Indonesian Medicine Plants for Mental Health Disorders: Anxiety and Depression

Vivi Septya Wati1, Irmanida Batubara1,2*, Budi Arifin1, Susi Indariani2, Anggia Murni2, Wong Shi Xuan3 and Yutaka Kuroki3

1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, IPB Dramaga Campus, Bogor, West Java 16680, Indonesia
2. Tropical Biopharmaca Research Center, IPB University, Taman Kencana Street No 3, Bogor 16128, Indonesia
3. Delightex Pte Ltd, 230 Victoria Street, #15-01/08, Bugis Junction Towers, 188024, Singapore

Article Info
Submitted: 20-04-2023
Revised: 06-10-2023
Accepted: 16-11-2023
*Corresponding author
Irmanida Batubara
Email: ime@apps.ipb.ac.id

ABSTRACT
Mental health disorders are widely discussed, specifically anxiety and depression. The number of people living with these disorders in 2020 increased significantly due to the COVID-19 pandemic. Mental health disorders are quite serious and need to be addressed. Indonesian people have used medicinal plants in everyday life to treat symptoms of mental health disorders such as increasing mood and motivation, calming, overcoming depression, stress, anxiety, and sleep disorders. However, there has been no comprehensive review on the ethnopharmacology of medicinal plants. Therefore, this review aimed to analyze Indonesian medicinal plants used to treat mental health disorders and reviews the associated scientific evidence. Literature studies of scientific articles, research journals, and books were carried out at national and international levels. The search results identified 39 Indonesian medicinal plants used to treat symptoms of mental health disorders. The results showed that Fabaceae family had types of medicinal plants widely used and possess the potential to treat depression and anxiety. Several plants were proven in preclinical research, but many were not studied. Therefore, further analyses must be conducted to provide knowledge and develop drugs for mental health disorders.

Keywords: Antidepressant, Antianxiety, Ethnopharmacology, Indonesian Medicinal Plant

INTRODUCTION
Anxiety and depression are the most commonly discussed mental health disorders. The COVID-19 pandemic increased the number of people living with the disorders in 2020 (Kertzscher et al., 2022). Even though the pandemic is over, a mental health issue is still being discussed, affecting many people such as losing jobs and families. Anxiety and depression are two of the most common and highly comorbid psychiatric conditions worldwide. These negative emotions are associated with cognitive, biochemical, behavioral, and psychological changes (Saki et al., 2014). Anxiety is a state of resonant emotional arousal characterized by feelings of fear or worry. Excessive fear and worry, panic disorder, and related behavioral disorders are symptoms of anxiety. The symptoms are severe enough to cause significant pain or functional impairment (World Health Organization, 2022). Meanwhile, depression is a chronic mental illness that can be fatal. Depressive disorder is characterized by having a low mood for the majority of the day, practically every day, for at least two weeks (sad, irritable, or empty). This is also characterized by a loss of pleasure or interest in activities. Other signs could be trouble concentrating, excessive guilt or low self-esteem, hopelessness about the future, suicidal or death thoughts, sleep issues, changes in appetite, and extreme exhaustion (Dattani et al., 2021). Individuals experiencing depression are at an increased risk of suicide.

Indonesian Basic Health Research (Riskesdas) in 2018 reported that 19 and 12 million people experienced mental emotional disorders and depression, with an average
population of over 15 years old. The 2018 Riskesdas data experienced a significant increase, namely 5.3 per million from the 2013 Riskesdas data. According to Global Health Data Exchange (GHDx) (2022), approximately 301 and 280 million people lived with anxiety and depression disorders in 2019, including 58 and 23 million children and adolescents. Mental health disorders have been treated with psychological therapy and the use of antidepressants and antianxiety medications. However, long-term use of these drugs can result in unpleasant side effects. Headaches, nausea, drowsiness, diarrhea, insomnia, ejaculatory disorders, dry mouth, sweating, agitation, high blood pressure, constipation, nervousness, and loss of appetite are among the side effects (Chang et al., 2021; Cipriani et al., 2018). These medications are also expensive and are not recommended for children or adolescents. Alternative treatments that are safe, inexpensive, and easy to obtain are required, such as the use of medicinal plants. Medical plants in Indonesia are estimated to reach 30,000 species, and 7,500 are known to have medicinal and herbal properties (Salim and Munadi, 2017). For generations, Indonesian people have used medicinal plants in their daily lives. Some treat symptoms of mental health disorders, such as increasing mood and motivation, calming, and overcoming depression, stress, anxiety, and sleep disorders. Based on hereditary experience, medicinal plants are widely used for traditional medicine and must be proven. Proof can be carried out using scientific research in the form of preclinical and clinical trials. Traditional medicines have a historical track record of usage rather than relying solely on scientific research. After validation, these plants can be integrated into traditional and contemporary medical practices. This review considers plants extensively used for addressing mental health disorders in Indonesia. Furthermore, it explores the traditional utilization of these plants, their scientific scrutiny through screening methods, contemporary applications in healthcare, the corresponding scientific evidence, and the identification of active compounds.

METHODOLOGY

Search Strategy

The review article was prepared by conducting a literature study published until 2023. The literature used comprised scientific articles, research journals, and books on both the national and international levels, which contained the Indonesian ethnopharmacology, activities, and plants. The literature review was carried out by searching for articles using the keywords "antidepressant", "depressant", "antianxiety", "depressive disorder", "anxiolytic", "sedative", "insomnia", "forced swimming test", "tail suspension test" on Google Scholar, ScienceDirect, Springer, MDPI, PubMed and Researchgate. In addition, a search for several books and literature was carried out at the IPB University Library.

Study Selection

The search results obtained 361 literature which was then selected to obtain 157. The limited literature on the use of Indonesian medicinal plants in treating mental health disorders (depression and anxiety), both in the form of preclinical reports (in vivo and in vitro) and clinically. The selected studies discussed the pharmacology of antidepressants, antianxiety, and sedatives from extracts, fractions, or active compounds derived from medicinal plants in Indonesia. The selection process was based on search keywords in the title or abstract. The stages of selecting the appropriate article were first seen from the title, abstract, and analysis of the content, specifically for books from the table of contents.

Data extraction and processing

Data from books and literature were collected using previously determined tables containing information (plant names, parts of plants used, benefits, method of use, region or ethnicity, references) to support writing reviews of traditional uses. The construction of this review included four distincts. Traditional uses of medicinal plants were primarily sourced from books and literature while screening reviews, evidence, and information on active compounds were derived from articles and research journals. Data for evidence review was collected in a tabular form containing information on scientific and local plant names, extracts and active compounds, activity, dosage, test method, test animals, and references. An overview of active compounds was from data collected containing information on groups, active compounds, plants, activities, and mechanisms.

RESULTS AND DISCUSSION

Utilization of traditional Indonesian medicinal plants in overcoming mental health disorders

