3%. These results sug-
gest that the initial data quality can be considered high
in terms of data completeness, gap distribution, and the
proportion of non-zero accumulated precipitation.

We also analyze each parameter that defines the qual-
ity index, including data completeness (P), gap distri-
bution (Qgaps), and non-zeromonthly precipitation ac-
cumulation (Qm

0 ), as depicted in Figure 2b, 2c, and 2d,
respectively. The P index shows a tight range between
99.21%and 99.87%, indicating nonsignificant temporal
fluctuations in data completeness. This near-complete
data availability, as reflected by the P index, is followed

by a low gap distribution of missing data. As shown in
Figure 2c,Qgaps range from aminimumvalue of around
97.83% to amaximumvalue of around 99.67%, suggest-
ing minimal gaps with short durations present in the
dataset. However, theQm

0 parameter exhibits a broader
range of values, from around 60% to above 90%. Six out
of 10 years oscillate below the Qm

0 value of 80%, with
the lowest values occurring in 2015 and 2019. This out-
come indicates a significant amount ofmonthly rainfall
accumulation equaling zero exists within the dataset.
At least two possible factors may trigger this condi-
tion: first, it may be attributed to natural climate phe-
nomena such as El Niño and the Indian Ocean Dipole
(IOD) events that occurred in 2015 and 2019, and sec-
ond, some of the datamay contain human error, such as
mistyping betweenmissing data and zero values. How-
ever, further investigation is required to get to the clos-
est justification.

3.2 Zero Rainfall Periods During Rainy Season Peaks

Identifying faulty zeros in the dataset presents a chal-
lenging issue, given the high variability of rainfall char-
acteristics across both temporal and spatial scales. De-
spite this complexity, certain climate types exhibit dis-
tinct patterns in rainfall occurrence over specific peri-
ods. In parts of Indonesia, for instance, such patterns
manifest as distinct peaks and troughs in rainfall ac-
cumulation, attributed to the activity of the northwest
and southeast monsoons. East Java is one such region
experiencing this monsoonal pattern, as illustrated in
Figure 3b,with rainfall typically peaking during the DJF
period (BMKG, 2022a). Based on the expected rainfall
pattern, any month of December, January, or Febru-
ary experiencing zero monthly rainfall accumulation
would be considered a data error. According to Fig-
ure 3a, 8.8% of stations in East Java recorded no pre-
cipitation throughout the entire months of December,
January, or February. As it appears to contradict the
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(a) (b)

Figure 4 a) Proportion of prolonged dry spells period over the years; b) Distribution of prolonged dry spells based on starting month

(a) (b)

Figure 5 a) Proportion of detected reference stations by wet and dry period; b) Flagging criteria illustration for period 1 May 2011 until
15 May 2011

climatic characteristic of the area, we flagged and ex-
cluded the corresponding stations with zero rainfall ac-
cumulations found in the DJF period.

3.3 Prolonged Zero Rainfall Periods

After detectingmore readily identifiable errors,we pro-
ceed to address the more complex cases related to pro-
longed dry spell periods. Employing a threshold of 180
consecutive days of zeros, we filter the periods that re-
quire further analysis. Our analysis reveals that half of
the stations in the dataset experienced at least one oc-
currence of prolonged dry spell periods from 2010 to
2019. Figure 4a shows the distribution of 55.47%of sta-
tions detecting extended zero periods over the years.
Notably, the highest occurrence was observed in 2015
and 2019, while no event was detected in 2013 and
2016. The onset of these prolonged dry spell periods
varied between March, April, May, and June, as illus-
trated in Figure4b, with the majority starting in March
and April. This result aligns with the previously ana-
lyzed Qm

0 that showed the lowest values in 2015 and
2019, indicating the highest occurrence of consecutive
zero rainfall.

We then assessed the dubious data containing extended
dry spells. Initially, we identified up to ten nearest sta-
tions for each target station within a 50 km radius, fol-
lowed by filtering the reference station candidates us-
ing the Affinity Index and altitude difference. This pro-
cess was conducted separately for wet (NDJFMA) and
dry (MJJASO) periods. The final results yielded pairs of
target-reference stations for up to 96.5% of all dubious
stations. As depicted in Figure 5a, the dry period pro-
duced more pairs of target-reference stations than the
wet period. Subsequently, after obtaining the reference
stations, we proceeded to identify prolonged consecu-
tive zero periods and applied the flagging criteria. The
flagging criteria are illustrated in Figure 5b, where 15
days of zero rainfall is considered dubious if the average
occurrence of rainy events across all reference stations
reaches a minimum of three days.

