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The large-scale production of Penicillin G Acylase (PGA) at high levels 
of soluble protein content is achievable through recombinant genetic 
techniques and expression within a specific host organism. Escherichia coli (E. 
coli) remains a popular choice as a bacterial host due to its rapid growth, cost-
effectiveness, and high expression rate. Despite its advantages, using E. coli as 
a production host presents disadvantages, notably in the proper folding of 
recombinant proteins, often resulting in biological inactivity. Various 
strategies have been developed to overcome these issues. These include 
selecting specific host strains (such as E. coli HB101 & JM109), utilizing fusion 
proteins to enhance the recovery of soluble proteins (e.g., MBP & NusA), 
optimizing fermentation conditions (e.g., low-temperature incubation), 
optimizing the protein isolation process for the recovery of active PGA (e.g., 
Freeze-thawing technique), and optimizing pH, temperature, and substrate 
specificity during the synthesis of β-lactam class antibiotics. This study 
proposes a solution to increase the expression of soluble PGA protein within 
biological hosts. By replacing the expression host and employing genetic 
engineering techniques, the study aims to achieve a high expression level of 
the PGA enzyme in an active form while simplifying the purification process. 
Keywords: Expression, E. coli,  PGA, Soluble Protein,  
 

 
INTRODUCTION  

Penicillin G acylase (PGA), derived from 
microorganisms like bacteria, fungi, yeast, and 
actinomycetes, is a unique and important enzyme 
in industrial settings. Its primary function involves 
catalyzing the enzymatic hydrolysis of various 
penicillins by breaking the amide side chain, 
thereby producing 6-aminopenicillanic acid (6-
APA) (Tian et al., 2020). Penicillin G is a substrate 
that is enzymatically converted for the synthesis of 
new β-lactam antibiotics such as amoxicillin (Pan et 
al., 2020). The enzymatic hydrolysis method is 
preferred over chemical synthesis due to its 
specificity, cost-effectiveness, and feasibility under 
milder conditions (Buchholz, 2016). The 

conversion process of penicillin G into 6-APA and 
phenylacetic acid (PAA) primarily occurs through 
PGA's action, especially under alkaline pH 
conditions. 6-APA, a crucial intermediate molecule 
resulting from this process, plays a pivotal role in 
the synthesis of semi-synthetic antibiotics, 
exhibiting diverse antibacterial and 
pharmacological characteristics (McDonald et al., 
2019).  

Penicillin G acylase (PGA) is one of the most 
extensively employed commercial enzymes 
globally worldwide (Sambyal & Singh, 2021). 
Initially, penicillin G, a β-lactam antibiotic, was 
discovered for its efficacy in combating gram-
positive bacteria. However, the widespread and 
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prolonged use of antibiotics has led to the 
development of resistance among numerous 
pathogens. Addressing this challenge involves 
various strategies, including structural 
modifications in the synthesis of new semisynthetic 
antibiotics (Ashraf et al., 2015; Buchholz, 2016).  
Present efforts in creating new semisynthetic 
antibiotics primarily rely on utilizing the function 
of the PGA enzyme. Currently, the production of 
PGA enzymes involves employing recombinant 
genetic methodologies, wherein the pac gene 
responsible for encoding the PGA enzyme is cloned 
into specific vectors and subsequently expressed in 
bacterial hosts like E. coli (Mayer et al., 2019). The 
choice of the expression host strain and plasmid 
vector assumes significance in PGA enzyme 
production. Moreover, careful analysis and 
optimization of the environmental conditions 
during fermentation are essential to achieve the 
optimum conditions for PGA enzyme production. 

E. coli, commonly utilized as an expression 
host, presents several drawbacks, notably the 
tendency for recombinant protein expression to 
yield incorrect conformations. Proteins folding 
incorrectly may interact with each other, rendering 
the protein biologically inactive. This issue arises 
due to the reducing conditions within the cytosol of 
E. coli and the limited availability of chaperone 
proteins, which fail to cope with the high levels of 
recombinant protein expression (Maksum et al., 
2022). The challenge of ensuring proper protein 
conformation during expression in the host is 
critical in achieving substantial bioactive PGA 
recombinant protein mass. To overcome this 
hurdle in acquiring high quantities of bioactive PGA 
recombinant proteins, a strategy has been devised. 
This strategy involves the utilization of protein 
fusion and co-expression of chaperones to enhance 
the production of active soluble proteins (Costa et 
al., 2014).  The objective of this approach is to 
promote the precise folding conformation of 
soluble recombinant PGA proteins at high levels, 
thereby ensuring their biological activity. 

In this discussion, we aim to describe the 
advantages and disadvantages associated with 
various strains of E. coli hosts, alongside genetic 
manipulation methods employed for generating 
substantial quantities of biologically active soluble 
PGA enzymes. The great hope is for this review to 
serve as a guide for advancing research 
methodologies concerning the expression and 
isolation of biologically active soluble PGA enzymes 
on a large scale. This endeavor seeks to offer 

valuable insights applicable to laboratory-scale 
investigations. 

