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Citrus aurantium L. essential oil or Orange Oil (OO) has gained 
popularity recently due to its benefit for human health. An “economically 
motivated adulteration” can potentially occur to achieve more profit in the 
market. On the other hand, cheaper oil, such as Coconut Oil (CO), is commonly 
used as an adulterant. This study aims to perform an authentication analysis 
of OO by FTIR spectroscopy and chemometrics. The exploratory data analysis 
applied the principal component analysis at the initial stage of authentication 
analysis. Multivariate calibration of Principal Component Regression (PCR) 
and Partial Least Squares Regression (PLSR) was constructed from five pre-
processed FTIR spectral data. The PCR model using Standard Normal Variate 
(SNV) spectra was selected as the best prediction model for OO, whereas the 
PLSR model using SNV spectra was sorted for the best prediction model for 
CO. SNV spectra of OO, CO, and binary mixture of OO+CO was used to generate 
sparse partial least squares-discriminant analysis (SPLS-DA) model. 
Component number three with “keepX” for components 1, 2, and 3 were 1, 5, 
and 1, respectively, were selected along with the maximum distance approach 
to construct the discriminant model. The final sPLS-DA model explained the 
total variances of 94% with satisfaction separability of 100%, 97.8%, and 
100% for OO, CO, and OO+CO, respectively. In conclusion, FTIR spectroscopy 
and chemometrics with tuning parameters can authenticate Citrus 
aurantium L. essential oil. 
Keywords: authentication, chemometrics, FTIR spectroscopy, Citrus 
aurantium L.  
 

 

INTRODUCTION  
Essential oils, a group of volatile and 

aromatic oils from natural sources, can be obtained 
by steam distillation process due to their volatility 
(Hyldgaard et al., 2012). Each type of essential oil is 
named based on its sources, the extraction method, 
and the odor produced (Gautam et al., 2021). The 
essential oils have been used not only for culinary 
purposes but also for different purposes such as 
beauty care products (Naeem et al., 2018), 
pharmaceutic and therapeutic products (Edris, 
2007), pest repellants (Lee, 2018), anti-bacterial 

agents (Wińska et al., 2019), and food packaging 
materials (Refaie et al., 2020).  

 

Ancient people in India, China, and Egypt 
(Krishna et al., 2000; Manniche, 1999) have known 
aromatherapy as a complementary alternative 
since approximately 6,000 years ago and utilized 
this oil. Essential oil aromatherapies have become 
popular in recent years because this oil can be used 
as a therapeutic agent to treat various health 
problems (Ali et al., 2015). The marketed 
aromatherapies usually contain essential oils in 
high concentrations extracted from flowers, leaves,  
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stems, fruits, and roots (Dunning, 2013). A study 
subject named aroma science therapy has gained 
importance. It is due to its high popularity, great 
demand, and awareness to study several 
aromatherapy aspects (Esposito et al., 2014). Citrus 
aurantium L., commonly knowns as bitter orange 
or sour orange, is one species in the Rutaceae 
family and genus Citrus that can be easily found and 
cultivated in Italy, Spain, and the United States 
(Maksoud et al., 2021). As reported in the previous 
study, Citrus plants are associated with herbal 
medicines in Asian countries such as China, Korea, 
and Japan (Lv et al., 2015). Citrus aurantium L. 
essential oil was reported to have pharmacological 
activity and various chemical compositions due to 
the growing area and seasonal variation but mostly 
contained marker compounds, namely limonene, 
linalool, and β-myrcene (Boussaada & Chemli, 
2007; Suntar et al., 2018). Chemical compositions 
of Citrus aurantium L. were related to several 
activities, such as larvicidal activity (Sanei-
Dehkordi et al., 2016), antimicrobial activity (Bnina 
et al., 2019), and fumigant activity (Djebbi et al., 
2021). In a recent study, microencapsulation 
of Citrus aurantium L. essential oil from orange 
fruit peel was successfully prepared, characterized, 
and proved as an antimicrobial and antioxidant 
agent (de Araújo et al., 2020). 

