Potential biomarkers of IFN-γ, IL-2 and CXCL9 for diagnosis of Q fever disease
Abstract
The pathogen responsible for Q fever disease, Coxiella burnetii, is a zoonosis classified as a pathogen due to its airborne transmission. The C. burnetii infection could be both acute or chronic in humans. The main and most common entry of the pathogens to the body is through the breathing of polluted aerosols containing a resistant substance similar to C. burnetii spores. This small cell variant (SCV) or spore-like morphotype is extremely stress-resistant, therefore inadequate treatment causes serious effects even death. Due to the diversity of clinical manifestations of Q fever and the presence of less specific and sensitive diagnoses for other diseases, multiple platforms for exploring Q fever biomarkers are required. Apart from serological studies to determine a biomarker for Q fever, it will be prudent to concentrate on the more appropriate cell-mediated immune response. This article discusses C. burnetii causing Q fever disease and how the host develops humoral and cellular immunity, particularly IFN-γ, IL-2 and CXCL9, as potential biomarkers for the diagnosis of Q fever disease.
References
Sobotta K, Hillarius K, Jiménez PH, Kerner K, Heydel C, Menge C. Interaction of Coxiella burnetii strains of different sources and genotypes with bovine and human monocyte-derived macrophages. Front Cell Infect Microbiol 2017; 7:543.
https://doi.org/10.3389/fcimb.2017.00543
Van Leuken JPG, Van de Kassteele J, Sauter FJ, Van der Hoek W, Heederik D, Havelaar AH, et al. Improved correlation of human Q fever incidence to modelled C. burnetii concentrations by means of an atmospheric dispersion model. Int J Health Geogr 2015; 14(1):14.
https://doi.org/10.1186/s12942-015-0003-y
Clark NJ, Soares Magalhães RJ. Airborne geographical dispersal of Q fever from livestock holdings to human communities: a systematic review and critical appraisal of evidence. BMC Infect Dis 2018; 18(1):218.
https://doi.org/10.1186/s12879-018-3135-4
Plummer PJ, McClure JT, Menzies P, Morley PS, Van den Brom R, Van Metre DC. Management of Coxiella burnetii infection in livestock populations and the associated zoonotic risk: a consensus statement. J Vet Intern Med 2018; 32(5):1481-94.
https://doi.org/10.1111/jvim.15229
Battisti JM, Watson LA, Naung MT, Drobish AM, Voronina E, Minnick MF. Analysis of the Caenorhabditis elegans innate immune response to Coxiella burnetii. Innate Immun 2017; 23(2):111-27.
https://doi.org/10.1177/1753425916679255
Brooke RJ, Kretzschmar ME, Mutters NT, Teunis PF. Human dose response relation for airborne exposure to Coxiella burnetii. BMC Infect Dis 2013; 13(1):488.
https://doi.org/10.1186/1471-2334-13-488
Van Roeden SE, Wever PC, Kampschreur LM, Gruteke P, van der Hoek W, Hoepelman AIM, et al. Chronic Q fever-related complications and mortality: data from a nationwide cohort. Clin Microbiol Infect 2019; 25(11):1390-8.
https://doi.org/10.1016/j.cmi.2018.11.023
Eldin C, Mélenotte C, Mediannikov O, Ghigo E, Million M, Edouard S, et al. From Q fever to Coxiella burnetii infection: a paradigm change. Clin Microbiol Rev 2017; 30(1):115-90.
https://doi.org/10.1128/CMR.00045-16
Kampschreur LM, Oosterheert JJ, Hoepelman AIM, Lestrade PJ, Renders NHM, Elsman P, et al. Prevalence of chronic Q fever in patients with a history of cardiac valve surgery in an area where Coxiella burnetii is epidemic. Clin Vaccine Immunol 2012; 19(8):1165-9.