Overall, the methodology presented here successfully
evaluates 98% of events involving dubious prolonged
consecutive zero periods, while 2% of the events do not
meet the criteria of the reference stations and, there-
fore, cannot be evaluated. The majority of the evalu-
ated events are considered valid based on the reference
stations’ approach, while 3.9% were deemed dubious.
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Table 1. Statistics of annual station flags

Years Dubious Stations Flagged Stations Percentage (%)

2010 1 1 100

2011 35 5 14.29

2012 45 5 11.11

2014 30 5 16.67

2015 207 7 3.38

2017 7 3 42.86

2018 38 5 13.16

2019 223 3 1.35

The yearly statistics regarding stationflags are outlined
in Table 1. Remarkably, the highest flag occurrences
were recorded in 2010 and 2017, reaching 100% and
42%, respectively. These peaks were primarily driven
by a small initial number of stations experiencing pro-
longed dry spells, amounting to just one in 2010 and
seven in 2017. Across the remaining stations, flag per-
centages ranged from 1% to 16%. Interestingly, in 2015
and 2019, we observed the highest number of stations
detecting prolonged consecutive zero periods, yet the
flag percentages remained comparable to other years.
This result suggests the potential influence of climate
phenomena, such as El Niño and IOD, in amplifying dry
spell durations.

4 DISCUSSION

This research presents an analysis concerning zero
rainfall records that may raise doubts regarding their
occurrence and duration. This assessment is crucial
because zero values are part of natural rainfall fluc-
tuations, often less conspicuous compared to upper
precipitation limits. Such oversight could erroneously
suggest a gauge’s suitability for analysis over a given
period when, in fact, this might not be the case (Blenk-
insop et al., 2017). The initial detection of zero rainfall
issues stems from temporal variations in the average
Qm

0 , which exhibit a higher range compared to other in-
dices. Yearly variations in Qm

0 also consist of stations
with values less than or equal to 50%, indicating low
data quality. This finding related to Qm

0 is not revealed
in other similar studies implementing Q index; others
are more focused on identifying the globalQ index and
the rest are focused on different parameters, such as P,
Qgaps , and outliers (Llabrés-Brustenga, 2019; Estévez
et al., 2022).

Building upon the insights obtained from the data qual-
ity index, our approach begins by addressing the more
pronounced error: zero rainfall occurrences during the
DJF period, which aligns with the peak of the rainy sea-
son. This step of quality control is based on known cli-
matological characteristics of rainfall in the study area.
Eliminating this issue first from the dataset helps to re-
duce the uncertainty in evaluating the more dubious
cases involving prolonged dry spell periods. This hier-
archical strategy, moving from simpler checks to more

intricate analyses, mirrors methodologies employed in
prior research to systematically enhance data quality
(Einfalt and Michaelides, 2008). To evaluate these ex-
tended dry spell periods, we adopt an approach that
certain forms of data issues, such as data input er-
rors or instrument failures, are unlikely to be replicated
across gauge networks and possibly to be identified
through comparison with neighboring gauges (Lewis,
2018). Additionally, we operate under the assumption
that events of such prolonged duration will manifest
on a broader spatial scale, enabling neighboring station
comparison. This stands in contrast to extreme rainfall,
which typically occurs over shorter durations and tends
to be more localized.

The total count of data flagged as dubious due to pro-
longed dry spell periods amounts to 802 days across 31
different stations. The distribution of flagged days at
each station ranges from 0.38% to 2.03%,with the aver-
age across all stations being 0.71%. Themajority of the
stations, around 80.65%, had flagging rates of less than
1%. This finding is consistent with Lewis (2021), who
conducted quality control measures to address vari-
ous gauge malfunctions and recording errors, includ-
ing those associated with consecutive zero rainfall pe-
riods. Their study revealed that the majority of sta-
tions removed a small proportion of data (less than 5%),
where zero rainfall QC contributed the highest to the
data removal—a study by Vicente-Serrano, S.M. et al.
(2010) resulted in a similar flagging rate, with the max-
imum reaching 1.04%. From that flagged data, a signif-
icant proportion was also related to zero rainfall val-
ues. The concern regarding extended dry spell periods
also emerged as the primary issue in the study focusing
on the UK, despite the presence of other issues such as
large rainfall values, accumulated values, and consec-
utive large values (Lewis, 2018). Another study con-
ducted in Brazil also identified issues related to con-
secutive rainless periods exceeding 200 days within a
yearly cycle (Meira, 2022). The findings indicated that
the number of affected stations ranged from 1 to 85
during the 2014-2020 period, with the highest inci-
dence recorded in 2019. However, they did not inves-
tigate these cases further and directly labeled the sta-
tions as poor quality.