 
Early Discovery of PGA 

Enzymes, as naturally occurring biocatalysts 
provided by the environment, offer a light and easy 
process in various industrial applications, 
rendering them of utmost importance (Gonzalo & 
Lavandera, 2021; Marešová et al., 2014). The 
enzyme PGA was first discovered by Sakaguchi & 
Murao (1950) within the mycelium of Penicillium 
chrysogenum Q176. This enzyme exhibits the 
potential to catalyze the hydrolysis of penicillin G 
into phenylacetic acid (PAA) and other organic 
compounds such as 6-aminopenicillanic acid (6-
APA) (Fierro et al., 2022). Numerous microbial 
strains, including E. coli, Pseudomonas 
melanogenum, Bacillus megaterium, Kluyvera sp., 
and Proteus rettgeri, possess the natural capability 
to produce PGA. Notably, according to to  Vélez et 
al., (2014) & Sambyal & Singh, (2021), the PGA 
enzymes that is in great demand in both research 
and industry settings originate from E. coli and B. 
megaterium due to their exceptional efficiency. 

In 1960, the hydrolysis of penicillin G 
utilizing PGA isolated from E. coli was first 
documented, revealing the enzyme's capability to 
hydrolyze penicillin G into 6-aminopenicillanic acid 
(6-APA) (Buchholz, 2016). Numerous reports 
underscore the potency of PGA enzyme from E. coli 
(PGAEc) in hydrolyzing various types of phenyl 
acetyl substituted compounds (Avinash et al., 
2016a). Earlier studies have highlighted the 
significance of 6-APA as an important intermediate, 
which, under acidic pH conditions, can be 
converted by PGA into a new semisynthetic 
antibiotic derived from penicillin G (Sawant et al., 
2020a). Consequently, PGA enzymes sourced from 
E. coli are in great demand for large-scale industrial 
production, catering to commercial purposes. 

 
Increased Expression Levels of Soluble 
Recombinant Proteins PGA in E. coli 

The microbial production of PGA, 
particularly from E. coli isolates, has been a 
longstanding practice (Torres-Bacete et al., 2015). 
PGA is categorized as an intracellular enzyme, 
necessitating its production for the growth of 
bacterial strains on standard media, which 
typically includes a carbon source and inducer 
control at specific concentrations. Furthermore, 
research into nutrient sources, chemical additives, 
and    cultivation    methodologies    are    pivotal   in  
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optimizing conditions for protein expression 
during fermentation. This optimization process 
also aims to mitigate the production of potentially 
harmful or toxic substances from bacterial strains 
(Illanes & Valencia, 2016; Velasco-Bucheli et al., 
2020). 

The design for industrial-scale production of 
PGA should improve engineering techniques with a 
strong approach to manipulation of host strain 
expression, recombinant vectors that are safe from 
toxic proteins, fermentation methods, and 
optimization of downstream processes(Ajamani et 
al., 2019; Rajendran et al., 2015). The 
overexpression of soluble PGA protein in E. coli can 
be successfully carried out if the optimization 
process in several lines as previously described can 
be improved (Figure 1). The strategies that can be 
done, are as follows. 
 

 
 

Figure 1. Development of optimization expression 
of PGA enzyme in a bacterial host. 
 
Co-expression Chaperon Protein: High Activity 
and Expression of PGA 

Chaperones are proteins that play crucial 
roles in monitoring the conformation and 
stabilizing non-native protein structures while 
assisting the folding process of recombinant 
proteins. It is important to note that chaperones do 
not become integral parts of the final native 
structure of the monitored protein. Instead, they 
primarily serve to enhance the efficiency and 
optimize the folding of non-native proteins without 
adding structural information during the folding 
process.  These chaperones are distributed across 
various cellular compartments, where they 
function as sites dedicated to facilitating proper 
protein conformation (Kaur et al., 2018; Thirumalai 
et al., 2020). 

Chaperones play a pivotal role in stabilizing 
folding intermediates effectively by binding to non-

native proteins, thereby preventing their 
intramolecular or intermolecular interactions that 
could lead to folding errors. This interaction serves 
to mitigate protein folding errors and the formation 
of protein aggregates (Balchin et al., 2020).  
Chaperons themselves have three main functions 
including as holdases that act to stabilize the 
conformation of non-native proteins, foldases that 
help the folding process to the native state, and 
unfoldases that act to help the process of opening 
proteins that fail to fold properly (Chatterjee et al., 
2018; Wu et al., 2022). 