Indonesia is a multi-ethnic country, with around 300-700 ethnicities or tribes spread across various regions (Silalahi, 2016).
<table>
<thead>
<tr>
<th>No</th>
<th>Family</th>
<th>Scientific Name</th>
<th>Local Name</th>
<th>Material Part</th>
<th>Traditional Usage</th>
<th>How to Use (Oral/Topical etc.)</th>
<th>RA: Ethnic</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amaryllidaceae</td>
<td>Zephyranthes candida</td>
<td>Bawang brojol/kembang colet</td>
<td>Herbs and tubers</td>
<td>To treat epilepsy, insomnia, and impaired liver function (liver)</td>
<td>Oral</td>
<td>Melayu dan Sunda</td>
<td>Hariana, 2007</td>
</tr>
<tr>
<td>2</td>
<td>Annonaceae</td>
<td>Cananga odorata (Lam.) Hook f. & Thomson</td>
<td>Kenanga/kanthil</td>
<td>Leaf and flower</td>
<td>For traditional rituals, aphrodisiacs, and aromatherapy, reduces sleeping problems and tension, and overcome insomnia.</td>
<td>Oral and inhalational</td>
<td>Osing</td>
<td>Hartati, 2011</td>
</tr>
<tr>
<td>3</td>
<td>Annonaceae</td>
<td>Annona squamosa</td>
<td>Srikaya</td>
<td>Root and leaf</td>
<td>Anti-inflammatory, antidepressant, calms hysterical sufferers and treats constipation</td>
<td>Inhalational</td>
<td>Sumatera, Jawa, Kalimantan</td>
<td>Dalimartha, 2005</td>
</tr>
<tr>
<td>4</td>
<td>Apiaceae</td>
<td>Centella asiatica</td>
<td>Pegagan</td>
<td>Leaf</td>
<td>Brain tonic, wound, antihypertension, hemorrhoid, aphrodisiac, relax, mental fatigue, and neuroprotective</td>
<td>Oral</td>
<td>Adelina</td>
<td>Ahmad et al., 2021</td>
</tr>
<tr>
<td>5</td>
<td>Apiaceae</td>
<td>Foeniculum vulgare Mill.</td>
<td>Adas</td>
<td>Leaf, fruit, and oil</td>
<td>Aphrodisiac, anti-anxiety, overcomes insomnia, abdominal pain, cough, lack of appetite, and menstrual pain</td>
<td>Oral</td>
<td>Jawa, Osing, Madura</td>
<td>Hartati, 2011</td>
</tr>
<tr>
<td>6</td>
<td>Arecaceae</td>
<td>Areca catechu L.</td>
<td>Jambe/siwa/penang</td>
<td>Fruit</td>
<td>Energy, back pain, aphrodisiac, antidepressant</td>
<td>Oral</td>
<td>Jawa, Sunda</td>
<td>Adelina, 2013</td>
</tr>
<tr>
<td>7</td>
<td>Asteraceae</td>
<td>Vernonia cinerea (L) Less</td>
<td>Sawi langit/buyung-buyung/sembung kebo, leuleuncaan</td>
<td>Leaf</td>
<td>Fever medicine, body freshener, and overcomes insomnia</td>
<td>Oral</td>
<td>Jawa, Sunda, Bali, Minang, Minahasa, Bugis, Makassar, Sasak, Ternate</td>
<td>Djuahiriyah & Hernani, 2004</td>
</tr>
<tr>
<td>8</td>
<td>Asteraceae</td>
<td>Artemisia vulgaris Linn.</td>
<td>Sudamala/lokot mala</td>
<td>Root</td>
<td>Treating epilepsy, pain during menstruation, and relaxing.</td>
<td>Oral</td>
<td>Jawa, Sunda</td>
<td>Djuahiriyah & Hernani, 2004</td>
</tr>
<tr>
<td>9</td>
<td>Calophylaceae</td>
<td>Mesua ferrea L.</td>
<td>Dewadara/napasari</td>
<td>Flower stalk</td>
<td>Overcomes mental illness, expectorant, antidepressant</td>
<td>Oral</td>
<td>Sunda, Jawa, Melayu</td>
<td>Andila et al., 2020; Hariana, 2007</td>
</tr>
<tr>
<td>10</td>
<td>Fabaceae</td>
<td>Clitoria ternatea</td>
<td>Bunga telang</td>
<td>Flower</td>
<td>Antioxidant, relaxation, and eye medicine</td>
<td>Oral</td>
<td>Adelina</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Fabaceae</td>
<td>Mimosa pudica L.</td>
<td>Putri mala/Si kejut/Jukrutriat</td>
<td>Leaf</td>
<td>Sedatives, overcome insomnia, antidepressant</td>
<td>Oral</td>
<td>Jawa, Sunda</td>
<td>Hakim, 2015; Djuahiriyah & Hernani, 2004</td>
</tr>
<tr>
<td>12</td>
<td>Fabaceae</td>
<td>Mimosa inersia Colla</td>
<td>Putri mala besar</td>
<td>Leaf</td>
<td>Sleep disorders, diabetes medications</td>
<td>Oral</td>
<td>Karyati & Adhi</td>
<td></td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Tamarindus indica L.</td>
<td>Asam jawa</td>
<td>Fruit and leaf</td>
<td>Appetite enhancer, conditioning, insomnia</td>
<td>Brew fruit plus enough brown sugar with hot water, and drink while warm. A handful of fresh leaves or fruit and add one turmeric rhizome, boiled with 2 glasses of water to 1 glass, then drink the water</td>
<td>Oral</td>
<td>Jawa, Sunda, Bali, Aceh, Makasar</td>
<td>Hidayat & Napitupulu, 2015</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Flemingia macrophylla (Willd.) Merr. Flemingia strabiflora (L.) W.T.Aiton</td>
<td>Polita</td>
<td>Leaf and root</td>
<td>Reducing sleeping problems</td>
<td>Boiled and drink</td>
<td>Oral</td>
<td>Manui ethnic of Central Sulawesi</td>
<td>Rahmawati et al., 2020</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Flemingia strobilifera (L.) W.T.Aiton</td>
<td>Polita</td>
<td>Stem, bark, and root</td>
<td>Antidepressant</td>
<td>Scrape the stem, brew the bark with hot water, and drink a glass twice a day</td>
<td>Oral</td>
<td>Manui ethnic of Central Sulawesi</td>
<td>Rahmawati et al., 2020</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Leucas lavandulifolia L.</td>
<td>Lenglengan</td>
<td>Leaf</td>
<td>Medicine for headaches, anxiety, heat cramps in children, insomnia</td>
<td>The leaves are boiled with 2 cups of water until 1.5 cups remain. The boiled water is filtered and added with honey to taste, then drink ¼ cup 2 times a day, morning and evening.</td>
<td>Oral</td>
<td>Padang, Jawa, Sunda, Madura, Ternate, Tidore</td>
<td>Djusahriyah & Hernani, 2004</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Clerodendrum japonicum (Thunb.) Pagoda</td>
<td>Polita</td>
<td>Root, flower, leaf</td>
<td>Anti-inflammatory relieves swelling, overcomes insomnia</td>
<td>Powdered flowers or roots are taken 1 teaspoon, then put into a shot of sweet wine. Next, stir well and drink all at once before going to sleep.</td>
<td>Oral</td>
<td></td>
<td>Hartati, 2011</td>
</tr>
<tr>
<td>Lauraceae</td>
<td>Cinnamomum burmanii</td>
<td>Kayu manis</td>
<td>Stem, bark</td>
<td>Aphrodisiac, increases energy, headache, and antihypertension, makes relaxation and calm</td>
<td>Cinnamon is boiled using boiling water to produce a cinnamon drink</td>
<td>Oral</td>
<td>Bajau and Jawa</td>
<td>Hakim, 2015</td>
</tr>
<tr>
<td>Melastomataceae</td>
<td>Melastoma affine D. Don</td>
<td>Senduduk/ benggani/ harendong</td>
<td>Root</td>
<td>Soothing and treating hangovers</td>
<td>The roots are washed, and finely ground, then add enough water. After that, the herb is squeezed, then drunk</td>
<td>Oral</td>
<td>Jawa and Sunda</td>
<td>Djusahriyah & Hernani, 2004</td>
</tr>
<tr>
<td>Moraceae</td>
<td>Morus alba L.</td>
<td>Murbei</td>
<td>Fruit</td>
<td>Hypertension overcomes insomnia</td>
<td>The fruit is boiled with water up to half. Then the boiled water is drunk Made water infusion, distilled to take the oil, or made food.</td>
<td>Oral</td>
<td>Sumatera dan Jawa</td>
<td>Dalimarth, 2005</td>
</tr>
<tr>
<td>Myristicaceae</td>
<td>Myristica fragrans Houtt</td>
<td>Pala</td>
<td>Seed</td>
<td>Overcomes insomnia, antidepressant, aphrodisiac</td>
<td>The seeds are boiled with lotus seeds and angco until half of the water remains. Drink while warm, once a day.</td>
<td>Oral</td>
<td></td>
<td>Istriningis et al., 2018; Hartiana, 2007</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>Melaleuca leucadendra L.</td>
<td>Kayu putih</td>
<td>Leaf, bark</td>
<td>Body warmer boosts spirit, improves sleep, and relaxation, overcomes weakness (neurasthenia), insomnia</td>
<td>Distil leaves to take the oil, smeared. The bark is boiled with 2 cups of water until 1 cup remains. Boiled water is filtered and added honey to taste, then drink two times ½ cup.</td>
<td>Oral and inhalational</td>
<td></td>
<td>Hartiana, 2007</td>
</tr>
<tr>
<td>Nelumbonaceae</td>
<td>Nelumbo nucifera</td>
<td>Teratai</td>
<td>Seed, shoots</td>
<td>Insomnia, lethargy, lack of enthusiasm, treating fever, and restlessness</td>
<td>Lotus seeds and buds are boiled with water for up to half. Then the boiled water is drunk every day like tea.</td>
<td>Oral</td>
<td></td>
<td>Hartati, 2011</td>
</tr>
<tr>
<td>Family</td>
<td>Genus</td>
<td>Species</td>
<td>Properties</td>
<td>Preparation</td>
<td>Region</td>
<td>References</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oleaceae</td>
<td>Jasminum</td>
<td>sambac L.</td>
<td>Calms the mind, treats madness, and epilepsy, relieves itching, fever, and nausea. Aromatherapy, makes happy, relaxed, love, playful, insomnia, antistress, and analgesic. Used as an essential oil or brewed in tea, burned with candles, inhaled, or distilled. Jasmine root 10 g and a little water, crushed, taken 2 times a day @ 1 tablespoon.</td>
<td>Oral and inhalational. Oral and topically.</td>
<td>Oral, topical, and inhalational.</td>
<td>Hakim, 2015; Andila et al., 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piperaceae</td>
<td>Piper nigrum</td>
<td>Lim.</td>
<td>Stimulates endorphins’ production, antidepressants, aphrodisiac.</td>
<td>Clean herbs, boiled with 3 cups of water until 1.5 cups remaining, cool, and drink 3 times a day. Lemongrass oil is used extensively by therapists in massage, muscle therapy, and skin toner. Boiled stem, and drink. Clean herbs, boil with enough water, chill, and drink 2 times a day. Effects begin to appear on the second day. You can also take P. paniculata and C. longa rhizomes 3 segments or more, then grated. Each plant is then cleaned and brewed with hot water. Flowers distilled by distillation, dried rose petals, then brewed into tea, rose water, can also be made by infusion of rose petals with water, then left for a day.</td>
<td>Oral</td>
<td>Hakim, 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>Morinda</td>
<td>citrifolia L.</td>
<td>Increase stamina and vitality, immunomodulator, pain reliever, sedative/calming, antidepressant.</td>
<td>Squeezed, the juice is brewed with hot water and drunk while warm. Flowers are boiled and then brewed into tea, rose water, can also be made by infusion of rose petals with water, then left for a day.</td>
<td>Oral</td>
<td>Hakim, 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutaceae</td>
<td>Citrus hystrix</td>
<td>D. C.</td>
<td>Overcoming influenza, stimulant, refresher, and sedative.</td>
<td>Lime leaves are boiled with water. The boiled water is poured into a bucket of warm water and then used for bathing. Fresh leaves are cut into pieces, then boiled in 2 cups of water down to 1 cup. After chilling, the boiled water is filtered and drunk 2 times a day every morning and evening.</td>
<td>Oral, topical, and inhalational.</td>
<td>Andila et al., 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutaceae</td>
<td>Citrus aurantifolia</td>
<td>(Christm.)</td>
<td>Antidepressant, fever, cough, sore, anticholesterol, aphrodisiac, overcome insomnia.</td>
<td>Squeezed, drunk.</td>
<td>Oral</td>
<td>Sunda and Priangan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solanaceae</td>
<td>Datura metel</td>
<td>L.</td>
<td>Treats asthma, cough, fear-induced epilepsy, mental illness, and drugs.</td>
<td>Flowers are dried, then brewed/boiled, and steeped/boiled water is drunk. Dried flowers are rolled up and burned, and the smoke is inhaled.</td>
<td>Oral and inhalational.</td>
<td>Hakim, 2015</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources:
- Hakim, 2015
- Andila et al., 2020
- Manui ethnic of Central Sulawesi
- Dalimartha, 2005
- Subagja, 2013
<table>
<thead>
<tr>
<th>36</th>
<th>Zingiberaceae</th>
<th>Curcuma aeruginosa</th>
<th>Temu hitam</th>
<th>Rhizome</th>
<th>Treat epilepsy, calm, and increase appetite.</th>
<th>The rhizome is sliced, plus K. galanga, L. c. asiatica leaves, M. arvensis leaves, and B. polystachyon leaves, then all boiled with 6 cups until half is left. Boiled water is taken 3 times a day after eating ½ cup.</th>
<th>Oral</th>
<th>Duryatmo, 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Zingiberaceae</td>
<td>Curcuma longa</td>
<td>Kanyit, kunir, konyek</td>
<td>Rhizome</td>
<td>Antidepressants and for neurological disorders</td>
<td>Grated and brewed</td>
<td>Oral</td>
<td>Osing, Jawa</td>
</tr>
<tr>
<td>38</td>
<td>Zingiberaceae</td>
<td>Curcuma xanthorrhiza</td>
<td>Temulawak</td>
<td>Rhizome</td>
<td>Treats loss of appetite, convulsions, Parkinson’s disease, nervous system, and relieves fatigue</td>
<td>Grated then squeezed, the juice is drunk, or boiled, brewed, or made into powder</td>
<td>Oral</td>
<td>Jawa, Sunda, and Riau</td>
</tr>
<tr>
<td>39</td>
<td>Zingiberaceae</td>
<td>Zingiber officinale</td>
<td>Jahe</td>
<td>Rhizome</td>
<td>Herbal medicine (jamu), body warmer, treats headaches, and loss of appetite, neuroprotective and as a stimulant</td>
<td>The rhizomes are cleaned, chopped, or grated, then brewed with hot water, add honey, then drink</td>
<td>Oral</td>
<td>Ahmad et al., 2021</td>
</tr>
</tbody>
</table>
This figure shows the diversity of the country and each tribe has its cultural wealth and local wisdom, including using plants for traditional medicine. Therefore, it is critical to understand how an ethnic group uses plants for treatment to advance both traditional and modern medicine. Many new medicines have been developed from plants that are more efficacious, effective, and safe using this knowledge approach (Süntrar, 2020). As a result of the knowledge collection, 1000 materials for treatment were obtained. Based on their application, 193 different types of materials with relaxing properties were reported. However, there are no comprehensive reviews of the ethnopharmacology of mental health disorders such as depression and anxiety. In this review, a comprehensive overview and up-to-date information are provided on the ethnopharmacology of mental health disorders. According to literature review, a total of 39 Indonesian medicinal plants are traditionally used to treat mental disorder symptoms. The selected plants have the potential to treat sleep disorders (insomnia), anxiety disorders (anti-anxiety), epilepsy, calming, relaxing, elevating mood, treating mental illness, overcoming stress (anti-stress), and treating depression (antidepressant).