The increased interest in using Citrus 
aurantium L. essential oil leads to the potential 
“economically motivated adulteration” to gain 
more profit in the market (Johnson, 2014). Citrus 
aurantium L. essential oil is 7-10 times more 
expensive than other natural oils, such as coconut 
and palm oil. As a result, Citrus aurantium L. 
essential oil is easily substituted with other 
cheaper oils (Rohman et al., 2014). Hence, the 
detection and quantification of oil adulterants are 
significant to develop. 

Vibrational spectroscopy techniques such as 
Fourier Transform Infrared (FTIR) spectroscopy 
can be employed as a green tool in multicomponent 
analysis (Moros et al., 2010). Analyzing fish and 
vegetable oil for qualitative and quantitative 
aspects applies differentiation and authentication 
using FTIR spectroscopy (Putri et al., 2019; 
Rohman & Che Man, 2010, 2011). The exploitation 
of the employment of the FTIR spectroscopy 
method occurs because it is fast, sensitive, simple, 
and non-destructive to sample preparation                
(Reid et al., 2006). The FTIR spectroscopic           
method and chemometric techniques are used for 
the   authentication   analysis (Irnawati et al., 2021;   

Sim & Jeffrey Kimura, 2019). Chemometrics 
techniques such as Principal Component Analysis 
(PCA), Principal Component Regression (PCR), 
Partial Least Squares Regression (PLSR), and 
Partial Least Squares-Discriminant Analysis (PLS-
DA) can be combined with spectroscopy method 
for authentication purposes (Dzulfianto et al., 
2018; Hemmateenejad et al., 2007; Nurani et al., 
2021; Riswanto et al., 2021, 2022). This study 
aimed to perform an authentication analysis 
of Citrus aurantium L. essential oil or Orange Oil 
(OO) because the publications reporting the 
employment of FTIR spectroscopy and 
chemometrics along with tuning parameters are 
limited. PCA explains the exploratory data analysis 
of OO. The establishment of multivariate 
calibration of PCR and PLSR is to quantitatively 
predict the content of OO adulterated with Coconut 
Oil (CO). Sparse PLS-DA (SPLS-DA) was generated 
and accompanied by tuning parameters to 
discriminate pure OO in adulterated samples. 

  

MATERIAL AND METHODS 
Pure Citrus aurantium L. essential oil, 

purchased from a local distributor in Yogyakarta, 
Indonesia, was first produced and distributed from 
Utah, USA. Meanwhile, a local market in Sleman, 
Indonesia, provides coconut oil. The solvent used in 
this study is ethanol obtained from Merckmillipore. 

 

Instrumentation and Software 
This study applied a set of Bruker VERTEX 

80 FT-IR spectrophotometer and Socorex® 
micropipettes of 20-200 µL, 100-1000 µL, and 500-
5000 µL. The data of FTIR spectra were exported 
into Excel 2016 (Microsoft Inc., USA) and saved as 
.csv files. PCA used R statistical software version 
4.1.1 with ‘factoextra’ and ‘FactoMineR’ packages 
(Irnawati et al., 2021). Multivariate calibrations 
and spectral preprocessing applied the ‘pls’ and 
‘prospectr’ packages, respectively (Mevik & 
Wehrens, 2019; Stevens & Ramirez Lopez, 2020). 
SPLS-DA modeling and tuning were generated from 
the ‘mixOmics’ package (Rohart et al., 2017). 

 
Calibration and Validation Sample Preparation 

A set of calibration and validation solutions 
containing OO and CO were prepared from both 
pure oils to obtain 66 concentration variations of 
calibration solutions and 30 concentration 
variations of validation solutions. All these 
solutions were prepared by mixing OO and CO with 
a concentration range of 0-100% (v/v). 
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Sample Preparation for Discrimination 
Solutions for the SPLS-DA study were 

available in three different classes, namely Orange 
Oil (OO), Coconut Oil (OO), and a binary mixture 
containing OO and CO (OO+CO) with the 
concentration range of 0-100% (v/v). Seven pure 
OO solutions, seven pure CO solutions, and             
thirty-two OO+CO solutions were obtained and 
labeled for constructing the discrimination analysis 
model. 

