Computational study of active compounds of Citrullus lanatus Linn peel extract as potential antidiabetics

  • Shinta Dewi Permata Sari Faculty of Medicine, Department of Pharmacology and Therapeutics, Universitas Muhammadiyah Prof. DR. HAMKA, Jakarta, Indonesia https://orcid.org/0000-0002-8993-5878
  • Muhamad Arif Budiman Faculty of Medicine, Department of Biochemistry, Universitas Muhammadiyah Prof. DR. HAMKA, Jakarta, Indonesia.
  • Sri Suciati Ningsih Faculty of Medicine, Department of Biochemistry, Universitas Muhammadiyah Prof. DR. HAMKA, Jakarta, Indonesia.
Keywords: computational study, KEGG, PPI, T2DM, watermelon peel extract

Abstract

Diabetes mellitus (DM) is one of the metabolic diseases that have emerged as a global health problem. Type 2 diabetes mellitus (T2DM), which affect 90-95% of DM, is caused  by reduced insulin sensitivity and insulin resistance in peripheral tissues. Oral antidiabetics have resulted side effects, prompting an investigation for a natural-based antidiabetic agent as an alternative treatment. Using network pharmacology, we investigated the mechanism of phytochemical substances of Citrulus lanatus Linn. peel extract and their interactions with target proteins in the DM pathogenesis pathway. Cytoscape 3.6.1 software has created a network of extract compound-protein targets. Investigation of protein interaction, target gene function enrichment, and signal pathway performed via DAVID, STRING database, and the KEGG pathway database. The computational study identified 90 target proteins associated with T2DM based on protein-protein interactions. In addition, Cytoscape analysis and DAVID enrichment revealed the network of extract compound's target and generated proteins such as INS, TNF-α, IL-6, and AKT2. The KEGG pathway analysis presented the crucial role of insulin resistance and AGE-RAGE signaling pathways. This pathway correlated with lower glucose activity in obesity and hyperglycemia. It indicates that the active constituents of C. lanatus Linn peel extract can lower blood sugar levels by interacting with selected proteins. This study's findings will be carried out in further research of in vitro trials.

References

Yan Y, Wu T, Zhang M, Li C, Liu Q, Li F. Prevalence, awareness and control of type 2 diabetes mellitus and risk factors in Chinese elderly population. BMC Public Health 2022; 22(1):1382.

https://doi.org/10.1186/s12889-022-13759-9

International Diabetes Federation. Diabetes Facts and Figures [Internet]. 2021.

https://idf.org/about-diabetes/diabetes-facts-figures/

Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes - global burden of disease and forecasted trends. J Epidemiol Glob Health 2020; 10(1):107-11.

https://doi.org/10.2991/jegh.k.191028.001

Ye J, Wu Y, Yang S, Zhu D, Chen F, Chen J, Ji X, et al. The global, regional and national burden of type 2 diabetes mellitus in the past , present and future : a systematic analysis of the Global Burden of Disease Study 2019. Front Endrocrinol 2023; 14:1192629.

https://doi.org/10.3389/fendo.2023.1192629

Kementerian Kesehatan RI. Infodatin tetap produktif, cegah, dan atasi diabetes melitus 2020. Jakarta: Pusat Data dan Informasi Kementerian Kesehatan RI. 2020. p. 1–10.

Sitorus, Yuanita, Putri. Determinan kualitas hidup penderita diabetes melitus tipe 2 di kota Bogor tahun 2018. Bogor: Kementerian Kesehatan RI, 2018.

Soeatmadji DW, Rosandi R, Saraswati MR, Sibarani RP, Tarigan WO. Clinicodemographic profile and outcomes of type 2 diabetes mellitus in the Indonesian Cohort of DISCOVER: a 3-year prospective cohort study. J ASEAN Fed Endocr Soc 2023; 38(1):68-74.

https://doi.org/10.15605/jafes.038.01.10

Pudyawanti PE, Astuti MD, Adhie NR, Hidayat IW. Papaya leaf extract (Carica papaya L) as type 2 diabetes mellitus. Prooceding of Annual Pharmacy Conference on Patient Center Care Dalam Penanganan Diabetes Melitus Obese Geriatri Secara Koprehensif, Universitas Sebelas Maret, Surakarta, 97-102.

Zhang Z, Cao Y, Tao Y, Meng E, Tang J, Liu Y, et al. Sulfonylurea and fracture risk in patients with type 2 diabetes mellitus: a meta‐analysis. Diabetes Res Clin Pract 2020; 159:107990.

https://doi.org/10.1016/j.diabres.2019.107990

Deshmukh CD, Jain A, Tambe MS. Phytochemical and pharmacological profile of Citrullus lanatus (THUNB). Biolife 2015; 3(2):483-8.

https://doi.org/10.17812/blj2015.32.18

Harith SS, Mazlum MH, Mydin MM, Nawi L, Saat R. Studies on phytochemical constituents and antimicrobial properties of Citrullus lanatus peels. Malaysian J Anal Sci 2018; 22(1):151-6.

https://doi.org/10.17576/mjas-2018-2201-19

Gangwar M, Gautam MK, Sharma AK, Tripathi YB, Goel RK, Nath G. Antioxidant capacity and radical scavenging effect of polyphenol rich Mallotus philippenensis fruit extract on human erythrocytes: an in vitro study. Sci World J 2014; 2014:279451.

