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COVID-19 is a disease caused by the SARS-CoV-2 virus, with various 
non-specific symptoms, including cough, fever, shortness of breath, and acute 
inflammation (hyperinflammation). These symptoms tend to worsen when 
inflammation is not controlled, and its severe cases can lead to death. 
Therefore, this study aimed to build a stacked autoencoder deep neural 
network (SAE-DNN) model for identifying herbal compound candidates that 
can be used as anti-inflammatory drugs for COVID-19 treatment. The model’s 
performance was evaluated based on different data representations. The 
study process involved data collection and preprocessing, modeling, and 
testing the model on the herbal data to obtain compound candidates. The 
results showed that the developed SAE-DNN model with compound 
representation that combined fingerprint and dipeptide composition 
produced the best performance. Its values are 0.96722, 0.96419, 0.99596, and 
0.96567 for accuracy, recall, the area under the receiver operating 
characteristic, and F1 score, respectively. Furthermore, a total of 33 herbal 
compounds were identified as potential anti-inflammatory drugs using the 
SAE-DNN model.  
Keywords: COVID-19, deep learning, drug repurposing, hyperinflammation, 
semisupervised learning 
 

 

INTRODUCTION 
SARS-CoV-2 is classified as a Coronaviridae 

virus due to its crown-like shape morphology. 
According to Shereen et al. (2020), its rate of 
spread is higher than other coronaviruses such as 
SARS-CoV and MERS-CoV. The symptoms caused by 
this virus were not specific, mostly asymptomatic, 
while those that may appear include runny nose, 
cough, fatigue, and pneumonia (Li et al., 2020). 
Furthermore, COVID-19 patients suffer from 
hyperinflammation, which is caused by excess 
cytokines and worsens disease progression 
(García, 2020). Cytokines are proteins that alert the 
body about the entry of foreign substances, such as 
viruses, toxins, and bacteria. They play an 
important role in providing an immune response, 
but their excessive production may cause a 
cytokine storm. In this case, the inflammatory 
reaction in the body cannot be controlled (Yiu et al., 

2012). Therefore, the discovery of drugs to prevent 
hyperinflammation due to COVID-19 is urgently 
needed. 

 

In addition to the conventional, traditional 
medicine made from plants continues to play a 
valuable role. Plant-based treatment has been 
available for the last 60,000 years. Furthermore, 
traditional Chinese medicine (TCM) is still used as 
a complement to western medicine. For example, 
the TCM Shufengjiedu capsules offer similar 
efficacy to lopinavir and ritonavir in treating 
COVID-19 patients (Li et al., 2020). Kampo is also 
used as a complement to western medicine in Japan 
for cancer treatment, along with radiotherapy and 
chemotherapy (Yuan et al., 2016). Indonesia uses 
traditional medicine based on herbal plants to cure 
certain diseases. One of the most popular Javanese 
scripts that compile a list of medicinal herbs is Serat 
Primbon Jampi Jawi Volume I (SPJJ I). Some of the 
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plants included in this manuscript are tobacco 
leaves, lime, and garlic (Mulyani & Widyastuti, 
2016). According to Widyatmoko (2018), 
Indonesia has the largest biodiversity potential in 
the world after Brazil and Colombia. The country is 
home to 27,500 species of flowering plants, and 
1,300 plants are known to have medicinal 
properties. Therefore, Indonesia must explore its 
plant species as drug candidates for COVID-19 
prevention and treatment. 

Drug repurposing is a discovery strategy 
that uses compounds that certain institutions have 
recognized for the treatment of different diseases 
(Zhou et al., 2020). One of its steps is to identify the 
interactions between compounds and proteins. The 
two most popular in silico methods were molecular 
docking and machine learning (Bagherian et al., 
2020). In silico is highly recommended because 
these experiments reduce costs and minimize 
possible risks (Xue et al., 2018). 

Machine learning method has been 
extensively employed to predict the interactions 
between compounds and proteins, such as drug-
target interactions (DTIs). In particular, feature-
based machine learning method is commonly used 
in cases involving DTIs. This method uses extracted 
features from compounds and proteins (Bagherian 
et al., 2020). Bahi and Batouche (2018) predicted 
DTIs using the stack autoencoder (SAE) and deep 
neural network (DNN) model. The developed 
model uses data representation in the form of 
compound and protein characteristics. It includes 
semisupervised learning because of the weight 
initialization process involved before model 
predictions. Sulistiawan et al. (2020) used the SAE-
DNN model to determine the herbal compound 
candidates as drugs against the SARS-CoV-2 virus, 
which resulted in a model accuracy of 0.94. 
Therefore, a study using SAE-DNN modeling is 
proposed to predict candidate compounds as 
hyperinflammatory drugs for treating COVID-19. 