The Trigger Factor (TF) is currently 
recognized as the sole chaperone in bacteria, 
known for its association with ribosomes 
(Deuerling et al., 2019). This cytosolic protein is 
expressed abundantly and constitutively, typically 
found in quantities two to three times greater than 
the relative molar amount of proteins undergoing 
the folding process on the ribosome (de Geyter et 
al., 2020; Kumar et al., 2020). TF binds to the 
ribosome at a 1:1 stoichiometry, utilizing the 
ribosomal protein L23 as its primary docking site. 
This positioning places TF on the exit side of the 
ribosome, where the elongating polypeptide chain 
emerges from the ribosome into the crowded 
cytosolic environment cytosol (Hoffmann et al., 
2010). Optimizing the expression of recombinant 
proteins through co-expression with chaperones 
such as TF is expected to enhance the production of 
soluble target proteins like PGA. However, the 
effectiveness of each approach may vary from one 
protein recombinant to another soluble protein 
recombinant and it requires an empirical 
optimization. 

 
Fusion Maltose-binding Protein (MBP) on PGA 
Expression 

The Maltose-Binding Protein (MBP) is a 
periplasmic protein in E. coli with a molecular 
weight of 40.6 kDa and notably lacks cysteine 
residues (Greenfield et al., 2020; Subroto et al., 
2022). MBP is often utilized as a fusion tag linked to 
the N-terminal region of recombinant proteins, 
primarily to enhance protein solubility (Fang et al., 
2018; Greenfield et al., 2020). Purification of MBP-
fused proteins can be achieved through affinity 
chromatography owing to MBP's inherent affinity 
for maltose (around 10 mM) (Lebendiker & Danieli, 
2017; Nguyen et al., 2020).  MBP functions as a 
holdase, engaging in temporary interactions with 
exposed protein sites, effectively preventing the 
premature aggregation of the protein into insoluble 
aggregates. This interaction persists until 
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spontaneous folding, mediated by endogenous 
chaperones, facilitates proper folding of the 
protein, increasing solubility (O’Neil et al., 2018; 
Wruck et al., 2018). 

Maltose-binding protein with its main 
characteristics fused with the pac gene produces 
PGA recombinant protein in large quantities and 
with the right conformation to increase the enzyme 
activity obtained. This process involves several 
stages crucial for obtaining mature PGA enzymes, 
including post-translational modification, folding, 
and periplasmic processing. MBP fusion aids in the 
folding process, ensuring the acquisition of the 
correct conformation for PGA. The fusion with MBP 
serves a dual purpose: firstly, it reduces the 
formation of inclusion bodies, thereby increasing 
the yield of recombinant proteins, as noted by Fang 
et al., (2018). Secondly, MBP's role is transient, 
temporarily preventing improper folding of the 
recombinant protein until spontaneous folding 
occurs with the assistance of endogenous 
chaperones (Bhatwa et al., 2021; Paraskevopoulou 
& Falcone, 2018). Studies by Maksum et al., (2022) 
and Fang et al., (2018) have reported that 
overexpressing heterologous recombinant 
proteins in the E. coli BL21(DE3) host, in 
conjunction with MBP sequences in the 
recombinant plasmid construct, significantly 
enhances solubility and stability of protein 
expression compared to traditional overexpression 
methods without MBP insertion.  

Studies conducted by Ko et al., (2021) & 
Nemergut et al., (2021) align with previous findings 
indicating that the addition of maltose-binding 
protein (MBP) to the recombinant plasmid 
construct significantly enhances the solubility of 
heterologous recombinant protein expression. This 
enhancement allows for the isolation of the target 
protein in a soluble form and facilitates the 
extraction of larger quantities of the protein of 
interest. Following the expression of the MBP-fused 
recombinant protein, the protein isolation stage 
typically involves purification using an affinity 
column column  (Greenfield et al., 2020). This 
purification process aids in obtaining relatively 
pure protein preparations. Referring to the 
research that has been reported, it is possible to 
overexpress the pac gene, encoding the PGA 
enzyme in a soluble form with high levels. 
Moreover, there is one thing that needs to be 
considered, MBP will be fused in the target protein 
so that the molecular weight of the recombinant 
protein will increase (Fang et al., 2018) so the 
target protein requires certain engineering or 

further purification processes to obtain pure target 
protein results. 

 
Fusion of N-utilizing substance A (NusA) for 
Alternative Production of Soluble  

NusA, a multi-domain protein with a 
molecular weight of 55 kDa, is involved in 
transcriptional processes, specifically in 
transcription termination and anti-termination. It 
acts upon the RNA polymerase during both 
elongation and transcription termination phases 
phases (Costa et al., 2014).  NusA can increase 
soluble protein expression by slowing down the 
translation process through the transcriptional 
pause’s mechanism by RNA polymerase so that it 
can provide more time for the protein folding step 
(Kang et al., 2019; Kaur et al., 2018). Unlike some 
other fusion tags, NusA does not possess intrinsic 
affinity for purification. Therefore, it often requires 
the addition of a His-tag for efficient purification 
processes. Additionally, NusA operates in a passive 
capacity in protein folding, meaning it enhances the 
solubility of recombinant proteins without directly 
influencing the structure of proteins prone to 
aggregation (Lebendiker & Danieli, 2017; Zhu et al., 
2022). 