Medicinal plants with the potential to treat mental disorders consist of 23 families (Table I). The family with the most widely used plants and the potential to treat disorders is the Fabaceae family (16%), followed by Zingiberaceae (11%) and Rutaceae (8%) (Figure 1a). Fabaceae is widely used because this family is the third-largest flowering plant in the world with more than 19,400 species and almost 770 genera (Azani et al., 2017) in tropical areas. Most Fabaceae plants possess medicinal properties and have long been used as traditional medicines. Results of ethnopharmacological studies in several regions such as in South Tambun District, Bekasi Regency (Anugrah et al., 2022), Sejahtera Village, Sukadana District, North Kayong Regency (Aminah et al., 2016), and around the Ake Tajawe Lolobata National Park, Maluku Province Utara (Nurrani et al., 2015) shows that the family is most widely used as medicine by local people. Besides being a medicine, it has many benefits for human life, including food, animal feed, ornamental plants, natural dyes, tannin producers, craft materials, furniture, and building materials (Hariri et al., 2021).

Zingiberaceae is the second family widely used and found in abundance in Indonesia with a tropical climate (Zahara, 2019). This family is used as spices, medicines, ornamental plants, cosmetics, drinks, and hair tonics. Zingiberaceae has also been used as a raw material in the industry of “jamu” and herbal medicine (Pitopang et al., 2018).

The part of the plant often used is the leaf (24%) (Figure 1b). The leaves are easy to use and obtained in large quantities compared to other plant parts (Tugume et al., 2016). This is because the fruit and flower need enough time to grow. The most widely used route for administering medicinal plants to treat mental health disorders is oral administration, totaling 14 species (Figure 2). Traditionally, many plants have been used orally and inhaled. Aroma comes from essential oils contained in plants and plays a role in lowering the level of the stress hormone cortisol. Therefore, essential oils are often used in aromatherapy to enhance calm feelings and avoid anxiety (Hakim, 2015). The results also show that some plants have the same use in various regions, such as kaffir lime.
and mustard greens. This shows that the plant has been widely known for its usefulness in various regions.