Another noteworthy finding from our research is the
temporal variability observed in prolonged dry spell
periods, which increased in accordance with the ac-
tive phase of El Niño. The El Niño effect is promi-
nent in Java, showing a tendency towards drier condi-
tions than normal. Previous research has found that
79 out of 97 stations during SON in El Niño years ex-
perienced significantly dry anomalies with magnitudes
of CDD greater than 40% relative to neutral years (Su-
pari, 2017). The effect of El Niño is also evident in the
longest dry spell duration ever recorded between 1991-
2020, reaching 298 days in East Java due to the 2009 El
Niño event (BMKG, 2022b). Additionally, the simulta-
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neous occurrence of El Niño and positive IOD (pIOD)
has the main contribution to drought severity in Java
(Siswanto, 2022). In this study, the occurrence of pro-
longed dry spells is dominated by 2015 and 2019,during
which a strong El Niño and the combination of El Niño
and IOD were present. This finding suggests that, de-
spite the errors detected within the prolonged period,
natural variability also plays a role in these extended
dry spell events.

In general, the quality control procedure introduced
here aims to shed light on issues related to extended
zero rainfall values, particularly in the study area
where this concern has seemingly been overlooked. In
proposing this method, we evaluate parameters and
thresholds defined by previous studies to determine
terms that can be effectively implemented in the study
area. The challenge here is particularly related to the
sparse distribution of rain gauge data. Thus, imple-
menting stricter, more robust thresholds will result in
more unvalidated stations. For instance, while other
studies have utilized Pearson and Spearman correla-
tions, these parameters seem unsuitable when con-
sidering the widely used threshold of 0.7. Therefore,
we opt for the Affinity Index instead. The parameter
used here represents a good level of applicability with-
out excessively flagging data, addressing the challenge
related to sparse station distributions (De Vos et al.,
2019).

Regarding the performance of the quality control
method, it is imperative to detect errors accurately
while minimizing false alarms. Consequently, many
studies integrate auxiliary data to validate their meth-
ods. In the case where this data is not available, some
research deliberately introduces known errors into the
rainfall dataset, such as using multiplicative errors,
seeding random numbers, and replacing observed val-
ues with zero values (You et al., 2007; Sciuto, 2009;
Terán-Chaves, 2021). Nonetheless, these approaches
introduce uncertainties regarding the appropriate am-
plitude for seeding errors among realistic precipitation
patterns and the suitable level at which errors should
be detected (Scherrer, 2011). In our research, we have
not conducted comparisons to other datasets, which
represents a potential area for further research. How-
ever, it’s important to note that datasets can never
be entirely free from errors (Llabrés-Brustenga, 2019),
such as systematic errors due to the acceleration effects
of winds and evaporation-induced precipitation loss
(Sevruk, 1996; Fankhauser, 1998; Lewis, 2018). Fur-
thermore, rainfall variability itself plays a crucial role
in the complexity of quality control procedures, espe-
cially when dealing with daily data.

5 CONCLUSION

In conclusion, our study identified twomajor issues re-
lated to zero rainfall values based on their timing and
duration: zero rainfall accumulation during the peak
of the wet season (DJF) and prolonged dry spell peri-
ods extending 180 days. Approximately 8.8% of sta-
tionswere flagged from the dataset due to zeromonthly
rainfall accumulation during the DJF period, while a
further 55.47% of stations underwent inspection us-
ing neighboring stations to assess spatial consistency
in detecting prolonged dry spell periods. This involved
the utilization of three parameters, including theAffin-
ity Index, maximum distance, and maximum height
difference, to select reference stations for each tar-
get station. Ultimately, the final assessment validated
96.1% of extended dry spell periods and rejected 3.9%
of the remaining cases. The approach employed in our
study represents a significant step toward improving
the quality of precipitation data, particularly regarding
zero rainfall issues. Identifying such issues is crucial for
daily datasets to provide a better understanding of cli-
mate phenomena and extreme conditions such as Con-
secutive Dry Days (CDD).
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