 
FTIR Spectra Acquisition 

FTIR spectra acquisition uses an FTIR 
spectrophotometer (Bruker Vertex-80, Germany) 
equipped with attenuated total reflectance (ATR) 
as the sampling technique and deuterated 
triglycine sulfate (DTGS) detector. A sample of pure 
CO, pure OO, and adulterated CO was placed on ATR 
crystal and then measured at mid-infrared region 
(4000-600 cm-1). The FTIR spectra employed 
absorbance mode using a resolution of 8 cm-1 and 
several scans 32. Measurement of air spectra 
applied before each sample measurement as the 
background spectra. Measuring each sample 
utilized three replicates. The ATR crystal cleansing 
used ethanol analytical grade after each sample 
measurement. The FTIR spectra were processed 
using OPUS Software version 8.5 (Bruker, 
Germany). 

 
Exploratory Data Analysis using PCA 

In this study, the PCA model utilized the 
finding of intrinsic structures of the 
multidimensional data. An evaluation examined the  

FTIR spectra obtained from the data acquisition 
stage. Twelve dominant peaks of the OO, CO, and 
OO+CO analysis built the PCA model accompanied 
by the eigen analysis evaluation. The presentation 
of the Scree plot, variable plot, and individual plot 
visualized the optimal number of components and 
the initial variables load for constructing the 
components and graphs the general grouping of the 
variables explained from the first and second 
components, respectively. 

 
Multivariate Calibration Techniques 

Absorbance data for each wavenumber of 
calibration and validation solutions were treated 
and preprocessed into five FTIR spectra types. 
They were initial spectra, first derivative, second 
derivative, Standard Normal Variate (SNV), and 
Savitzky-Golay smoothing (SG) with eleven points 
window width and polynomial order of 3. 

Multivariate calibration models of PCR and 
PLSR generated a predictive model for two oils. 
Multivariate calibration model performance was 
examined by evaluating statistical parameters, 
including coefficient of determination for 
calibration (Rcal2), cross-validation (RCV2), 
validation (Rval2), root mean square error of 
calibration (RMSEC), root mean square error of 
cross-validation (RMSECV) and root mean square 
error of prediction (RMSEP). The cross-validation 
process as internal validation applied a leave-one-
out technique. The selected multivariate 
calibration model for each oil was determined by 
evaluating the Rcal2, RCV2, Rval2, RMSEC, RMSECV, and 
RMSEP. 

 

 
 
Figure 1. Scheme of authentication analysis of Citrus aurantium L. essential oil 
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SPLS-DA Model Generation with Tuning 
Parameters 

SPLS-DA model utilized the FTIR spectra of 
OO, CO, and OO+CO. The background prediction 
and 3D individual plots visualized discrimination 
models. The model performance evaluation applied 
the area under the curve - receiver operating 
characteristics (AUC-ROC). This model 
optimization was done further by selecting output 
variables and tuning parameters. The final SPLS-DA 
results came from considering the classification 
error rates and feature selection (Figure 1). 

 

RESULTS AND DISCUSSION 
This study initially examines the FTIR 

spectra resulting from the scanning process. This 
study employs FTIR spectroscopy due to its ability 
to provide direct information regarding the 
molecular species present in the oil and functional 
groups for further chemical identification 
(Shabanian et al., 2020). The FTIR spectra profiles 
of OO, CO, and OO+CO (Figure 2). The FTIR spectra 
applied for functional groups, vibrational modes, 
and intensities due to their wavenumbers (Table I). 

FTIR spectra of OO, CO, and CO+OO are 
analyzed. 3080, 2922, 2853, 1745, 1644, 1439, 
1375, 1152, 1109, 886, 797, and 772 cm-1                
convey the primary peaks. The peak marker of            
OO characterizes the vibrational bands at                 
3080, 1644, 1439, 886, 797, and 772 cm-1. Since   
OO was composed of terpenes (with (+)-limonene 
as the significant compound), sesquiterpenes,      
and aldehydes, it shows that the stretching and 
bending vibration may include spectral              

features arising from –CH3, -C=C, and -C-H of 
terpenes (Cebi et al., 2021). These functional 
groups represented the characteristics of common 
terpenes, namely α-pinene, -pinene, champene, 
limonene, α-phellandrene, -phellandrene, and            
-myrcene (Derdar  et  al.,  2019;  Yang et al., 2017).  
The manifestation of pyranose skeleton bending 
presents specified sharp peaks at 772, 733, and 700 
cm-1 (Simona et al., 2021). On the other hand, the 
vibrational bands at 2922, 2853, 1745, 1375, 1152, 
and 1109 cm-1 represented the fingerprint pattern 
of CO as an adulterant. Absorption intensities at 
2922, 2853, and 1745 cm-1 reveal the presence of 
ester and aliphatic groups corresponding to 
triglyceride content in CO (Rohman et al., 2019). 
Other regions of 1375, 1152, and 1109 cm-1 
corresponding to the bending and starching 
vibrations of –C-H, -C-O, -CH2-, and -CH3 functional 
groups related to the structure of fatty acids (Amit 
et al., 2020). 
 