 

MATERIALS AND METHOD 
Data Sources 

Initially, 13 proteins that have a significant 
effect triggering inflammation were gathered 
because of COVID-19 using computational method. 
Other proteins were added by looking at existing 
literature that observed causes of inflammation. A 
study found that the interleukin-1-beta, 
interleukin-5, interleukin-8, and interferon-gamma 
contained effects that triggered inflammation 
(García, 2020; Yiu et al., 2012). For testing 
purposes, only proteins such as interleukin-6, 

interleukin-1-beta, interleukin-8, tumor necrosis 
factor-alpha, and interferon-gamma were          
included to predict the herbal compound 
candidates. Most were described in a previous 
study (Ramadhani, 2022). These proteins were 
used because of their effects on triggering 
inflammation. Furthermore, the data were 
collected from UniProt 
(https://www.uniprot.org/), which is a database 
that contains data about proteins, ranging from its 
sequence in a FASTA format to a summary (The 
UniProt Consortium, 2021) (Table I).  

This study obtained compound data that 
have interactions with the target proteins and can 
reduce its effect. The interaction data were 
collected from a website called SuperTarget by 
searching each UniProt identifier that was 
previously gathered. SuperTarget 
(https://bioinformatics.charite.de/supertarget/) 
is a secondary database that retrieves all protein 
and compound interactions from existing 
databases (Günther et al., 2008). The PubChem 
identifier of the compound was obtained from 
SuperTarget (Kim et al., 2021). These identifiers 
were used to extract the compound in SDF format 
from PubChem 
(https://pubchem.ncbi.nlm.nih.gov/). 

The result showed approximately 7,902 
interactions and 7,708 observed compounds. An 
unknown interaction was generated by merging all 
chemicals and proteins, as the data contained only 
the existing interactions. Afterward, 123,134 
unknown interaction data were collected, resulting 
in a total of 131,036 compounds and proteins. 

A sampling process was implemented with a 
1:5 proportion between known and unknown 
interactions, given the unbalanced data 
(Sulistiawan et al., 2020). Therefore, the total 
training data obtained for modeling comprised 
47,412 known (positive class) and unknown 
interactions (negative class).  

Around 811 data on herbal compounds were 
obtained for testing from a database called 
HerbalDB (Syahdi et al., 2019). The compounds 
were paired with five target proteins and about 
4,055 combinations of the compound protein 
interactions were tested. 
 
Research Workflow 

The research flow involved data collection 
and data preprocessing, model development, 
hyperparameters tuning, and model testing on 
herbal compound data. Figure 1 shows the research 
workflow. 

https://www.uniprot.org/
https://bioinformatics.charite.de/supertarget/
https://pubchem.ncbi.nlm.nih.gov/
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Data Preprocessing 
The compounds and proteins were 

represented in string format. Specifically, the SDF 
and FASTA representations were used for the 
compounds and proteins, respectively. The 
representation is then converted into numerical 
form, such that modeling can be performed and 

PubChem fingerprint was used to represent the 
compounds. For the proteins, three descriptors, 
namely amino acid composition (AAC), dipeptide 
composition (DC), and quasi-sequence order (QSO) 
were considered, compared, and the best was 
selected to screen the compounds from the herbal 
dataset. 

Table I. The description of target proteins. 
 