https://doi.org/10.1128/CVI.00185-12
Ledbetter L, Cherla R, Chambers C, Zhang Y, Mitchell WJ, Zhang G. Major histocompatibility complex class II-restricted, CD4 + T cell-dependent and -independent mechanisms are required for vaccine-induced protective immunity against Coxiella burnetii. Infect Immun 2020; 88(3):e00824-19.
https://doi.org//10.1128/IAI.00824-19
Raijmakers RPH, Jansen AFM, Keijmel SP, Schoffelen T, Scholzen A, van der Meer JWM, et al. Interferon-γ and CXCL10 responses related to complaints in patients with Q fever fatigue syndrome. Eur J Clin Microbiol Infect Dis 2018; 37(7):1385-91.
https://doi.org/10.1007/s10096-018-3265-z
Vranakis I, Mathioudaki E, Kokkini S, Psaroulaki A. Com1 as a promising protein for the differential diagnosis of the two forms of Q fever. Pathogens 2019; 8(4):242.
https://doi.org/10.3390/pathogens8040242
Jansen AFM, Schoffelen T, Textoris J, Mege JL, Nabuurs-Franssen M, Raijmakers RPH, et al. CXCL9, a promising biomarker in the diagnosis of chronic Q fever. BMC Infect Dis 2017; 17(1):556.
https://doi.org/10.1186/s12879-017-2656-6
Clemente TM, Mulye M, Justis AV, Nallandhighal S, Tran TM, Gilk SD. Coxiella burnetii blocks intracellular interleukin-17 signaling in macrophages. Infect Immun 2018; 86(10):e00532-18.
https://doi.org/10.1128/IAI .00532-18
Biselli R, Mariotti S, Sargentini V, Sauzullo I, Lastilla M, Mengoni F, et al. Detection of interleukin-2 in addition to interferon-γ discriminates active tuberculosis patients, latently infected individuals, and controls. Clin Microbiol Infect 2010; 16(8):1282-4.
https://doi.org/10.1111/j.1469-0691.2009.03104.x
Sargentini V, Mariotti S, Carrara S, Gagliardi MC, Teloni R, Goletti D, et al. Cytometric detection of antigen-specific IFN-γ/IL-2 secreting cells in the diagnosis of tuberculosis. BMC Infect Dis 2009; 9:99.
https://doi.org/10.1186/1471-2334-9-99
Millington KA, Innes JA, Hackforth S, Hinks TSC, Deeks JJ, Dosanjh DPS, et al. Dynamic relationship between IFN-γ and IL-2 profile of Mycobacterium tuberculosis -specific T cells and antigen load. J Immunol 2007; 178(8):5217-26.
https://doi.org/10.4049/jimmunol.178.8.5217
Roest HIJ, Ruuls RC, Tilburg JJHC, Nabuurs-Franssen MH, Klaassen CHW, Vellema P, et al. Molecular epidemiology of Coxiella burnetii from ruminants in Q fever outbreak, the Netherlands. Emerg Infect Dis 2011; 17(4):668-75.
https://doi.org/10.3201/eid1704.101562
Schoffelen T, Sprong T, Bleeker-Rovers CP, Wegdam-Blans MCA, Ammerdorffer A, Pronk MJH, et al. A combination of interferon-gamma and interleukin-2 production by Coxiella burnetii-stimulated circulating cells discriminates between chronic Q fever and past Q fever. Clin Microbiol Infect 2014; 20(7):642-50.
https://doi.org/10.1111/1469-0691.12423
Honarmand H. Q fever: an old but still a poorly understood disease. Interdiscip Perspect Infect Dis 2012; 2012:131932.
https://doi.org/10.1155/2012/131932
Long CM, Beare PA, Cockrell DC, Larson CL, Heinzen RA. Comparative virulence of diverse Coxiella burnetii strains. Virulence 2019; 10(1):133-50.