![Figure 2. Frequency distribution of general administration routes](image)

Screening and drug development of mental disorders

Knowledge of the use of plants for treatment by an ethnic group can be adopted to develop traditional and modern medicines. Potential plants based on ethnopharmacological knowledge are proven by conducting scientific research in the form of preclinical and clinical trials. Regarding mental disorders, preclinical scientific research has mostly used animal models to uncover the mechanisms included in anxiety and depression disorders. Animal models are also used to assist in screening plants and developing new drugs (Parle et al., 2010). This model is also known as the in vivo method. Furthermore, there are also in vitro methods for plant screening and drug development. Plant screening and drug development that play a role in treating mental disorders such as depression and anxiety will be reviewed.

The development of medicinal plants into ingredients that can be medically justified can be started with preclinical trials. Preclinical tests used for plant screening can be in vivo or in vitro. In mental health disorders, specifically anxiety and depression, many in vivo methods are used. Animal models widely used for screening for antianxiety agents are elevated plus maze (EPM) and Y, X, T, radial, and zero mazes. Furthermore, there are also Light-dark models (LDT), Open field/Closed field (OFT/CFT), Staircase tests, Hole board tests (HBT), Mirror chamber tests (MCT), and Marble burying tests (MBT). All models except the MBT are based on the spontaneous behavior of test animal responses without learning/memory and hunger/thirst impairments. Meanwhile, MBT is a model based on conditioned tasks (Parle et al., 2010). A model based on spontaneity is widely used in EPM to identify anxiolytic (anxiety-reducing) and anxiogenic (anxiety-increasing) drugs. The EPM test is performed with a 'plus sign' maze apparatus with two closed arms surrounded by a wall facing each other and separated by a square in the middle with two open arms. The labyrinth is raised from the ground to high, with open arms incorporating the elements of ignorance, fear, openness, and height. EPM is based on animals' natural aversion to exploring high open spaces. A sample with anxiolytic activity increases the animal’s exploration time in open arms, and vice versa for anxiogenic (Parle et al., 2010).

Using animal models is also an important tool in antidepressant drug screening. Depression-induced animals can mimic depressive symptoms exhibited by behavioral changes such as cognitive dysfunction. Depression animal models that are widely used for screening antidepressant agents are the forced swimming test (FST), tail suspension test (TST), open field test (OFT), chronic unpredictable mild stress (CUMS), and sugar preference. A sample with antidepressant activity can decrease immobilization time in TST and FST, as well as decrease the number of crossings, rearing, grooming in OFT, and sugar preference (Zhang et al., 2021). FST is the most widely used model in antidepressant research. In the test, rodents are forced to swim in a narrow cylindrical transparent container. Animals were put into a container filled with water for 15 minutes for a desensitization session and were returned to the cage. After 24 hours, the animal will be given the extract and put back into the cylindrical container. The originally active animal will become immobile, and removed from the container after a certain time. The antidepressant activity was assessed when the animals were active. The duration of immobility is documented and is anticipated to diminish with the administration of antidepressant agents (Sewell et al., 2021).

Several preclinical tests of antidepressant agents also used the in vitro method, including tests for monoamine oxidase (MAO) inhibition, citalopram-binding, serotonin transporter (SERT), norepinephrine transporter (NET) and dopamine transporter (DAT) uptake inhibition, brain-derived neurotrophic factor (BDNF) for antidepressants, neuroprotective on PC12 cells injured by corticosterone and GABA (Ferraz et al., 2019; Pedersen et al. al., 2008; Zheng et al., 2012).
The most widely performed in vitro test is MAO inhibition. MAO is a family of enzymes that catalyze monoamine oxidation and cause a decrease in the synaptic cleft, reducing the activation of monoamine receptors. The family consists of two isoforms, namely MAO-A and MAO-B. MAO-A causes oxidative deamination of serotonin, melatonin, and noradrenaline, while MAO-B degrades phenethylamine and benzylamine (Martins & Brijesh, 2018). Plant extracts with antidepressant activity will be able to inhibit MAO enzyme activity thereby increases synaptic availability and restores monoamine receptor levels.

Clinical trials follow the results of preclinical tests of plants that have been proven by testing directly on patients with mental health disorders such as MDD to determine their effects. Tests were conducted, extending beyond crude extracts, to identify the active substances in medicinal plants effective against mental health disorders. After the active substances are identified, the development of both modern and traditional medicines is carried out. The content of active plant substances that are quite large (> 2%) was developed by conducting isolation and purification. This purified isolate is developed into a modern drug ready to be prescribed by a doctor whose quality is similar to the active ingredients. The levels of active ingredients are large, and medicinal plants are said to be a source of ingredients/precursors (single component) (Parwata, 2016). Standardization is carried out to develop traditional medicines containing small active substances. This process is conducted starting from the raw materials to becoming preparations of natural medicines.

Scientific Evidence Indonesian Medicinal Plants overcome mental health disorders

Several Indonesian plants (Table I) lack scientific validation, with some not featured in the literature showing research on their potential in treating mental health disorders, including depression and anxiety, through clinical or preclinical trials. However, there are quite a few plants whose potential has been proven using preclinical tests. The following is scientific evidence for several medicinal plants which are differentiated based on their families. A total of 13 plant families have the potential to overcome mental health disorders, including the Annonaceae, Apiaceae, Arecaceae, Lauraceae, Asteraceae, Fabaceae, Lamiaceae, Myrtaceae, Piperaceae, Poaceae, Rubiaceae, Solanaceae, and Zingiberaceae families. These plants are divided into three bioactivities, namely, antidepressants, anxiolytics, and sedatives. The part of the plant used for the bioactivity test can be essential oil or extract. Families extensively researched and proven to be able to overcome mental health disorders are the Fabaceae and Lamiaceae.

Fabaceae is known as the Leguminosae and leguminous family. In this family, 14 plants have the potential to overcome mental health disorders, specifically depression and anxiety, as shown in Table II. Antidepressant activity is possessed by the plants Ceratonia siliqua L., Trigonella foenum-graecum, Prospis cineraria, Glycine max L. Merr., Mimoso pudica L., Vicia faba, Tamarindus indica L., and Vigna unguiculata. Plants with anxiolytic activity include Sesbania grandiflora (L.) Pers, Caesalpinia pulcherrima (L.) Swartz., and Cilitoria ternatea L.. Meanwhile, the plants that had both activities were Mucuna pruriens (L.) DC., Erythrina variegata, and Cassia sangueana. C. siliqua L fruit acetone extract had the highest antidepressant activity when viewed from the dose at 25 and 50 mg/kg (Agrawal et al. 2011). Furthermore, the highest anxiolytic activity was possessed by the benzene ethyl acetate fraction of Sesbania grandiflora, with a dose of 100 mg/kg and the EPM test method (Kasture et al. 2002).

A total of 13 plants in the Lamiaceae family have the potential to treat mental health (Table III). This family is known for its distinctive aroma widely used to treat mental health disorders by calming, relaxing, elevating mood, improving sleep quality, and overcoming anxiety. Plants with antidepressant activity are Mentha arvensis L., Mentha piperita, Pogostemon cablin Benth, Perilla frutescens, Ocimum sanctum L., Ocimum basilicum L., Nepeta cataria, Lavandula angustifolia Mill. Plectranthus scutellarioides have anxiolytic activity, while Rosmarinus officinalis L., Melissa officinalis L., and Leucas lavandulifolia J.E. Smith have both antidepressant and anxiolytic activities. Some plants have a sedative effect, namely Ocimum americanum L. and Perilla frutescens and the highest antidepressant activity based on dose is Perilla essential oil at 3 mg/kg (Ji et al. 2014).