Several previous studies have demonstrated 
that fusing recombinant proteins with NusA 
enhances protein solubility. For instance, Andler et 
al., (2019) employed NusA fusion with the 
recombinant protein Lcp1vh2, resulting in 
significantly high expression levels of the targeted 
recombinant protein in soluble properties. 
Similarly, Hemmati & Ranjbari, (2019) reported a 
substantial increase in soluble expression of IGF-1 
by using NusA fusion in E. coli. NusA recombinant 
protein fusion proves beneficial for expressing 
heterologous proteins, even those intended for the 
periplasmic compartment. Ahmad et al. (2018) and 
Hemmati & Ranjbari (2019) observed increased 
solubility of recombinant proteins Scorpine and 
IGF-1, designed for expression in the periplasm, 
upon fusion with NusA. These findings serve as a 
valuable reference for considering PGA 
recombinant protein fusion with NusA, expecting 
an increase in protein solubility. The assumption is 
that the soluble protein has a targeted biological 
activity in the form of a PGA enzyme. However, it is 
important to note that NusA requires a His tag 
linker to provide affinity during the purification 
process. Thus, careful consideration of the 
recombinant interplay between NusA, the target 
protein, and the His tag linker is crucial. Failure in 
this process might lead to difficulties in purifying 
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the highly expressed target protein, despite 
achieving high expression levels. 

 
Recombinant Host Strain Development 

E. coli boasts rapid growth, high cell density, 
and simple metabolism and physiology, making it 
an appealing host for recombinant protein 
expression. However, the endogenous promoter of 
the pac gene responsible for encoding the PGA 
enzyme in E. coli exhibits weak properties, thus 
proving inadequate for large-scale production. 
Consequently, it becomes imperative to manipulate 
this system for the enhanced production of PGA 
recombinant protein. To achieve this, manipulation 
involves facilitating native overexpression of the 
pac gene via high copy episomal plasmids. This 
approach aims to increase the number of gene 
copies, thereby enhancing all expression stages 
regulated by robust promoter systems. Such 
systems govern key steps like transcription, 
translation, translocation, periplasmic processing, 
and folding. An emphasis is placed on modifying the 
ribosome binding site to augment mRNA stability 
for the pac gene. This modification ultimately 
facilitates the production of mature PGA 
recombinant proteins exhibiting heightened 
enzymatic activity (Illanes & Valencia, 2016; 
Rajendran et al., 2015).  

The heterologous expression of pac genes 
from bacterial sources other than E. coli, such as B. 
megaterium, Acinetobacter faecalis, Kluyvera 
crysophila, and Thermus thermophilus, has been 
explored. PGA enzymes originating from these 
diverse bacterial strains exhibit distinct 
characteristics compared to PGA from E. coli, 
including a broader operational range, enhanced 
molecular stability, and increased tolerance to 
environmental conditions (Srirangan et al., 2013). 
Efforts to increase PGA production in various 
recombinant E. coli hosts and understand the 
factors contributing to the reduction in post-
translational PGA yield are crucial. An initial 
observation indicates that the enzyme production 
process is constrained by the intracellular 
proteolytic degradation of newly synthesized PGA 
precursors. This phenomenon is associated with 
decreased cell growth rates and impedes the 
protective fusion and efficient translocation of PGA 
through the plasma membrane (Rajendran et al., 
2015). 

To increase PGA expression at the molecular 
level within recombinant E. coli strains, it is crucial 
to address intracellular proteolysis and optimize 
translocation efficiency, along with considering the 

host system and suitable culture media. Cultivating 
E. coli BL21(DE3), known for lacking the ATP-
dependent proteinase Lon and the outer 
membrane proteinase OmpT, on protein-free 
media can enhance PGA expression results (Falak 
et al., 2022; Hausjell et al., 2018). Moreover, studies 
have indicated that E. coli strains like HB101 and 
JM109 exhibit promising performance in PGA 
production, yielding PGA with high biological 
activity (Narayanan et al., 2006). 

E. coli HB101 has been chosen as a preferred 
host for recombinant protein expression due to 
specific advantageous properties. Notably, it 
harbors a recA13 gene mutation that aids in 
stabilizing gene insertions, lacks the T7 RNA 
Polymerase gene, resulting in lower copy number 
expression, and is widely used for gene expression 
predominantly centered in the periplasm 
(Srirangan et al., 2013). Another alternative strain, 
E. coli JM109, is also used for recombinant protein 
expression. According to (Kim et al., 2004), E. coli 
JM109 demonstrates proficient expression of the 
PGA enzyme, particularly when cultivated at 26°C. 
By utilizing a lac promoter and various inducers, 
this strain exhibits differences in protein yield and 
varied enzyme activities. Furthermore, E. coli 
strains, like JM109, have shown capabilities to 
express the poli-γ-glutamic acid protein in 
substantial quantities while retaining functional 
enzymatic properties for synthetic purposes (Cao 
et al., 2013). 
 