UniProt Identifier Protein Name Train Data Test Data Citation 

VEGFA_HUMAN Vascular endothelial growth factor A ✓ - (Sahebnasagh, 2021) 

MMP12_HUMAN Matrix metalloelastase ✓ - (Hardy, 2021) 

TNFA_HUMAN Tumor necrosis factor ✓ ✓ (Guo, 2022) 

B2MG_HUMAN Beta-2-microglobulin ✓ - (Conca et al, 2021) 

IL8_HUMAN Interleukin-8 ✓ ✓ (Ramadhani, 2022) 

RASH_HUMAN GTPase HRas ✓ - (Sciacchitano, 2021) 

EGFR_HUMAN Epidermal growth factor receptor ✓ - (Londres et al, 2022) 

TF65_HUMAN Transcription factor p65 ✓ - (Spinelli, 2021) 

SDF1_HUMAN Stromal cell-derived factor 1 ✓ - (Dogan, 2022) 

LOX5_HUMAN 
Polyunsaturated fatty acid 5-
lipoxygenase 

✓ - (Ayolla-Serano, 2022) 

IL1B_HUMAN Interleukin-1 beta ✓ ✓ (Ramadhani, 2022) 

IFNG_HUMAN Interferon-gamma ✓ ✓ (Ramadhani, 2022) 

PGH2_HUMAN Prostaglandin G/H synthase 2 ✓ - (Ricke Hoch, 2021) 

IL6_HUMAN Interleukin-6 ✓ ✓ (Ramadhani, 2022) 

HMOX1_HUMAN Heme oxygenase 1 ✓ - (Batra et al., 2022) 

PERM_HUMAN Myeloperoxidase ✓ -  

HDAC3_HUMAN Histone deacetylase 3 ✓ - (Sixto Lopez, 2022) 

 

 
 
Figure 1. Research workflow 
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The PubChem fingerprint is a representation 
that stores related compound information into a 
vector with 881 dimensions. Each element in the 
vector is assigned a value of 0 and 1 to indicate the 
absence and availability of information, 
respectively (Fernández-de Gortari et al., 2017). 
The representation was extracted using the R 
programming language with a library called 
ChemmineR. AAC is a protein representation that 
describes the frequency of amino acid occurrence 
as a fraction of the protein’s length. It has 20 
dimensions, with each value representing one 
amino acid. Furthermore, DC is a protein 

representation that describes the occurrence 
frequency of a dipeptide, a combination of two 
amino acids, within a protein with up to 400 
dimensions. QSO stores sequence-related 
information between one amino acid and another. 
This representation has 40 + (2 * nlag) dimensions, 
where nlag is the maximum lag value. In this study, 
a maximum lag of 30 was used, which is the default 
value of the protr library. The representations were 
extracted using the protr library from the R 
programming language (Xiao et al., 2015). 
Subsequently, each feature was combined with its 
corresponding identifier. 

Table II. Data representation format for model training 
 
s1 s2 …sn−1… sn−1 sn p1 p2 …pn−1… pn−1 pn label 

1 0 

… 

1 1 0.25 0 

… 

0.01 0.3 1 
1 0 1 0 0 0.25 0.3 0.01 0 
0 1 1 1 0.3 0.01 0.25 0.3 1 
0 1 0 1 0.01 0 0 0.25 0 

 

 
A 

 
B 

 
Figure 2. A. Illustration of the stacked autoencoder model (Sulistiawan et al. 2020); B. Illustration of the deep neural 
network model 
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After obtaining the features, the compounds 
and protein features were combined as a unified 
vector. To combine these features, data consisting 
of protein and compound identifiers were 
retrieved, along with labels indicating the      
presence or absence of interactions. Afterward, the 
features of the proteins and compounds were 
combined based on their corresponding identifiers. 
The identifiers were then removed from the data 
and a dataset was obtained to train the model 
(Table II).  
 
Model Implementation 

A semi-supervised-based deep learning 
model with a supervised and unsupervised 
learning process was implemented. Furthermore, 
two different deep learning models that consisted 
of SAE were combined for the unsupervised and 
DNN for the supervised learning process. The SAE 
model reconstructed the input as the output value 
using a middle layer called the bottleneck layer 
(Figure 2A). The bottleneck layer was used rather 
than random weights for the DNN model.  

The weights for the DNN model were trained 
before predicting the herbal compound candidates. 
The DNN model consisted of several layers, each 
containing batch normalization and dropout layers. 
Batch normalization was a step to normalize the 
value range from the layer’s output (Ioffe & 
Szegedy, 2015). It was applied to accelerate the 
training process. The dropout layer was used to 
randomly remove several nodes and it was applied 
to avoid the model overfitting the data. Overfitting 
is a condition where the model follows the data 
closely, resulting in a lower accuracy result 
(Srivastava et al., 2014).  The model generated the 
predictions that contained an error for each 
iteration of the training process. The error is 
calculated by subtracting the model prediction 
result and the ground truth answer. To reduce this 
error, backpropagation was applied to adjust the 
model weights. Therefore, the model performance 
improved over time (Figure 2B).  