Based on Table S1, two plants of the Annonaceae family can overcome anxiety, namely Annona muricata and Cananga odorata (Lam.) Hook f. & Thomson (Samuel et al. 2018; Ohemeng et al., 2020; Borgonetti et al., 2022). Part used is in the form of leaves, bark, and flowers.
<table>
<thead>
<tr>
<th>Scientific/Local Name</th>
<th>Extraction</th>
<th>Activity</th>
<th>Dose</th>
<th>Test Method (Animal)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassia singueana / cassia</td>
<td>Methanol leaf extract</td>
<td>Anxiolytic and antidepressant</td>
<td>100 and 200 mg/kg</td>
<td>HBT, EPM, OFT (A), FST and TST (B)</td>
<td>Alkali et al., 2019</td>
</tr>
<tr>
<td>Ceratonia siliqua L./ Pohon carob</td>
<td>Acetone extract of Fruits</td>
<td>Antidepressant</td>
<td>25 and 50 mg/kg</td>
<td>FST dan TST (C)</td>
<td>Agrawal et al., 2011</td>
</tr>
<tr>
<td>Clitoria ternatea L./ Bunga telang</td>
<td>Methanol extract of aerial parts</td>
<td>Antianxiety</td>
<td>100 and 200 mg/kg</td>
<td>EPM (D)</td>
<td>D. Kumar & Dhobi, 2017</td>
</tr>
<tr>
<td>Clitoria ternatea L./ Bunga telang</td>
<td>Methanol extract from roots</td>
<td>Antianxiety</td>
<td>100 mg/kg</td>
<td>EPM (D)</td>
<td>D. Kumar & Dhobi, 2017</td>
</tr>
<tr>
<td>Tamarindus indica L./ Asam jawa</td>
<td>Methanol stem bark extract</td>
<td>Antidepressant</td>
<td>75 and 150 mg/kg</td>
<td>FST and TST (D)</td>
<td>Yunusa et al., 2021</td>
</tr>
<tr>
<td>Trigonella foenum-graecum / kelaba/ fenugreek</td>
<td>Seed fraction</td>
<td>Antidepressant</td>
<td>140 mg/kg</td>
<td>FST, TST, SPT, MAO-A and B inhibition assay (E) FST (F)</td>
<td>J. Wang et al., 2019</td>
</tr>
<tr>
<td>Prosopis cineraria / Pohon shami</td>
<td>Aqueous extract of leaves</td>
<td>Antidepressant</td>
<td>200 mg/kg</td>
<td>EPM (B)</td>
<td>George et al., 2012</td>
</tr>
<tr>
<td>Caesalpinia pulcherrima (L.) Swartz./ Kembang Merak, jambul merak</td>
<td>Methanol extract from leaves</td>
<td>Anxiolytic</td>
<td>200 and 400 mg/kg</td>
<td>EPM (B)</td>
<td>Vuyyala et al., 2021</td>
</tr>
<tr>
<td>Erythrina variegata / Dadap ayam</td>
<td>Ethanol extract from the bark</td>
<td>Anxiolytic and antidepressant</td>
<td>50, 100, and 200 mg/kg</td>
<td>EPM, LDT, OFT, FST and TST (E)</td>
<td>Chu et al., 2019</td>
</tr>
<tr>
<td>Glycine max L. Merr./ Kedelai</td>
<td>Methanol extract from the seed</td>
<td>Antidepressant</td>
<td>500 mg/kg</td>
<td>FST (G)</td>
<td>Burdah et al., 2021</td>
</tr>
<tr>
<td>Mimosa pudica L./ Putri malu</td>
<td>Ethanol extract of leaves</td>
<td>Antidepressant</td>
<td>100 and 400 mg/kg</td>
<td>FST and TST (F)</td>
<td>Udyavar et al., 2021</td>
</tr>
<tr>
<td>Mucuna pruriens (L.) DC./ Kacang kara benguk</td>
<td>Ethanol 50% extract of seeds</td>
<td>Antidepressant</td>
<td>100 and 200 mg/kg</td>
<td>FST, TST, and CUMS (H)</td>
<td>Galani & Rana, 2014</td>
</tr>
<tr>
<td>Mucuna pruriens (L.) DC./ Kacang kara benguk</td>
<td>Methanol extract from seeds</td>
<td>Antidepressant</td>
<td>200 and 300 mg/kg</td>
<td>EPM, LDT, MBT, HBT, FST, and TST (F) EPM (I)</td>
<td>R. A. Patil & Ahmad, 2021</td>
</tr>
<tr>
<td>Sesbania grandiflora (L.) Pers./ Turi</td>
<td>Benzene ethyl acetate fraction</td>
<td>Anxiolytic</td>
<td>100 mg/kg</td>
<td></td>
<td>Kasture et al., 2002</td>
</tr>
<tr>
<td>Vicia faba / Kacang babi</td>
<td>Methanol extract from hulls</td>
<td>Antidepressant</td>
<td>1200 mg/kg</td>
<td>FST and TST (H)</td>
<td>Alam et al., 2016</td>
</tr>
<tr>
<td>Vigna unguiculata / Kacang Tunggak</td>
<td>Aqueous extract of aerial part (leaf and stem)</td>
<td>Antidepressant</td>
<td>600 and 800 mg/kg</td>
<td>FST, TST, LC, and OFT (C)</td>
<td>Akinpelu et al., 2017</td>
</tr>
</tbody>
</table>

(A) Wistar rats, (B) Albino mice, (C) Male albino mice, (D) Mice, (E) Male kunming mice, (F) Swiss albino mice, (G) Male Mus musculus mice, (H) Male Swiss mice, (I) Male mice
<table>
<thead>
<tr>
<th>Scientific/Local Name</th>
<th>Extraction</th>
<th>Activity</th>
<th>Dose</th>
<th>Test Method (Animal)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavandula angustifolia Mill./ Lavender</td>
<td>Essential oil of Flower</td>
<td>Antidepressant-Like</td>
<td>30 mg/kg BW 10 mg/kg BW</td>
<td>FST (A)</td>
<td>Friedland et al., 2021</td>
</tr>
<tr>
<td>Leucas lavandulifolia J.E.Smith / Lenglengan</td>
<td>Methanol extract n-hexane and ethanol extract from leaves</td>
<td>Anxiolytic and CNS depressant Antidepressant</td>
<td>200 dan 400 mg/kg BW 10 %</td>
<td>PC12 cells EPM, HBT, OFT and FST (B) Behavioral despair test, EPM, and OFT (C)</td>
<td>Islamie et al., 2021 Bernardi et al., 2010</td>
</tr>
<tr>
<td>Nepeta cataria / Catnip</td>
<td>Essential oil</td>
<td>Antidepressant</td>
<td>10 %</td>
<td>Behavioral despair test, EPM, and OFT (C)</td>
<td>Bernardi et al., 2010</td>
</tr>
<tr>
<td>Nefeta cataria / Catnip</td>
<td>Ethanol extract from leaves</td>
<td>Antidepressant</td>
<td>30 mg/kg BW</td>
<td>FST dan TST (E)</td>
<td>Shanaida et al., 2021</td>
</tr>
<tr>
<td>Nefeta cataria / Catnip</td>
<td>Methanol extract</td>
<td>Sedative Effect</td>
<td>50 mg/kg BW</td>
<td>FST dan TST (E)</td>
<td>Shanaida et al., 2021</td>
</tr>
<tr>
<td>Plectranthus scutellarioides / Miana / jawer kotok</td>
<td>Hydroalcoholic extract of leaves</td>
<td>Anxiolytic-like effects</td>
<td>100 and 200 mg/kg BW</td>
<td>The Staircase Model (SCM) and Light and Dark Chamber (LDM) (H)</td>
<td>Shanaida et al., 2022</td>
</tr>
<tr>
<td>Perilla frutescens / Perilla</td>
<td>Essential oil</td>
<td>Antidepressant</td>
<td>3 mg/kg</td>
<td>SPT, TST, FST, OFT (I) Inhalation administration and GABAergic system pathways (I)</td>
<td>Ji et al., 2014 Zhong et al., 2021</td>
</tr>
<tr>
<td>Rosmarinus officinalis L. / Rosmarin</td>
<td>Ethanol extract</td>
<td>Antidepressant and antianxiety</td>
<td>TST (J)</td>
<td>TST and EPMT post-LPS injection (I)</td>
<td>Astuti et al., 2022 Sasaki et al., 2021</td>
</tr>
<tr>
<td>Melissa officinalis L. / Lemon balm</td>
<td>Ethanol extract from leaves</td>
<td>Antidepressant and antianxiety</td>
<td>300 mg/kg</td>
<td>EPM, OFT, FST (K)</td>
<td>Taiwo et al., 2012 (Abbas- Maleki et al., 2017)</td>
</tr>
<tr>
<td>Mentha piperita / Papermint</td>
<td>Ethanol extract</td>
<td>Antidepressant</td>
<td>200 and 400 mg/kg</td>
<td>FST (L)</td>
<td></td>
</tr>
<tr>
<td>Mentha arvensis L. / daun poko</td>
<td>Essential oil</td>
<td>Antidepressant</td>
<td>781/kg MW</td>
<td>FST (F)</td>
<td>Yousuf et al., 2021</td>
</tr>
</tbody>
</table>

The essential oil from ylang flowers has a relatively high anxiolytic activity compared to others at a dose of 30 mg/kg (Borgonetti et al. 2022). In Table S2, the Apiaceae family has three plants that have the potential to overcome mental health problems, namely Apium graveolens, Centella asiatica, and Foeniculum vulgare Mill. (Shayani Rad et al. 2022; S. Kumar & Singh, 2019; A. Abbas et al., 2020). These plants have the potential as antidepressants and antianxiety drugs, while A. graveolens has a sedative effect. A. graveolens and F. vulgare Mill. use the seeds while C. asiatica uses the leaves. The essential oil from F. vulgare Mill. seeds have antidepressant activity at around 100-400 mg/kg (Abbasi-Maleki and Maleki 2021).