Exploratory Data Analysis using PCA 

PCA, a dimensionality reduction technique 
for large datasets, is commonly applied for 
exploratory methods in data science (Van Der 
Maaten et al., 2009). PCA, a pattern recognition 
algorithm, provides a descriptive tool for data 
treatment without any distributional assumptions 
or target attributes (Jollife & Cadima, 2016). In 
analytical chemistry, data output from analytical 
instruments may be obtained as big data. 
Recording of absorbance at each wavenumber from 
oil samples uses an FTIR spectrophotometer in the 
range of 4000-600 cm-1 with a resolution of 8 cm-1. 

 
 
Figure 2. FTIR spectra of coconut oil (a), orange oil (b), and binary mixture of orange oil and coconut oil (c) 
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Hence, a data treatment strategy is significant in 
explaining the intrinsic structures for further 
evaluation. 

The absorbance of twelve primary peaks 
from the FTIR spectra generates the PCA model. 
These spectra function as original data without any 
spectral treatment or preprocessing techniques. 
Figure 3 presents the screen plot, variable plot, and 
PCA model individual plot. The screen plot depicts 
the number of crucial components in generating 
the PCA model. Meanwhile, the score plot provides 
information on how the samples relate to each 
other in two-dimensional visualization. A variable 
plot, commonly called a loading plot, explains the 
contribution of each original variable to build the 
model. 

The individual plot successfully separates 
pure OO from pure CO as adulterants. The 
adulterated OO+CO is present in various scores or 
locations because of different concentration 
preparations. The total explained variances for 
creating a two-dimensional PCA model is 79.5%, as 
calculated by Dim1 (61.6%) and Dim2 (17.9%). The 
term “Dim” or dimension refers to the principal 
component (PC) as commonly recognized in 
chemometrics terminology (Kassambara & Mundt, 
2017). 

Because the FTIR spectral data of twelve 
primary peaks build the PCA, it has been interesting 
to evaluate the contribution of each original 
variable. The variable plot shows a load of each 
variable, as well as their contribution profiles. The 
exhibition of the absorbance at 1745, 1645, 1152, 
886, and 772 cm-1 is the main contributor to the 
construction of the PCA model. In conclusion, the 
vibrational bands of these regions provide specific 
fingerprint properties for OO and CO. Vibrational 
bands near 1645, 886, and 772 cm-1 result from the 
content of OO. Meanwhile, the content of CO 
contributed to the presence of the bands is near 
1745 and 1152 cm-1. 

 
Multivariate Calibrations  

In this authentication study, multivariate 
calibration techniques, namely PCR and PLSR are 
generated to develop predictive models for 
quantitative evaluation in OO adulteration. PCR is 
applied to decrease the predictor's variable 
number by using their first few principal 
components selected by cross-validation technique 
rather than the original variables. Meanwhile, the 
PLSR employed linear combinations of the 
predictor variables rather than the original 
(Kassambara, 2018; Miller et al., 2018). 

Table II. The performance of principle component regression (PCR) and partial least squares regression (PLSR) for 
predicting the content of mixture containing orange oil and coconut oil  
 

Oils 
Multivariate 
calibration 

Type of spectra 
Number of 

components 
Rcal2 RMSEC RCV2 RMSECV Rval2 RMSEP 

Orange 
oil 

PCR 

Original 58 1.000 0.079 0.999 0.413 0.991 1.023 
First derivative 64 1.000 0.013 0.998 0.444 0.991 1.026 

Second derivative 63 1.000 0.036 0.998 0.479 0.990 1.113 
SNV 39 0.999 0.193 0.998 0.456 0.992 0.989 
SG 36 0.999 0.191 0.999 0.432 0.991 1.043 