Optimization of the Fermentation Process 

The fermentation process is very important 
in achieving optimal PGA production (Pan et al., 
2018). Analysis of environmental conditions 
during fermentation is crucial. Elevated 
fermentation temperatures may lead to the 
formation of inclusion bodies due to excessive 
protein expression, resulting in the aggregation of 
recombinant proteins and hindering efficient 
periplasmic translocation processes (Huleani et al., 
2022; Zhou et al., 2018). In addition, optimal pH 
conditions during the fermentation process must 
also be maintained because if there are changes, the 
metabolic and physiological processes of the 
bacteria will be disrupted which disrupts the 
stability of bacterial growth (Pontrelli et al., 2018).  
This will have an impact on bacterial conditions 
that are not optimal in the expression of 
recombinant proteins. Optimal aeration will also 
result in high levels of recombinant protein 
expression. The carbon source for growth energy 
and recombinant protein expression from bacteria 
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must also be considered because if the carbon 
source used is not suitable, it will reduce the 
average growth of bacteria (Manan & Webb, 2017). 

The fermentation incubation process 
conducted at lower temperatures, specifically 
below 30°C, has demonstrated the ability to 
mitigate the formation of inclusion bodies (Gaciarz 
et al., 2017; Slouka et al., 2019).  At lower 
temperatures, the periplasmic environment 
benefits from the assistance of endogenous 
chaperones, notably the DegP chaperones, which 
play a pivotal role in aiding proper protein folding 
with the proper conformation chaperons(Harkness 
et al., 2021; Šulskis et al., 2021). Moreover, lower 
temperatures during fermentation contribute to 
higher levels of soluble proteins (Petrus et al., 
2019), directly impacting the enzymatic activity of 
the PGA recombinant protein. This increase in 
soluble protein levels correlates with enhanced 
enzyme activity. The efficiency of the maturation 
process and periplasmic processing is significantly 
improved at lower temperatures. This efficiency 
boost reduces inclusion body formation and 
enables the production of recombinant proteins 
with the desired conformation at elevated levels (A. 
Singh et al., 2020; Tripathi & Shrivastava, 2019). 

 
Recovery of Biologically Active Recombinant 
Protein PGA 

Inclusion bodies refer to insoluble protein 
aggregates commonly observed in recombinant 
DNA technology, particularly in the expression host 
E. coli. These aggregates typically form due to 
protein overexpression, leading to misfolded or 
partially folded proteins that experience errors 
during the folding process. The lack or absence of 
chaperones exacerbates this issue, preventing 
proteins from achieving their native conformation 
within the reduced cytoplasmic environment. As a 
result, these proteins are prone to degradation by 
proteases (Chatterjee et al., 2018; Xu et al., 2005). 
PGA, being a periplasmic protein, accumulates in 
the periplasm during its production as a 
recombinant protein. However, the accumulation 
process during overproduction in E. coli often 
results in the formation of inclusion bodies (Ayakar 
& Yadav, 2019). 

Inclusion bodies are presumed to contain a 
relatively pure and high quantity of recombinant 
protein. Due to their homogeneous nature, the 
purification process becomes simpler (Singh & 
Panda, 2005). Biologically active inclusion bodies 
are sometimes referred to as non-classical 
inclusion bodies. In general, inclusion bodies are 

characterized by a loose arrangement of protein 
molecules, making them easy to dissolve using 
denaturation at various concentrations.  The 
composition of active molecules within inclusion 
bodies is contingent upon the environmental 
conditions prevalent during protein expression. 
The quality of these inclusion bodies can be 
influenced by changes in the expression 
temperature. Lower expression temperatures, for 
instance, tend to favor the formation of non-
classical inclusion bodies (Singh et al., 2015). 

The dissolution of inclusion bodies via the 
freeze-thawing method often leads to protein 
denaturation and loss of activity. When subjected 
to freezing, salt crystals form within the buffer, 
resulting in protein concentration. Increasing the 
protein concentration during clotting may induce 
protein aggregation; however, higher protein 
quantities can enhance protein stability due to the 
existence of a self-stabilizing mechanism inherent 
to the protein itself. Interestingly, the freeze-
thawing process typically induces minimal or 
negligible alterations in the protein's secondary 
structure (Pikal-Cleland et al., 2000).  

The report by Qi et al., (2015) describes a 
dissolution method for inclusion bodies involving 
the freeze-thawing process. This method involves 
freezing the inclusion bodies and subsequently 
thawing them, combined with the addition of urea 
and utilizing a buffer with a certain pH range. 
According to their findings, the inclusion bodies 
were dissolved using potassium phosphate buffer 
within a pH range of 5 to 10. The dissolution 
process included varying urea concentrations from 
1 to 8 M. The inclusion bodies were frozen 
overnight at -20 °C and subsequently thawed at 
room temperature. The study suggests that this 
Freeze-Thawing method can effectively dissolve 
recombinant proteins commonly expressed in the 
form of inclusion bodies within E. coli hosts. 