The Arecaceae family in Table S3 also contains three plants with the potential to overcome mental health disorders, Areca catechu L., Salacca zalacca, and Cocos nucifera L. (Mansour et al., 2021; Fahrudin & Haribowo, 2021; Azis & Rinding Lawan, 2020). A. catechu and S. zalacca seeds have antidepressant activity. Extract of A. catechu nuts or seeds has the potential as an antidepressant with a dose of 50 mg/kg to decrease immobilization time in the forced swimming test (FST) (Abbas et al. 2013). Extracts from several parts of C. nucifera L. also have the potential to address mental health problems, namely antidepressants and antianxiety.

The search results obtained 6 plants of the Asteraceae family (Table S4) with the potential to overcome mental health disorders, namely Gynura procumbens L. Merr., Lactuca sativa, Matricaria chamomilla, Pluchea indica, Erigeron linifolius, Tagetes erecta L. (Akter et al., 2019; Rajaram et al., 2020; Ioniță et al., 2019; Thongpraditchote et al., 1996; Pandey & Tripathi, 2014). Hydromethanol extract from T. erecta L. flower has the highest antidepressant activity of the others with a dose of 25 mg/kg. T. erecta L. flower can decrease immobility time in the FST test (Khulbe et al. 2013). Antianxiety activity of the ethanol extract of chamomile flowers has the highest value compared to the others at a dose of 10-50 mg/kg (Kesmati et al. 2014). Meanwhile, G. procumbens L. Merr. and P. indica plants possess a sedative effect.

Cinnamomum burmanii and kilemo Litsea cubeba (Lour.) Pers. from Lauraceae family (Parisa et al., 2020; Chen et al., 2012) have sedative effects. L. cubeba (Lour.) Pers. also has antianxiety. C. burmanii contains essential oils such as eugenol, which provide a calming feeling/psychological effect. The plant is widely used to treat neurodegenerative diseases (Judge 2015) and the ethanol extract has antidepressant activity at 25-100 mg/kg (Parisa et al. 2020).

In Table S6 and S7 families, there are two plants with the potential to overcome health disorders, namely Syzygium aromaticum and Syzygium cuminii (Myrtaceae), as well as Piper methysticum L. and Piper nigrum Linn. (Piperaceae) (Rehman et al., 2020; P. Tiwari et al., 2014; Emon et al., 2021). S. aromaticum has antianxiety activity, while S. cuminii possesses antidepressant, antianxiety, and sedative effects (Galal and Abdellatif 2015; Rehman et al. 2020). P. nigrum Linn. and S. aromaticum are used as extracts or essential oils. The two plants with the best activity are essential oils. Considering the dose, the activity of the essential oil is higher than the extract. For example, Galal and Abdellatif (2015) showed that essential oil from S. aromaticum has antianxiety activity at a dose of 0.05-0.1 mg/kg.

A total of four plants has the potential to overcome mental health disorders from the Poaceae family, namely, Cymbopogon citratus (DC) Stapf, Cymbopogon nardus (L.) Rendle, Sorghum halepense, and Vetiveria zizanoides (Umukoro et al., 2020; Simorangkir et al., 2020; Rambabu and Rao Patnaik 2016; Nirwane et al., 2015). Based on the results of Table S8, C. citratus (DC) Stapf and S. halepense have antidepressant and anxiolytic activity, C. nardus (L.) Rendle possesses antidepressant and sedative activity, while V. zizanoides has anxiolytic activity. C. citratus (DC) Stapf has the highest activity when viewed from the dose. Essential oil and extract of C. citratus (DC) Stapf have high activity at 10 mg/kg and decrease immobilization time in FST (Costa et al. 2011; Dudhgaonkar et al. 2014).

The search results obtained 6 plants of the Rubiaceae family (Table S9) with the potential to overcome mental health disorders, namely, Hamelia patens Jacq., Mitragyna speciosa Korth., Morinda citrifolia L., Nuclea latifolia Smith, Uncaria lanosa Wallich var. Appendiculata Ridsd., Uncaria rhynchosphylla (Miq.) Miq. Ex Havi1 (Surana & Wagh, 2017; Farah Idayu et al., 2011; Narasingam et al., 2017; Iliya et al., 2022; Hsu et al., 2012; Geng et al., 2019). H. patens Jacq., M. speciosa Korth., U. lanosa, M. citrifolia L., and U. rhynchosphylla (Miq.) Miq. Ex Havi1 have antidepressant and N. latifolia has antianxiety activity, while mengkudu acts as both. Several previous studies have succeeded in isolating compounds with the potential as antidepressants. Farah Idayu et al. (2011) successfully isolated Mitragynine from M. speciosa Korth. (Rubiaceae), which has antidepressant...
activity at a dose of 10-30 mg/kg and can decrease immobilization time in FST. Gang et al. (2019) also isolated catechin that acts as an antidepressant from *U. rhynchophylla* (Miq.) Miq. Ex Havil at a dose of 20-80 mg/kg decreases immobility time.

In the Solanaceae family (Table S10), 4 potential plants were obtained, namely *Daturn stramonium* L., *Solanum torvum* Swartz, *Solanum nigrum* L., and *Withania somnifera* (Sobhanifar et al., 2021; Mohan et al., 2013; Momin & Mohan, 2011; Siswanti, 2016; Kaur et al., 2017). *D. stramonium* L. and *W. somnifera* have antianxiety and sedative activities, while *W. somnifera* acts as an antidepressant. *S. torvum* Swartz has antidepressant and antianxiety activity, while *S. nigrum* L. only possesses antidepressant activity. The sedative effect of water extract from short amethyst seeds is quite high at a dose of 20-80 mg/kg, which can induce sleep time in rats (Malami et al. 2014). The highest antidepressant activity is possessed by water extract of *W. somnifera* root with 20 mg/kg and can decrease the patient’s immobility time in FST and TST (Jayanthi et al. 2012).

Zingiberaceae is known for its rhizome body widely used as herbal medicine in Indonesia. Several plants from this family also have the potential to overcome mental health disorders (Table S11) namely, *Alpinia galanga* L., *Curcuma longa*, *Curcuma xanthorrhiza*, *Kaempferia galanga* L., and *Zingiber officinale* Roscoe (Saha & Banerjee, 2013; Oyemitan et al., 2017; Kartikasari et al., 2019; Ali et al., 2015; Sharma et al., 2016). Extracts and essential oils from this family have activity in overcoming mental health disorders. The *n*-hexane *K. galanga* L. extract possessed the highest sedative effect at a dose of 1,5 and 10 mg (Huang et al. 2008). Gupta and Maheshwari (2017) also succeeded in isolating curcumin with antianxiety activity at a dose of 50 mg/kg capable of increasing animal exploration time in the EZM test.

The results of literature studies for scientific evidence of Indonesian medicinal plants with the potential to overcome mental health disorders are small. Screening of potential plants is still mostly carried out using in vivo methods, while in vitro are rarely used. The exploration of potential plants is still insufficient, with only a limited number studied to identify the active compounds with therapeutic effects. There is also limited research that has reached clinical trials. Therefore, this literature review serves as a valuable resource, offering insights into Indonesian medicinal plants with the potential to treat disorders. Further exploration and research are encouraged for the development of alternative medicines to address mental health challenges.