PLSR 

Original 16 0.999 0.104 0.999 0.420 0.991 1.032 
First derivative 21 1.000 0.001 0.998 0.444 0.991 1.027 

Second derivative 16 1.000 0.007 0.998 0.480 0.990 1.115 
SNV 14 0.999 0.174 0.998 0.476 0.992 0.991 
SG 25 1.000 0.011 0.999 0.433 0.992 0.956 

Coconut 
oil 

PCR 

Original 58 1.000 0.079 0.999 0.413 0.991 1.023 
First derivative 64 1.000 0.014 0.998 0.444 0.991 1.026 

Second derivative 63 1.000 0.036 0.998 0.479 0.990 1.113 
SNV 39 0.999 0.193 0.998 0.455 0.992 0.989 
SG 36 0.999 0.191 0.999 0.432 0.991 1.043 

PLSR 

Original 16 0.999 0.104 0.999 0.420 0.991 1.032 
First derivative 21 1.000 0.001 0.998 0.444 0.991 1.027 

Second derivative 16 1.000 0.007 0.998 0.480 0.990 1.115 
SNV 14 0.999 0.174 0.999 0.476 0.992 0.991 
SG 25 1.000 0.011 0.999 0.433 0.992 0.956 

 

Note: Selected model of calibration for each compound were marked with bold. PCR: Principal Component Regression; 
PLSR: Partial Least Squares Regression; SNV: Standard Normal Variate; SG: Savitzky-Golay smoothing with polynomial 
order of 3 and window width of 11 points. 
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FTIR spectral data ranging between 4000-
600 nm-1 aims to achieve different spectra, 
including original spectra, first derivative, second 
derivative, SNV, and SG. The objective of         
spectral pre-processing is to control the risk of 
overfitting and boundary complexity. Furthermore, 
removing undesired variance in the spectra 
improves the model's predictive ability (Devos et 
al., 2014).  

The PCR model using SNV spectra and the 
PLSR model using SNV spectra are selected as the 
best prediction model for OO and CO, respectively. 
These two models have been considered 
appropriate due to the highest R2 values                
(Rcal2, RCV2, Rval2) and the lowest value of root mean    
squares   error   (RMSEC,   RMSECV,  RMSEP).      

In conclusion, the selected models were accurate 
and precise for calibration and validation models 
(Rohman et al., 2014). 

The predictive model generated from a set of 
training data refers to the calibration model in 
chemometrics. Examining Rcal2 and RMSEC values 
can evaluate this model. The performance of cross-
validation as the internal validation of the training 
data uses leave-one-out techniques. The RCV2 and 
RMSECV indicate the quality of the developed 
model when the internal validation model applies. 
Since the external validation model constructions 
come from independent datasets, the predictive 
ability of the models proves a quantitative 
determination regarding the value of Rval2 and 
RMSEP (Figure 4).  

 
 
Figure 3. Scree plot (a), variable plot (b), and individual plot (c) of principal component analysis resulted 
from original spectra at selected wavenumber 
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sPLS-DA with Tuning Parameters 
The sPLS-DA, an extension to the sparse PLS, 

is a limited version of PLS for discrimination 
purposes (Lê Cao et al., 2011). The main idea of 
applying this limited version is to combine the 
selection and modeling process in a one-step 
procedure to overcome the discrimination  
problem (Lê Cao et al., 2008). In the case of             
natural product authentication, sPLS-DA 

accompanied by graphical visualization is more 
effective than PLS-DA due to the possibility of 
applying the variable selection approach in 
multiclass problems (Jiménez-Carvelo et al., 2021). 
This study chooses SNV spectra of OO, CO, and 
OO+CO to generate the sPLS-DA model since these 
spectra types resulted in the best multivariate 
calibration models for OO and CO in the previous 
section (Figure 5).  