 
Hyperparameters Tuning 

Hyperparameters tuning is a process for 
finding the combination of hyperparameters, 
which are used to obtain the optimal model. Their 
combination is expected to improve model 
performance (James et al., 2013) (Table III). 
Bayesian optimization was adopted to conduct 
hyperparameters tuning. It is a method for 
identifying the combination of of values, which in 
this case is hyperparameters, that can reach the 

global optimum at a function. In contrast to grid 
search, Bayesian optimization uses a Bayesian-
based method for selecting hyperparameters 
values. This method reduces the search space for a 
hyperparameters when the results obtained are 
close to the global optimum. Therefore, the 
processing time for searches using Bayesian 
optimization is relatively short (Frazier, 2018). 

 
Table III. Hyperparameters choices for the model. 
 

Hyperparameters Choice 

Hidden Layer Unit (HL0) 
[300, 500, 750, 1000, 
1250] 

Hidden Layer Unit (HLi) [0.5, 0.66, 0.75] 
Activation Function [ReLU, Tanh, Sigmoid] 
Dropout [0.1, 0.3, 0.5] 
Number of Hidden Layers [2, 3, 4] 

Learning Rate 
[0.01, 0.001, 0.0001, 
0.00001] 

 
Model Evaluation 

The model was evaluated using k-fold cross-
validation with a value of 10 to determine its 
performance before being used to screen herbal 
compounds. This method was used to perform 10 
sets of using different training and validation data 
with a proportion of 90% and 10%, respectively 
(James et al., 2013). Metrics such as accuracy, 
precision, recall, and area under the receiver 
operating characteristic (AUROC) were used to 
quantify the model performance. The F1 score was 
used to determine the best model to retrieve the 
herbal compound candidates. Accuracy is a metric 
that calculates performance in all class labels while 
precision evaluates how the model can predict the 
classes precisely. Furthermore, recall determines 
the model’s ability to retrieve all correct answers. 
AUROC calculates the area of the receiver operating 
characteristic chart, where the graph has a false 
and true positive rate on the x and y-axis, 
respectively. The F1 score takes precision and 
recall values to determine performance. 

 
Model Testing 

The optimal model was used to test the 
herbal compound dataset. This data comprises 
compound data from HerbalDB and inflammation-
associated proteins, particularly those that have 
been shown to play a role in hyperinflammation 
due to COVID-19. The proteins used as targets 
include interleukin-6 (IL6), interleukin-8 (IL8), 
tumor necrosis factor-alpha (TNF-α), interleukin-
1-beta  (IL1-β),   and    interferon-gamma   (IFNγ).  
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They were obtained from García (2020) and Yiu et 
al. (2012) who discussed immune reactions and 
inflammation caused by COVID-19 and the role of 
proteins in triggering inflammation.  

 

RESULTS AND DISCUSSION 
Data Preprocessing 

The interaction data were subjected to 
preprocessing, where the compounds and proteins 
representation was changed from string to vector 
format. The data were preprocessed into three 
combinations of features, namely PubChem 
fingerprint and AAC feature (FP-AAC), PubChem 
fingerprint and DC feature (FP-DC), as well as 
PubChem fingerprint and QSO feature (FP-QSO). 
The total feature dimensions were 901, 1,281,         
and 981 for FP-AAC, FP-DC, and FP-QSO, 
respectively. 

 
Hyperparameters Tuning 

This stage used the Bayesian optimization 
method to determine the best combination of 
hyperparameters for the model based on data 
representation. Each combination of 
hyperparameters was modeled 20 times (Table IV). 
The table above showed that each model had 
different hyperparameters, except the dropout 
value. Furthermore, there is a correlation between 
the number of hidden neurons and layers. The FP-
AAC and FP-QSO models used the ReLU activation 
function, while the FP-DC uses sigmoid. 

Model Evaluation 
The three models were evaluated with the 

best combinations of hyperparameters using a 10-
fold cross-validation approach (Table V). 
Afterward, the model’s performance in terms of 
accuracy, precision, recall, AUROC, and F1 score on 
each fold was calculated.  