 
Substrate Specificity, pH, and Temperature of 
PGA Enzyme Activity 

The specificity of the PGA enzyme towards 
its substrate, particularly penicillin G, exhibits a 
notably high value, up to 100-fold greater 
compared to other substrates such as cephalothin, 
cephalexin, amoxicillin, and (Rajendhran & 
Gunasekaran, 2007). However, it is important to 
note that PGA does not demonstrate the specific 
activity with substrates like penicillin V, 
methicillin, and cephalosporin C (Balci et al., 2014; 
Rajendhran & Gunasekaran, 2007). The active site 
of the PGA enzyme primarily comprises 
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hydrophobic residual bonds. This characteristic 
enables PGA to effectively hydrolyze substrates 
possessing large phenylacetyl side chains, such as 
penicillin G. The preference and specificity of PGA 
towards its substrate can be determined by 
evaluating the Kcat/Km value.  

The optimal functioning of the PGA enzyme 
is notably dependent on favorable pH conditions. 
Being an amphoteric molecule, PGA's performance 
is significantly influenced by the pH level in its 
environment. The pH value can alter the 
conformation of the hydrophobic bonds in PGA 
through electrostatic interactions, hydrogen 
bonding, and other molecular patterns. When PGA 
is at its optimum pH, the enzyme's conformation is 
not affected by the amount of H+ ions in the system. 
Therefore, the enzyme conformation is suitable for 
substrate binding to produce a higher potency. The 
α-amino groups in PGA possess a pKa range of 6.8 
to 7.9. Thus, for the hydrolysis of penicillin G, a pH 
range typically between 7.5 and 8.0 or even higher 
is utilized. However, during the synthesis of 
antibiotics, an ideal pH range of 6.0 to 6.5 is 
preferred (Giordano et al., 2006). 

The enzymatic activity of PGA is notably 
influenced by the temperature range within its 
environment. Previous studies have revealed 
varied optimal temperature conditions for 
different PGA enzymes. For instance, Bacillus 
badius PGA demonstrated maximum activity at 
50°C and pH 7.0, exhibiting approximately 80% 
overall activity. This thermostability was sustained 
across buffer conditions within the pH range of 6.0 
to 8.5. However, E. coli PGA exhibited reduced total 
activity after a 30-minute incubation at the same 
temperature and pH. Similarly, PGA from Bacillus 
megaterium and Achromobacter viscosus was 
inactivated at 50°C (Cheng et al., 2006; A. Li et al., 
2021; S. Li & Cao, 2014; Terreni et al., 2007).  
According to reports by Rajendhran & 
Gunasekaran (2007), the PGA enzymes from 
Alcaligenes faecalis and Achromobacter 
xylosoxidans displayed superior thermostability 
compared to E. coli PGA. The enhanced stability of 
Alcaligenes faecalis PGA is attributed to the 
presence of disulfide bridges in its β subunit. 
Conversely, Achromobacter xylosoxidans PGA's 
robustness is credited to its numerous salt bridges, 
contributing significantly to its thermostability 
(Cheng et al., 2006).   

Kafshnochi (2010) suggests that while 
disulfide bridges and salt bridges contribute 
significantly to PGA's thermostability, other factors 
also play pivotal roles. These additional parameters 

include a high arginine/lysine ratio, a lower 
presence of thermolabile amino acids, the            
presence of proline - which rigidifies the 
conformation - in the β curvature, and a higher 
count of ion pairs. These factors, along with various 
independent interactions, collectively contribute to 
PGA's thermostability. Moreover, Kafshnochi 
highlights the success of a modified consensus 
approach in identifying stable amino acid residue 
positions. This approach involves site-specific 
comparisons between meso-stable and heat-stable 
PGAs.  

  
Effect of Mutagenesis on the PGA Enzyme 
Activity 

Modifications to enzymes become crucial 
when specific properties are not naturally inherent. 
In nature, such modifications predominantly occur 
among microorganisms that adapt to 
environmental changes changes (Choi & Geletu, 
2018; Sklyarenko et al., 2017).  Nevertheless, 
advancements in molecular biology and genome 
sequencing have introduced new ways for 
engineering or modifying enzymatic properties, 
allowing for the deliberate customization of 
enzymes to attain desired characteristics (Avinash 
et al., 2016b; Sawant et al., 2020a). 

Modification of PGA enzyme characteristics 
can be achieved through a method known as site-
directed mutagenesis (Pan et al., 2018). To identify 
the amino acid residue for mutation, high-
resolution crystal structure instruments are crucial 
in determining its position within the protein 
structure (Avinash et al., 2016b). These 
instruments play a pivotal role in determining the 
structure-function relationship within a protein, 
elucidating the enzyme's catalytic and stability 
mechanisms (Kubiak et al., 2021; Mayer et al., 
2019).  PGA mutagenesis aims to optimize its 
activity by (1) increasing temperature and pH 
stability (Pan et al., 2020) and (2) increasing 
substrate affinity for the enzyme's active site 
enzyme (Yang et al., 2014). In the process of 
antibiotic synthesis, mutagenesis targets elevating 
the affinity of activated acyl donors and the S/H 
ratio (indicating the product/mole of donor side 
chains formed from hydrolysis), while reducing the 
hydrolytic activity of antibiotic products already 
formed. PGA with minimal secondary hydrolytic 
activity provides greater product accumulation 
(Pan et al., 2018). 