https://doi.org/10.1080/21505594.2019.1575715
Van Schaik EJ, Case ED, Martinez E, Bonazzi M, Samuel JE. The SCID mouse model for identifying virulence determinants in Coxiella burnetii. Front Cell Infect Microbiol 2017; 7:25.
https://doi.org/10.3389/fcimb.2017.00025
Beare PA, Jeffrey BM, Long CM, Martens CM, Heinzen RA. Genetic mechanisms of Coxiella burnetii lipopolysaccharide phase variation. PLoS Pathog 2018; 14(3):e1006922.
https://doi.org/10.1371/journal.ppat.1006922
Sireci G, Badami GD, Di Liberto D, Blanda V, Grippi F, Di Paola L, et al. Recent advances on the innate immune response to Coxiella burnetii. Front Cell Infect Microbiol 2021; 11:754455.
https://doi.org/10.3389/fcimb.2021.754455
Dragan AL, Voth DE. Coxiella burnetii: international pathogen of mystery. Microbes Infect 2020; 22(3):100-10.
https://doi.org/10.1016/j.micinf.2019.09.001
Sandoz KM, Popham DL, Beare PA, Sturdevant DE, Hansen B, Nair V, et al. Transcriptional profiling of Coxiella burnetii reveals extensive cell wall remodeling in the small cell variant developmental form. PLoS One 2016; 11(2):e0149957.
https://doi.org/10.1371/journal.pone.0149957
Lührmann A, Newton HJ, Bonazzi M. Beginning to understand the role of the type IV secretion system effector proteins in Coxiella burnetii pathogenesis. Curr Top Microbiol Immunol 2017; 413:243-68.
https://doi.org/10.1007/978-3-319-75241-9_10
van Schaik EJ, Chen C, Mertens K, Weber MM, Samuel JE. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat Rev Microbiol 2013; 11(8):561-73.
https://doi.org/10.1038/nrmicro3049
Thiriot JD, Martinez-Martinez YB, Endsley JJ, Torres AG. Hacking the host: exploitation of macrophage polarization by intracellular bacterial pathogens. Pathog Dis 2020; 78(1):ftaa009
https://doi.org/10.1093/femspd/ftaa009
Hu X, Yu Y, Feng J, Fu M, Dai L, Lu Z, et al. Pathologic changes and immune responses against Coxiella burnetii in mice following infection via non-invasive intratracheal inoculation. PLoS One 2019 14(12):e0225671.
https://doi.org/10.1371/journal.pone.0225671
Mares-Guia MA, Rozental T, Guterres A, Ferreira Mdos S, Botticini Rde G, Terra AK, et al. Molecular identification of Q fever in patients with a suspected diagnosis of dengue in Brazil in 2013–2014. Am J Trop Med Hyg 2016; 94(5):1090-4.
https://doi.org/10.4269/ajtmh.15-0575
Lee SH, Lee JH, Park S, Lee HK, Do Hwang S, Jeong HW, et al. Isolation of Coxiella burnetii in patients with nonspecific febrile illness in South Korea. BMC Infect Dis 2020; 20(1):421.
https://doi.org/10.1186/s12879-020-05130-3
Wegdam-Blans MCA, Kampschreur LM, Delsing CE, Bleeker-Rovers CP, Sprong T, van Kasteren MEE, et al. Chronic Q fever: review of the literature and a proposal of new diagnostic criteria. J Infect 2012; 64(3):247-59.
https://doi.org/10.1016/j.jinf.2011.12.014
Schneeberger PM, Wintenberger C, van der Hoek W, Stahl JP. Q fever in the Netherlands - 2007-2010: What we learned from the largest outbreak ever. Med Mal Infect 2014; 44(8):339-53.
https://doi.org/10.1016/j.medmal.2014.02.006
van Roeden SE, Reukers DFM, van Jaarsveld CHM, Kampschreur LM, Hoepelman IM, Wever PC, et al. Chronic Q fever: patient and treatment-related factors influencing long-term quality of life. QJM 2018; 111(11):791-7.