These results indicated that all models 
achieved over 95% performance across the 
metrics. Furthermore, the FP-AAC model had the 
best precision performance with a value of 
0.98857, while FP-QSO had the best recall with 
0.97184. The model with the FP-DC representation 
had the best accuracy, AUROC, and F1 score 
performance. The accuracy, precision, recall, 
AUROC, and F1 scores of the FP-DC model were 
0.98857, 0.96722, 0.96419, 0.999596, and 0.96567, 
respectively. Therefore, the model with an FP-DC 
representation was used to test the herbal 
compound data. 

 
Model Testing 

The model was tested with FP-DC 
representation on the herbal compounds extracted 
from HerbalDB. A total of 1,283 from the 4,055 
interactions tested were negative. From the 1,283 
negative interactions, those with a probability 
value above 0.95 were taken. Furthermore, 33 out 
of 811 herbal compounds were predicted to have 
positive interactions with the target proteins that 
play a role in inflammation (Table VI).  

Table IV. Best combinations of hyperparameters 
 

Hyperparameters 
Feature Combination 

FP-AAC FP-DC FP-QSO 
Hidden Layer Unit (HL0) 500 1250 300 
Hidden Layer Unit (HLi) 0.5 * HLi−1 0.5 * HLi−1 0.75 * HLi−1 

Activation Function ReLU Sigmoid ReLU 
Dropout 0.1 0.1 0.1 

Number of hidden layers 3 2 4 
Learning rate 0.01 0.00001 0.01 

 
Table V. Model evaluation result. 
 

Metric 
Feature Combination 

FP-AAC FP-DC FP-QSO 
Accuracy 0.98768 ± 0.003 0.98857 ± 0.001 0.98739 ± 0.002 
Precision 0.97184 ± 0.013 0.96722 ± 0.008 0.95722 ± 0.013 

Recall 0.95394 ± 0.009 0.96419 ± 0.004 0.96709 ± 0.015 
AUROC 0.98648 ± 0.007 0.99596 ± 0.002 0.99205 ± 0.002 

F1 Score 0.96273 ± 0.008 0.96567 ± 0.003 0.96199 ± 0.007 
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Evaluation 
The model results were evaluated by 

studying the plants containing the compounds. The 
result showed that perseitol; L-(+)-tartaric acid; 
citric acid; (−)-pelletierine; quinidine and quinine; 
as well as allicin and diallyl disulfide compounds 
can be found in avocados; grapes; lemons; 
pomegranate tree root bark; quinine; and white 
onions, respectively. Quinine has the potential as an 
immunosuppressant and inhibits TNF-α as well as 
increases the production of IFN-α cytokines to 
suppress viral infections (Latarissa et al., 2021). 
Table 6 shows several derivates of quinine such as 
quinidine and cinchonidine, which has similar 
potential in COVID-19 therapy and safer profile 
compared to chloroquine and hydroxychloroquine 
were found (Latarissa et al., 2021). According to 
Bakun et al. (2021), chamazulene also known as 
azulene derivates is another compound with 
several potential as antiviral, anti-inflammation, 
anti-diabetes, and antineoplastic. Spermidine, also 
known as a derivate of polyamines, can inhibit 
infections of the coronavirus and increase the rates 
of autophagy (Firpo et al., 2021). Furthermore, 
agmatine has the potential to suppress 
inflammation including pain-related and 
neuropathy (Yezierski, 2000). Although the model 
was able to capture anti-inflammatory compounds, 
the predictive results also identified the 
compounds that induce inflammation, such as 
glucose and fructose, which comprise sugar. 
According to Gao et al. (2017), sugar is an 
inflammatory compound when consumed in large 
amounts. 

 
CONCLUSION 

This study successfully identified herbal 
compound candidates as anti-inflammatory drugs 

for COVID-19 treatment using SAE-DNN modeling. 
Furthermore, data representation with the FP-DC 
combination achieved satisfactory performance. 
The metric scores were 0.98857, 0.96722, 0.96419, 
0.99596, and 0.96567 for accuracy, precision, 
recall, AUROC, and F1 score, respectively. This 
modeling found 33 herbal compound candidates 
that interact with inflammation-inducing proteins. 
A total of 31 compounds known to reduce 
inflammation were found from this candidate list 
and 2 trigger inflammation. 
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