The intrinsic properties of the PGA enzyme 
significantly impact the efficiency of antibiotic 
synthesis reactions (Pan et al., 2018; Ye et al., 
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2019). Through site-directed mutagenesis, 
alterations in Pheβ24A led to increased PGA 
activity, a higher synthesis-to-hydrolysis ratio,              
and enhanced resistance to Phenyl acetic acid 
(PAA) inhibition (Deng et al., 2016). The 
βF24A+αF146Y mutant of E. coli PGA exhibited 
higher conversion rates in the synthesis of 
cephalexin, cephalexin, and sefprozil (Cecchini et 
al., 2007, 2012). This indicates that mutagenesis 
can effectively enhance PGA activity by               
increasing the ratio between synthesis and 
hydrolysis reactions. Several positions, specifically 
αR145, αF146, and βF24 in E. coli PGA, as                           
well as αR144, αF145, and βF24 in B. megaterium 
PGA, have been identified as crucial sites                            
for improving synthetic PGA enzyme activity           
These positions serve as promising targets for 
enhancing the performance of synthetic PGA 
enzymes. (Deng et al., 2015; Jager et al., 2007; Pan 
et al., 2018). 

 
Role of PGA Enzyme in Antibiotic Production 

Over the past three decades, the chemical 
technology involved in producing antibiotics of the 
β-lactam class has progressively been replaced by 
biocatalyst technology which is cheaper and tends 
to be safer because of minimal side effects (A. Li et 
al., 2021). This shift is attributed to several factors 
contributing to the significant growth and 
development of biocatalysts are related to  (1) the 
high quality of the final product; (2) the undeniable 
ecological benefits of biocatalysts such as mild 
reaction conditions (pH, temperature), excluding 
toxic reagents and providing increased 
product/waste ratios (decreased organic solvents 
and reagents); (3) increase in economic efficiency 
and competitiveness of enzymatic technology due 
to the improvement of each aspect (strain, 
biocatalyst, enzymatic transformation), as well as 
due to optimal process integration in the 
application of the one pot process (Alemzadeh et 
al., 2010; Sklyarenko et al., 2015). The current 
focus in the production of β-lactam antibiotics 
includes the synthesis of ampicillin, amoxicillin, 
cephalexin, cefachlor, and cefazolin. Several 
approaches have been explored to enhance the 
efficiency of β-lactam acyl transfer synthesis are (1) 
optimization of pH, ionic strength, and temperature 
(Deng et al., 2016; Pan et al., 2020); (2) the use of 
excess molar acylating agents over antibiotic cores 
(Deng et al., 2016); (3) use of solvents (Cerqueira 
Pereira et al., 2012; Illanes et al., 2005); (4) 
synthesis in a biphasic/ two-phase system (Zhu & 
Cao, 2014); (5) increasing the concentration of 

reagents (Illanes & Valencia, 2016); (6) changes in 
the catalytic properties of enzymes by site-directed 
mutagenesis (Alkema et al., 2002; Jager et al., 2007; 
Pan et al., 2020); (7) changes in biocatalyst 
properties by chemical modification and 
immobilization of enzymes (Deng et al., 2016; Pan 
et al., 2018). 

Several microorganisms are commonly 
employed as producers of penicillin G acylase 
(PGA) for the synthesis of antibiotics. Among them, 
E. coli stands out as the most dominant, along with 
B. megaterium, Achromobacter xylosoxidans (high 
thermal stability), and Providencia rettgeri, each 
contributing distinct characteristics to PGA (Pan et 
al., 2020); (Ye et al., 2019). The choice of 
microorganisms significantly impacts the activity 
and efficacy of the resulting PGA. PGA-driven 
synthesis has been particularly successful in 
producing amoxicillin and ampicillin antibiotics. In 
these processes, 6-aminopenicillanic acid (6-APA) 
serves as the β-lactam core, while phenylglycine 
methyl ester (PGME), hydroxyphenylglycine 
methyl ester (HPGME), or D-PGA function as the 
acyl donors (Pan et al., 2020). 

The synthesis of β-lactam antibiotics using 
PGA can be approached through two main systems: 
thermodynamic systems (Estruch et al., 2008) and 
kinetic control systems (KCS) (Giordano et al., 
2006). These strategies have been extensively 
discussed and reviewed in previous studies 
(Giordano et al., 2006; Valencia et al., 2010).  
However, it is worth noting that the kinetic control 
system generally offers higher synthesis yields in 
comparison to thermodynamically controlled 
synthesis (Cerqueira Pereira et al., 2012; 
Cuthbertson et al., 2019; Terreni et al., 2007). 
Therefore, approaches based on kinetic control are 
usually preferred for the synthesis of β-lactam 
antibiotics (Giordano et al., 2006; Pan et al., 2022; 
Ye et al., 2019). 