https://doi.org/10.1093/qjmed/hcy171
Francis R, Mioulane M, Le Bideau M, Mati MC, Fournier PE, Raoult D, et al. High-content screening, a reliable system for Coxiella burnetii isolation from clinical samples. J Clin Microbiol 2020; 58(5):e02081.
https://doi.org/10.1128/JCM.02081-19
Miller HK, Kersh GJ. Analysis of recombinant proteins for Q fever diagnostics. Sci Rep 2020; 10(1):20934.
https://doi.org/10.1038/s41598-020-77343-0
Elliott A, Peng Y, Zhang G. Coxiella burnetii interaction with neutrophils and macrophages in vitro and in SCID mice following aerosol infection. Infect Immun 2013; 81(12):4604-14.
https://doi.org/10.1128/IAI.00973-13
Schoenlaub LL. The cellular and humoral immune response against primary infection with Coxiella burnetii. [Thesis] University of Missouri--Columbia; 2016.
https://doi.org/10.32469/10355/56985
Amira Ben Amara, Yassina Bechah JLM. Immune response and Coxiella burnetii invasion. In: Toman R, Heinzen RA, Samuel JE, Mege JL, editors. Coxiella burnetii: recent advances and new perspectives in research of the Q fever bacterium. Dordrecht: Springer Netherlands; 2012. pp. 287-98.
http://www.springerlink.com/index/10.1007/978-94-007-4315-1
Samuel EJ van S and JE. Phylogenetic Diversity, Virulence and comparative genomics. In: R. Toman, R. A. Heinzen, J. E. Samuel and J-LM, editor. Coxiella burnetii: recent advances and new perspectives in research of the Q fever bacterium. Dordrecht: Springer Netherlands; 2012. pp.13-38.
http://www.springerlink.com/index/10.1007/978-94-007-4315-1
Ammerdorffer A, Schoffelen T, Gresnigt MS, Oosting M, Den Brok MH, Abdollahi-Roodsaz S, et al. Recognition of coxiella burnetii by toll-like receptors and nucleotide-binding oligomerization domain-like receptors. J Infect Dis 2015; 211(6):978-87.
https://doi.org/10.1093/infdis/jiu526
Chen C, van Schaik EJ, Gregory AE, Vigil A, Felgner PL, Hendrix LR, et al. Chemokine receptor 7 is essential for Coxiella burnetii whole-cell vaccine-induced cellular immunity but dispensable for vaccine-mediated protective immunity. J Infect Dis 2019; 220(4):624-34.
https://doi.org/10.1093/infdis/jiz146
Peng Y, Schoenlaub L, Elliott A, Mitchell WJ, Zhang G. Characterization of a lipopolysaccharide-targeted monoclonal antibody and its variable fragments as candidates for prophylaxis against the obligate intracellular bacterial pathogen Coxiella burnetii. Infect Immun 2014; 82(11):4530-41.
https://doi.org/10.1128/IAI.01695-14
Read AJ, Erickson S, Harmsen AG. Role of CD4 + and CD8 + T cells in clearance of primary pulmonary infection with Coxiella burnetii. Infect Immun 2010; 78(7):3019-26.
https://doi.org/10.1128/IAI.00101-10
Shannon JG, Heinzen RA. Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii. Bone 2009; 23(1-3):138-48.
https://doi.org/10.1007/s12026-008-8059-4
Psaroulaki A, Mathioudaki E, Vranakis I, Chochlakis D, Yachnakis E, Kokkini S, et al. In the search of potential serodiagnostic proteins to discriminate between acute and chronic Q fever in humans. Some promising outcomes. Front Cell Infect Microbiol 2020; 10:557027.
https://doi.org/10.3389/fcimb.2020.557027
Ismail N, Olano JP, Feng HM, Walker DH. Current status of immune mechanisms of killing of intracellular microorganims. FEMS Microbiol Lett 2002; 207(2):111-20.