Active Compounds of Indonesian Medicinal Plants that have the potential to treat mental health disorders

Medicinal plants have activities that can overcome mental health disorders due to active compounds. Some of the above plants have been proven and studied to obtain active compounds such as flavonoids, terpenoids, alkaloids, aromatics, lactones, carboxylic acids, and lignans. The active compounds in several Indonesian medicinal plants that play a role in overcoming mental health disorders are shown in Table IV.

Flavonoids are active compounds found in many Indonesian medicinal plants that have the potential to treat mental health disorders. Based on the table, 12 these compounds are active, including curcumin, catechin, torvanol A, medicarpin, 3-O-glucoside, gossypetin-3-O-glucoside, naringenin-7-O-glucoside, kaempferol 3-(p-coumaryl) glucoside, quercetin 4′-O-β-d-glucopyranoside, apigenin 4′,7-diglucoside,chaftoside, isochafatoside and apigenin 8-C-α-D-glucopyranoside. Flavonoids play a role in overcoming depressive disorders, except for curcumin and torvanol A used for anxiety disorders. Several previous studies have studied the effects of the compound on depression and anxiety disorders. The results show the presence of multiple mechanisms, including the activation of BDNF signaling pathway through the restoration of stress-induced BDNF regulation. Moreover, there is an observed elevation in BDNF expression and levels within the hippocampus. These mechanisms also comprise interactions with serotonergic 5-HT1A, noradrenergic NA, and dopaminergic receptors (D1, D2, and D3). The intervention restores brain monoamine levels by augmenting serotonin and dopamine in the CNS, enhancing CREB expression with cytoprotective properties. Furthermore, there are interactions with opioid receptors, serving as a specific TrkB agonist, stimulating neurogenesis in the hippocampus, and reducing hyperglycemia. The intervention shows a neuroprotective effect by attenuating neuroinflammation with antioxidant properties, influencing iNOS transmission, modulating GABAA receptor regulation, and acting as a melatonin receptor agonist (MT1 and MT2). MAO-A expression and activity are also reported through the regulation of KLF 11-MAO-A and SIRT1-MAO-A.
Tabel IV. Active compounds of Indonesian medicinal plants overcome mental health disorders

<table>
<thead>
<tr>
<th>Active Compound</th>
<th>Plant</th>
<th>Activity</th>
<th>Mechanism</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavonoid</td>
<td>Cathecin</td>
<td>Uncaria Rhynchophylla LOTUS CORNICULATUM L.</td>
<td>Reduced immobility time in doses 80, 40, and 20 mg/kg (FST and TST). A dose of 100 mg/kg can reduce immobility time (FST, TST), inhibit MAO-A and MAO-B enzymes</td>
<td>Melatonin receptor agonists (MT1 and MT2) Reversal of monoamine neurotransmitter attenuation and up-regulation of BDNF expression</td>
</tr>
<tr>
<td>Active Compound</td>
<td>Fraction 13-20: medicarpin-3-o-glucoside (an isoflavonoid derivative), gossypetin-3-o-glucoside, naringenin-7-o-glucoside (flavanone)</td>
<td>Dose 50 mg/kg increasing time spent in open arm (antianxiety EPM)</td>
<td>Affects the transmission of dopamine and norepinephrine, serotonin, and iNOS, weakens the regulation of GABAA receptors</td>
<td>Ceremuga et al., 2017</td>
</tr>
<tr>
<td>Curcumin</td>
<td>Uncaria Rhynchophylla LOTUS CORNICULATUM L.</td>
<td>Reduced immobility time in doses 80, 40, and 20 mg/kg (FST and TST). A dose of 100 mg/kg can reduce immobility time (FST, TST), inhibit MAO-A and MAO-B enzymes</td>
<td>Melatonin receptor agonists (MT1 and MT2) Reversal of monoamine neurotransmitter attenuation and up-regulation of BDNF expression</td>
<td>Geng et al., 2019 Dereli et al., 2020</td>
</tr>
<tr>
<td>Curcumin</td>
<td>Curcuma Longa</td>
<td>Reduced immobility time in doses 80, 40, and 20 mg/kg (FST and TST). A dose of 100 mg/kg can reduce immobility time (FST, TST), inhibit MAO-A and MAO-B enzymes</td>
<td>Melatonin receptor agonists (MT1 and MT2) Reversal of monoamine neurotransmitter attenuation and up-regulation of BDNF expression</td>
<td>Geng et al., 2019 Dereli et al., 2020</td>
</tr>
<tr>
<td>Torvanol a (isoflavonoid)</td>
<td>Solanum torvum</td>
<td>Dose 50 mg/kg increasing time spent in open arm (antianxiety EPM)</td>
<td>Affects the transmission of dopamine and norepinephrine, serotonin, and iNOS, weakens the regulation of GABAA receptors</td>
<td>Ceremuga et al., 2017</td>
</tr>
<tr>
<td>Torvanol a (isoflavonoid)</td>
<td>Solanum torvum</td>
<td>Doses 10 and 30 mg/kg decreased the immobility period, and the time spent in closed arms, and in dark areas. Increased the time spent in open arms and the light area.</td>
<td>Increase noradrenaline (NE), 5-hydroxytryptamine (5-HT), and dopamine (DA) levels in the brain because they can interact with A1 adrenoceptors, 5-HT receptors, and D2 receptors</td>
<td>Mohan et al., 2013</td>
</tr>
<tr>
<td>Torvanol a (isoflavonoid)</td>
<td>Solanum torvum</td>
<td>Dose 50 mg/kg increasing time spent in open arm (antianxiety EPM)</td>
<td>Affects the transmission of dopamine and norepinephrine, serotonin, and iNOS, weakens the regulation of GABAA receptors</td>
<td>Ceremuga et al., 2017</td>
</tr>
<tr>
<td>Torvanol a (isoflavonoid)</td>
<td>Solanum torvum</td>
<td>Doses 10 and 30 mg/kg decreased the immobility period, and the time spent in closed arms, and in dark areas. Increased the time spent in open arms and the light area.</td>
<td>Increase noradrenaline (NE), 5-hydroxytryptamine (5-HT), and dopamine (DA) levels in the brain because they can interact with A1 adrenoceptors, 5-HT receptors, and D2 receptors</td>
<td>Mohan et al., 2013</td>
</tr>
<tr>
<td>Fr3-3: kaempferol 3-(p-coumaryl) glucoside, quercetin 4’-o-b-d-glucopyranoside, apigenin 4’,7-diglucoside, schaftoside, isoschaftoside and apigenin 5-c-a-d-glucopyranoside (Schaftoside) (quercetin 4’-o-b-d-glucopyranoside)</td>
<td>Trigonella foenum graecum</td>
<td>Dose 35, 70, and 140 mg/kg reduced sucrose preference and increased immobility time</td>
<td>Regulate the KLF11-MAO-A and SIRT1-MAO-A signal pathways and regulate the levels of the monoamine neurotransmitters (NE, 5-HT, DA, and their metabolites) in the prefrontal cortex, hippocampus, and striatum in chronic restraint stress rats to inhibit MAO-A expression and activity</td>
<td>J. Wang et al., 2019</td>
</tr>
<tr>
<td>Active Compound</td>
<td>Plant</td>
<td>Activity</td>
<td>Mechanism</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Triterpenoid Asiaticoside</td>
<td>Centella asiatica</td>
<td>Dose 20 and 40 mg/kg decreased sucrose consumption and reduced the immobility time in TST and FST in CMS mice</td>
<td>Increased levels of pCREB and BDNF, and CAMP/PKA signaling in the CMS model, increased levels of monoamine neurotransmitters</td>
<td>L. Wang et al., 2020</td>
</tr>
<tr>
<td>Asiatic acid</td>
<td>Centella asiatica</td>
<td>Reduced immobility time in doses 5, 10, and 20 mg/kg (FST and TST)</td>
<td>Protect dopaminergic neurons by antagonizing 1-methyl-4 phenyl 1,2,3,6 tetrahydropyridine (MPTP) and has also been found to decrease the glutathione levels significantly, and decrease corticosterone levels and increase the content of monoamine neurotransmitters</td>
<td>Girish & Sanjay, 2020</td>
</tr>
<tr>
<td>Alkaloid Mitragynine</td>
<td>Mitragyna speciosa Korth</td>
<td>At doses of 10 mg/kg and 30 mg/kg reduces corticosterone release in mice exposed to FST and TST</td>
<td>The effect is due to interaction with neuroendocrine HPA axis systems</td>
<td>Farah Idayu et al., 2011</td>
</tr>
<tr>
<td>Amide alkaloid (piperine)</td>
<td>Piper nigrum L.</td>
<td></td>
<td>Counteracting 6-OHDA-induced injury in human dopaminergic cells. Therefore, it can increase cell viability induced by 6-OHDA.</td>
<td>Yu et al, 2022</td>
</tr>
<tr>
<td>Caffeine</td>
<td>Coffea sp</td>
<td>Dose 5 mg/kg reduced immobility time (FST)</td>
<td>The primary way that caffeine affects neurons is by blocking the adenosine inhibitory A1 and stimulatory A2A receptors, which regulate neuronal excitability and the release of several neurotransmitters</td>
<td>Szopa et al, 2016</td>
</tr>
<tr>
<td>Active Compound</td>
<td>Plant</td>
<td>Activity</td>
<td>Mechanism</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lignan Glycoside</td>
<td>Lignan Glycoside</td>
<td>Albizia julibrissin Durazz</td>
<td>Dose 3.6 mg/kg, p.o. can increase the quantity and length of time spent on the central entries in the OFT</td>
<td>Increases concentrations of NE, DA, HVA, 5-HT, and 5-HIAA throughout the cerebral cortex, and NE, 5-HT, and 5-HIAA act in the hippocampus of the brain</td>
</tr>
<tr>
<td>Hydrocarbons, Aromatic</td>
<td>Barakol</td>
<td>Cassia siamea Lamk</td>
<td>Dose 5, 10, 15, and 30 mg/kg increased swimming time (FST)</td>
<td>At the pre-synaptic nerve terminal, barakol inhibit dopamine release at both dopamine D2 and D3 receptor. At the post-synaptic nerve terminal, a low dose of barakol (10 mg/kg) can produce anxiolytic activity at her D2 receptors, whereas high doses of barakol produce hypokinesis and sedation at her D3 receptors.</td>
</tr>
<tr>
<td>Lactone</td>
<td>Kavalactones (dihydrokavain, methysticin, dihydromethysticin, yangonin, and desmethoxyyangonin) (dihydrokavain)</td>
<td>Piper methysticum</td>
<td>The strongest MAO inhibitor has IC50 values for MAO-A and MAO-B of 1.29 and 0.085 µm, respectively</td>
<td>Inhibitors of MAO-A</td>
</tr>
<tr>
<td>Carboxylic Acid</td>
<td>Docosanyl ferulate</td>
<td>Withania somnifera (WS) (L.) Duna</td>
<td>0.05; 0.25; and 2 Mg/Kg</td>
<td>Interact with the GABAAR to induce bdzs'-Like anxiolytic effects</td>
</tr>
<tr>
<td>Rosmainic acid</td>
<td>Rosmainic acid</td>
<td>Perilla frutescens</td>
<td>Dose 2.0 and 4.0 mg/kg increased the number of BrdU-positive cells and reduced the duration of immobility in FST</td>
<td>Up-regulatory action of RA-induced cell proliferation</td>
</tr>
</tbody>
</table>
signaling pathways (Ceremuga et al., 2017; Geng et al., 2019; Hritcu et al., 2017; J. Wang et al., 2019).