 
 
Figure 4. Prediction plots of orange oil (a) and coconut oil (b) generated from the selected calibration model 
for each sample 
 

 
 
Figure 5. Sparse PLS-DA performance plots for orange oil authentication including background 
prediction plot (a), AUC-ROC plot (b), contribution plot (c), and 3D individual plot (d) 
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The background prediction plot provides 2D 
visualization of the sPLS-DA model with 
background colors and discrimination markers for 
each class. The maximum distance approach is 
applied to classify sample categories at the 
predicted dummy variables with the highest 
dummy value (Rohart et al., 2017). The AUC-ROC 
plot depicts the capability of the sPLS-DA model to 
discriminate OO, CO, and OO+CO. The AUC curve 
and ROC curve construct the AUC-ROC. The AUC 
curve represents the degree of separability of the 
model, while the ROC curve represents the 
probability of the discrimination model (Narkhede, 
2018). The OO and OO+CO are separated into          
other classes since the model outcome shows a 
value of 1 or 100%. The CO outcome versus the 
other is 0.978. This result represented that the 
chance of the sPLS-DA model to distinguish CO 
from the others was 97.8%. The contribution plot 
presented the contribution of each real variable to 
build components for the discrimination model. 
The absorbance value of the SNV spectra at the 
wavenumber of 3113, 3109, and 3117 cm-1 
provided the highest contribution compared to the 
other variables. These highest contribution 

variables resulted from a narrow band above          
3000 cm-1. This result indicated the presence of 
unsaturated compounds or aromatic rings in 
essential oil (Agatonovic-Kustrin et al., 2020; 
Nandiyanto et al., 2019). The 3D visualization 
strengthens the sPLS-DA modeling to provide the 
model's extensive view and simplify its 
interpretation (Mishra et al., 2021). 

One of the characteristics of sPLS-DA model 
generation is the possibility to tune in the 
discrimination parameters regarding the 
constructed model. Aiming to apply the repetition 
and stratification of cross-validation for model 
comparison, it is crucial to determine tuning 
parameters and numerical outputs. For this 
purpose, sPLS-DA in R statistical software in the 
‘mixOmics’ package can be implemented. The three 
selected parameters include component numbers, 
the variable of “keepX” numbers, and the prediction 
distance. In the cross-validation stage, this study 
applies 5-fold cross-validation with 30-time 
repetitions. 

The sPLS-DA tuning parameter evaluation 
for classification error rates, features selection, and 
sPLS-DA results (Figure 6). Distance profiles of the 

 
 

Figure 6. Sparse PLS-DA tuning parameter evaluation for classification error rates (a), features selection 
(b), and sPLS-DA final result (c) 
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ten first components related to maximum distance, 
centroid distance, and mahalanobis distance are 
present along with the Balanced Error Rate (BER) 
and the overall value. The maximum distance 
approach determines the minimum classification 
error rate relative to the other distance. The 
features selection plot illustrates that the suggested 
list of “keepX” for components 1, 2, and 3 were 1, 5, 
and 1, respectively. The presentation of the sPLS-
DA result follows the tuning parameters and two-
dimensional plot. The X-variate 1 (x-axis) and X-
variate 2 (y-axis) explained 78% and 16% of the 
total variances, respectively. The sPLS-DA model, 
with a total explained variance of 94%, successfully 
improves the entire explained variance compared 
to the previous PCA model (79.5%). In conclusion, 
the sPLS-DA as a supervised pattern recognition 
with tuning parameters proves its ability to 
discriminate classes of multivariate data by 
discarding non-informative variables during the 
model generation. FTIR spectral data with spectral 
pre-processing goes along with chemometrics 
techniques for developing authentication analysis 
for foods and herbals. 

 

CONCLUSION 
This study conducts an authentication 

analysis of Citrus aurantium L. essential oil using 
FTIR spectroscopy combined with chemometrics 
techniques. Exploratory data analysis was 
performed as an initial study to find the 
relationship between OO, CO, and OO+CO samples. 
Quantitative prediction models were constructed 
for both OO and CO in binary mixtures by applying 
the multivariate calibration techniques of PCR and 
PLSR. The study found that the PCR model using 
SNV spectra and the PLSR model using SNV spectra 
displayed the best prediction model for OO and CO, 
respectively. SNV spectra exploitation of OO, CO, 
and OO+CO built an sPLS-DA model for 
authentication analysis. Tuning parameters 
performance included component numbers, the 
number of “keepX” variables, and the prediction 
distance. With the tuning parameters approach, it 
successfully generated the final sPLS-DA result. 
Compared to the PCA model, it improved the 
separability of each class or category as the 
explained variance percentage increased. However, 
the applicability of the combination of FTIR 
spectroscopy and chemometric techniques for 
discriminating other types of essential oils 
required further investigation.  
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