https://doi.org/10.1155/2014/279451

El Gizawy HA, El-Haddad AE, Attia YM, Fahim SA, Zafer MM, Saadeldeen AM. In vitro cytotoxic activity and phytochemical characterization (UPLC/T-TOF-MS/MS) of the watermelon (Citrullus lanatus) rind extract. Molecules 2022; 27(8):2480.

https://doi.org/10.3390/molecules27082480

Syachriyani, Firmansyah. Potensi antihiperglikemik ekstrak kulit buah semangka (Citrullus lanatus Linn) terhadap diabetes mellitus melalui penghambatan aktivitas enzim alfa glukosidase. J Mandala Pharmacon Indones 2022; 8(2):243-51.

https://doi.org/10.35311/jmpi.v8i2.244

Halayal RY, Bagewadi ZK, Maliger RB, Al Jadidi S, Deshpande SH. Network pharmacology based antidiabetic attributes of bioactive compounds from Ocimum gratissimum L. through computational approach. Saudi J Biol Sci 2023; 30(9):103766.

https://doi.org/10.1016/j.sjbs.2023.103766

Adnan M, Jeon BB, Chowdhury MHU, Oh KK, Das T, Chy MNU, et al. Network pharmacology study to reveal the potentiality of a methanol extract of Caesalpinia sappan L wood against type-2 diabetes mellitus. Life 2022; 12(2):227.

https://doi.org/10.3390/life12020277

Ge Q, Chen L, Yuan Y, Liu L, Feng F, Lv P, et al. Network pharmacology-based dissection of the anti-diabetic mechanism of Lobelia chinensis. Front Pharmacol 2020; 11:347.

https://doi.org/10.3389/fphar.2020.00347

Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R. Statistical practice in high-throughput screening data analysis. Nat Biotechnol 2006; 24(2):167-75.

https://doi.org/10.1038/nbt1186

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43(Database issue):D447-52.

https://doi.org/10.1093/nar/gku1003

Stielow M, Witczy A, Kubry´n N, Fijałkowski Ł, Nowaczyk J, Nowaczyk A. The bioavailability of drugs - the current state of knowledge. Molecules 2023; 28(24):8038.

https://doi.org/10.3390/molecules28248038

Tian S, Wang J, Li Y, Xu X, Hou T. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches. Mol Pharm 2012; 9(10):2875-86.

https://doi.org/10.1021/mp300198d

Hong Z, Duan X, Wu S, Yanfang Y, Wu H. Network pharmacology integrated molecular docking reveals the anti- covid­19 mechanism of qing-fei-da­yuan granules. Nat Prod Commun 2020; 15(6):1-15.

https://doi.org/10.1177/1934578X2093421

Ahmad I, Kuznetsov AE, Pirzada AS, Alsharif KF, Daglia M, Khan H. Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: hysicochemical, pharmacokinetic, and DFT-based approaches. Front Chem 2023; 11:1145974.

https://doi.org/10.3389/fchem.2023.1145974

Batool A, Parveen S, Shafiq N, Rashid M, Salamatullah AM, Ibenmoussa S, et al. Computational study of ADME-Tox prediction of selected phytochemicals from Punica granatum peels. Open Chem 2024; 22(1):1-13.

https://doi.org/10.1515/chem-2023-0188

Reichel A, Lienau P. Pharmacokinetics in drug discovery: an exposure-centred approach to optimising and predicting drug efficacy and safety. Handb Exp Pharmachol 2016; 232:235-60.

https://doi.org/10.1007/164_2015_26

Pansari P. Computational approaches for drug discovery from medicinal plant in the era of data driven research. Indian Drugs 2021; 58(08):7-23.

https://doi.org/10.53879/id.58.08.12930

Noor F, Qamar MTUI, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network pharmacology approach for medicinal plants: review and assessment. Pharmaceuticals 2022; 15(5):572.

https://doi.org/10.3390/ph15050572

Balogun O, Otieno D, Brownmiller CR, Lee SO, Kang HW. Effect of watermelon (Citrullus lanatus) extract on carbohydrates-hydrolyzing enzymes in vitro. Agriculture 2022; 12(6):772.

https://doi.org/10.3390/agriculture12060772

Ajiboye BO, Shonibare MT, Oyinloye BE. Antidiabetic activity of watermelon (Citrullus lanatus) juice in alloxan-induced diabetic rats. J Diabetes Metab Disord 2020; 19(1):343-52.

https://doi.org/10.1007/s40200-020-00515-2

Jibril MM, Hamid AH, Abas F, Karrupan J, Mohammed AS, Jaafar AH, et al. Watermelon (Citrullus lanatus) leaf extract attenuates biochemical and histological parameters in high-fat diet/streptozotocin - induced diabetic rats. J Food Biochem 2022; 46(2):e14058.

https://doi.org/10.1111/jfbc.14058

Olowosoke CB, Alaba AA, Adegboyega BB. Citrullus lanatus natural product library: a hoard of viable potential inhibitor candidates for diabetes mellitus type II therapeutic target enzymes. World J Adv Res Rev 2022; 15(1):534-60.

https://doi.org/10.30574/wjarr.2022.15.1.0713

Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2015; 2(3):251-86.

https://doi.org/10.3390/medicines2030251

Published
2025-06-11
How to Cite
1.
Sari SDP, Budiman MA, Ningsih SS. Computational study of active compounds of Citrullus lanatus Linn peel extract as potential antidiabetics. InaJBCS [Internet]. 2025Jun.11 [cited 2025Jun.16];57(2). Available from: https://jurnal.ugm.ac.id/v3/InaJBCS/article/view/14518
Section
Articles