Triterpenoids and alkaloids have also been found to have antidepressants such as asiatic acid, asiaticoside for triterpenoids, and alkaloids including caffeine, mitragynine, and amide alkaloids. These five compounds have the potential to overcome depressive disorders. The mechanism of terpenoids and alkaloids in dealing with depressive disorders is not different from flavonoids. Asiatic acid shows protective effects on dopaminergic neurons by antagonizing 1-Methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP). The capacity to significantly decrease glutathione levels and reduce corticosterone levels is also showed (Girish & Sanjay, 2020). Alkaloids have antidepressant effects caused by interactions with the neuroendocrine HPA axis system (Idayu et al., 2011). The ability to counteract 6-OHDA-induced injury to human dopaminergic cells is also reported to increase cell viability (Yu et al., 2022). Alkaloids function as antagonists of A1 adenosine inhibitors, while stimulating A2A receptors. These receptors play a crucial role in regulating nerve excitability and the release of various neurotransmitters (Yu et al., 2022). Besides flavonoids, triterpenoids, and alkaloids, there are aromatics, lactones, carboxylic acids, and lignans. Aromatics and lactones are antidepressants, while lignans and carboxylic acids act as antianxiety agents. The mechanism of action for the four groups is almost like flavonoids.

Depressive symptoms are also associated with central and peripheral inflammation, oxidative and nitrosative stress (redox imbalance), increased apoptosis, and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity due to exposure to chronic stress. Flavonoids acting as antidepressants are also associated with the inclusion of inflammatory mechanisms in depression (Ramos-Hryb et al., 2017). This is because patients with chronic inflammation often show symptoms of depression. This condition occurs due to repeated exposure to oxidative and nitrosative stress. Czarny et al., (2018) reported that the cause of oxidative DNA damage in depressed patients was increased levels of reactive oxygen species and nitrogen (ROS and RNS). The mechanism of flavonoids in treating the condition is closely related to the potential of flavonoids as antioxidants and anti-inflammatory agents. Flavonoids have phenolic groups that can accept electrons to form more stable phenoxyl radicals and prevent lipid peroxidation. Triterpenoids also have antioxidant activity with long carbon chains partitioned into lipid membranes and interact with free radicals (Ramos-Hryb et al., 2017).

Previous results have studied the effect of the structure of flavonoid compounds on antidepressant activity. Guan & Liu, (2016) showed that hydroxyl groups at positions 2, 4, or 4 on the A ring of flavonoids had antidepressant activity. The flavone compound C-glucoside also reported better antidepressant activity. Therefore, the number and position of the hydroxy groups affected the antidepressant effect. Furthermore, Sui et al., (2012) conducted FST and TST tests on the synthesized chalcone derivatives, which were also halogen-substituted. The results showed that the halogen-substituted compounds affected the antidepressant activity, with the level of activity Br > Cl > F. The effect of electron donors was also tested, where the level of 3,4-(OH)2 > 4-OH (I) > 3-OCH₃ > 4-OH > 3,4-(OCH₃)₂ > 4-OH < 3,4-(CH₃)₂ > 4-OH₃. According to Xiang et al., (2007), MAO inhibitory activity would decrease with an increasing number of hydroxyphenyls in the B ring of flavone, and also the inhibition by flavonoids was dependent on the presence of a phenyl or hydroxyphenyls ring at position 2. The sequence of MAO inhibitory activity is flavonol flavones> flavones glycosides > flavanones. Based on the results, several analyses need to be conducted in determining the effect of the structure and mechanism of flavonoids as antidepressants, including other active compounds such as terpenoids, and alkaloids. Many plants play a role in overcoming mental health disorders whose active compounds have not been studied. Therefore, further research is needed to determine the active compounds further developed into traditional and modern medicines.

CONCLUSION

In conclusion, 39 Indonesian medicinal plants were reported to treat mental health disorders. A total of 14 species were scientifically proven until their active compound was obtained by preclinical research. Therefore, further investigation into Indonesian medicinal plants was important, including preclinical trials for assessing potential therapeutic effects, identification of active compounds, and subsequent clinical trials to validate their efficacy and safety for potential medical applications. This research was crucial to generating comprehensive insights from Indonesian medicinal plants, contributing valuable knowledge for the development of drugs targeting
mental health disorders. Additionally, ongoing efforts were necessary to investigate the activities of unproven plants, substantiating and disseminating information on their potential as therapeutic agents.

ACKNOWLEDGMENTS
A collaboration between Delightex Pte Ltd and IPB University supports this work. The author is grateful for their financial support in this publication and research study.

CONFLICT OF INTEREST
All authors declare that they do not have any conflicts of interest.

REFERENCES
Adelina, R. (2013). Kajian tanaman obat Indonesia yang berpotensi sebagai antidepressan. Study of Indonesian medicinal plants that have potential as antidepressants. Jurnal Kefarmasian Indonesia, 3(1), 9–18.

Saki, K., Bahmami, M., & Rafieian-Kopaei, M. (2014). The effect of most important medicinal plants on two important psychiatric disorders (anxiety and depression)—a review. Asian Pacific Journal of Tropical Medicine, 7(S1), S34–S42.

Anxiety and Depression

24(6).