https://doi.org/j.1574-6968.2002.tb11038.x
Andoh M, Zhang G, Russell-Lodrigue KE, Shive HR, Weeks BR, Samuel JE. T cells are essential for bacterial clearance, and gamma interferon, tumor necrosis factor alpha, and B cells are crucial for disease development in Coxiella burnetii infection in mice. Infect Immun 2007; 75(7):3245-55.
https://doi.org/10.1128/IAI.01767-06
Zhang G, Peng Y, Schoenlaub L, Elliott A, Mitchell W, Zhang Y. Formalin-inactivated Coxiella burnetii phase I vaccine-induced protection depends on B cells to produce protective IgM and IgG. Infect Immun 2013; 81(6):2112-22.
https://doi.org/10.1128/IAI.00297-13
Zhang G, Russell-Lodrigue KE, Andoh M, Zhang Y, Hendrix LR, Samuel JE. Mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c Mice. J Immunol 2007; 179(12):8372-80.
https://doi.org/10.4049/jimmunol.179.12.8372
Vigil A, Chen C, Jain A, Nakajima-Sasaki R, Jasinskas A, Pablo J, et al. Profiling the humoral immune response of acute and chronic Q fever by protein microarray. Mol Cell Proteomics 2011; 10(10):M110.006304.
https://doi.org/10.1074/mcp.M110.006304
Kowalczewska M, Sekeyová Z, Raoult D. Proteomics paves the way for Q fever diagnostics. Genome Med 2011; 3(7):50.
Van de Vosse E, van Dissel JT, Ottenhoff TH. Genetic deficiencies of innate immune signalling in human infectious disease. Lancet Infect Dis 2009; 9(11):688-98.
https://doi.org/10.1016/S1473-3099(09)70255-5
Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 2012; 12(3)180-90.
https://doi.org/10.1038/nri3156
Limonard GJM, Thijsen SF, Bossink AW, Asscheman A, Bouwman JJM. Developing a new clinical tool for diagnosing chronic Q fever: the Coxiella ELISPOT. FEMS Immunol Med Microbiol 2012; 64(1):57-60.
https://doi.org/10.1111/j.1574-695X.2011.00890.x
Schoffelen T, Wegdam-Blans MC, Ammerdorffer A, Pronk MJH, Soethoudt YEP, Netea MG, et al. Specific in vitro interferon-gamma and IL-2 production as biomarkers during treatment of chronic Q fever. Front Microbiol 2015; 6:93.
https://doi.org/10.3389/fmicb.2015.00093
Schoffelen T, Joosten LAB, Herremans T, De Haan AFJ, Ammerdorffer A, Rümke HC, et al. Specific interferon γ detection for the diagnosis of previous Q fever. Clin Infect Dis 2013; 56(12):1742-51.
https://doi.org/10.1093/cid/cit129
Raoult D. Chronic Q fever: Expert opinion versus literature analysis and consensus. J Infect 2012; 65(2):102-8.
https://doi.org/10.1016/j.jinf.2012.04.006
Van Raemdonck K, Van den Steen PE, Liekens S, Van Damme J, Struyf S. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev 2015; 26(3):311-27.
https://doi.org/10.1016/j.cytogfr.2014.11.009
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018; 285(16):2944-71.
https://doi.org/10.1111/febs.14466
Altara R, Gu Y-M, Struijker-Boudier HAJ, Thijs L, Staessen JA, Blankesteijn WM. Left ventricular dysfunction and CXCR3 ligands in hypertension: from animal experiments to a population-based pilot study. PLoS One 2015; 10(10):e0141394.
https://doi.org/10.1371/journal.pone.0141394
Altara R, Manca M, Hessel MH, Gu Y, van Vark LC, Akkerhuis KM, et al. CXCL10 Is a circulating inflammatory marker in patients with advanced heart failure: a pilot study. J Cardiovasc Transl Res 2016; 9(4):302-14.