Synthesis under kinetic control (KCS) 
involves a complex strategy. Conditions in KCS for 
β-lactam antibiotic synthesis have been optimized 
across various parameters such as pH (Sawant et 
al., 2020b), ionic strength (D. Yang et al., 2016), 
temperature (Sklyarenko et al., 2015), molar ratio 
of acyl donors and nucleophiles (Dai et al., 2001; 
Deng et al., 2015), and the composition of the 
medium with organic cosolvent (Deng et al., 2016), 
all aimed at enhancing the synthesis/hydrolysis 
ratio (S/H). This optimization has shown success in 
the synthesis of cephalologlysin in methanol, as 
well as ampicillin and cephalexin in glycol (Zhu & 
Cao, 2014). 
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Structural changes in enzymes exert a 
stronger influence on amidase than synthetase 
activity due to the complex mechanism involved in 
amide hydrolysis (Buchholz, 2016; Sambyal & 
Singh, 2021). Organic solvents contribute to 
increasing substrate solubility, influencing reaction 
pK values for the formation of non-reactive ions, 
and aiding synthesis by reducing water activity 
(Deng et al., 2015). 

Synthesizing β-lactam antibiotics like 
ampicillin, amoxicillin, and cephalexin at high 
substrate concentrations has shown an increase in 
product yield (Pan et al., 2020; Valencia et al., 
2010). However, excessively high substrate 
concentrations pose a challenge due to limited 
solubility at suboptimal pH and temperature 
conditions (Pan et al., 2020). Under the kinetic 
control system, the hydrolysis rate appears more 
temperature-sensitive compared to the synthesis 
rate (Dai et al., 2001; Giordano et al., 2006).  Higher 
temperatures can increase the hydrolysis activity 
of PGA, while synthesis activity can increase at 
lower temperatures (Chandel et al., 2008; da Rocha 
et al., 2022). The temperature usually used for 
synthesis is 4 °C, which is for the synthesis of 
cephaloglysin (Terreni et al., 2007), cephalexin 
(Estruch et al., 2008), cefadrochlor, cephalothin 
(Estruch et al., 2008); 14-20 °C for cephalexin 
synthesis (Illanes et al., 2005; Illanes & Valencia, 
2016); and 25-28 °C for the synthesis of cefadroxil 
and sefprozil ((Liu et al., 2020; Pan et al., 2018). 

Increasing substrate concentration often 
leads to an extended time to achieve maximum 
yield, accompanied by a subsequent decrease in 
this maximum yield. The effect of substrate 
concentration on product yield is closely tied to the 
solubility of the β-lactam core, such as 6-APA. 
Increasing the concentration of PGME is a common 
approach to enhance the solubility of nucleophiles 
(Valencia et al., 2010). In addition, increasing 
substrate concentration ensures a sustained 
decrease in substrate availability due to its 
hydrolysis by PGA. Penicillin acylase breaks down 
PGME, generating a by-product, phenylglycine 
(Illanes & Valencia, 2016; K. Li et al., 2020; Schimek 
et al., 2020; Valencia et al., 2010).  Lower substrate-
to-product ratios are generally preferred due to 
their enhanced economic value and their role in 
streamlining downstream processes. 

 

CONCLUSION 
The enhancement of soluble recombinant 

protein PGA expression in the bacterial host E. coli 
can be achieved through strategic manipulation 

using genetic engineering techniques, specifically 
co-expressing chaperones such as MBP and NusA 
fusion protein. Optimal conditions for the highest 
PGA production were observed in E. coli HB101 and 
JM109 strains when incubated at lower 
temperatures (below 30 °C). These particular hosts 
were selected due to their widespread utilization in 
expressing recombinant periplasmic proteins. To 
optimize protein isolation results, the Freeze-
Thawing method can be employed to recover 
biologically active PGA. The ideal characteristics of 
PGA enzymes suitable for synthesizing β-lactam 
class antibiotics include pH stability ranging from 
7.0 to 8.0 for hydrolysis reactions and 6.0 to 7.0 for 
synthesis processes. In addition, the optimum 
temperatures for hydrolysis reaction lie between 
30 and 37°C, while for the synthesis reaction, it 
ranges from 4 to 30°C. PGA exhibits high specificity 
towards Penicillin G substrate, generating 6-APA, 
along with possessing high S/H kinetic parameters. 
The pivotal role of PGA in antibiotic synthesis 
underscores the importance of optimizing 
enzymatic antibiotic synthesis parameters. This 
involves determining factors such as pH, ionic 
strength, and temperature, as well as employing a 
molar excess of acylated substances over the 
antibiotic core, using solvents, conducting 
synthesis in a biphasic system, increasing reagent 
concentrations, changing enzyme catalytic 
properties through site-directed mutagenesis, and 
modifying biocatalyst properties through chemical 
modifications and enzyme immobilization. 
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