A Comparative Study on The Electrochemical Properties of Hydrothermal and Solid-State Methods in The NCM Synthesis for Lithium Ion Battery Application
Abstract
In this article, we report and compare the synthesis method of the active cathode materials based on nickel‐cobalt‐manganese (NCM) for lithium-ion battery application. We evaluate the hydrothermal and solid-state reaction method in NCM-622 synthesis, the material characterizations, and the battery performance. Based on the analytical results using X-ray diffraction (XRD), particles synthesized using hydrothermal and solid-state methods exhibit a highly crystalline NCM phase. NCM particles synthesized using solid-state reaction exhibit high-rate performance up to 10 C. The electrochemical impedance spectroscopy analysis shows that the charge transfer resistance (Rct) of NCM synthesized by the solid-state reaction (SSR) method was 25.9% lower than hydrothermal. Meanwhile, the ionic diffusivity of the SSR sample was 38.5% higher than the hydrothermal sample. These two factors lead to better performance when tested in a lithium-ion battery.
References
Andre, D., Kim, S.-J., Lamp, P., Lux, S.F., Maglia, F., Paschos, O., and Stiaszny, B., 2015. “Future generations of cathode materials: an automotive industry perspective.” J. Mater. Chem. A, 3, 6709–6732. https://doi.org/10.1039/C5TA00361J
Bak, S.-M., Hu, E., Zhou, Y., Yu, X., Senanayake, S.D., Cho, S.-J., Kim, K.-B., Chung, K.Y., Yang, X.-Q., and Nam, K.-W., 2014. “Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy.” ACS Appl. Mater. Interfaces 6, 22594–22601. https://doi.org/10.1021/am506712c
Bishnoi, A., Kumar, S., and Joshi, N., 2017. “Chapter 9 - Wide-Angle X-ray Diffraction (WXRD): Technique for Characterization of Nanomaterials and Polymer Nanocomposites,” in: Thomas, S., Thomas, R., Zachariah, A.K., Mishra, R.K.B.T.-M.M. in N.C. (Eds.), Micro and Nano Technologies. Elsevier, pp. 313–337. https://doi.org/10.1016/B978-0-323-46141-2.00009-2
Cao, Xiaoyu, Zhao, Y., Zhu, L., Xie, L., Cao, Xiaoli, Xiong, S., and Wang, C., 2016. “Synthesis and Characterization of LiNi1/3Co1/3Mn1/3O2 as Cathode Materials for Li-Ion Batteries via an Efficacious Sol- Gel Method.” Int. J. Electrochem. Sci., 11, 5267–5278. https://doi.org/10.20964/2016.06.93
Chao, M., and Shuang-Yuan, T., 2020. “Hydrothermal Synthesis and Electrochemical Performance of Micro-spherical LiNi1/3Co1/3Mn1/3O2 Cathode Material.” Int. J. Electrochem. Sci., 15, 9392–9401. https://doi.org/ 10.20964/2020.09.53
Chen, C.-L., Chiu, K.-F., Leu, H.J., and Chen, C.C., 2013. “Iron Hexacyanoferrate Based Compound Modified LiMn2O4 Cathodes for Lithium Ion Batteries.” J. Electrochem. Soc., 160, A3126. https://doi.org/ 10.1149/2.020305jes
Chong, S., Liu, Y., Yan, W., and Chen, Y., 2016. “Effect of valence states of Ni and Mn on the structural and electrochemical properties of Li1.2NixMn0.8−xO2 cathode materials for lithium-ion batteries.” RSC Adv. 6, 53662–53668. https://doi.org/10.1039/C6RA09454F
Deng, C., Zhang, S., Fu, B.L., Yang, S.Y., and Ma, L., 2010. “Synthetic optimization of nanostructured Li[Ni1/3Mn1/3Co1/3]O2 cathode material prepared by hydroxide coprecipitation at 273K.” J. Alloys Compd., 496, 521–527. https://doi.org/ 10.1016/j.jallcom.2010.02.094
Domi, Y., Usui, H., Sugimoto, K., and Sakaguchi, H., 2019. “Effect of Silicon Crystallite Size on Its Electrochemical Performance for Lithium-Ion Batteries.” Energy Technol., 7, 1800946. https://doi.org/https://doi.org/10.1002/ente.201800946
Geldasa, F.T., Kebede, M.A., Shura, M.W., and Hone, F.G., 2022. “Identifying surface degradation, mechanical failure, and thermal instability phenomena of high energy density Ni-rich NCM cathode materials for lithium-ion batteries: a review.” RSC Adv., 12, 5891–5909. https://doi.org/10.1039/D1RA08401A
Habibi, A., Jalaly, M., Rahmanifard, R., and Ghorbanzadeh, M., 2018. “The effect of calcination conditions on the crystal growth and battery performance of nanocrystalline Li(Ni1/3Co1/3Mn1/3)O2 as a cathode material for Li-ion batteries.” New J. Chem., 42, 19026–19033. https://doi.org/10.1039/C8NJ05007D
Huang, X., Zhang, P., Liu, Z., Ma, B., Zhou, Y., and Tian, X., 2022. “Fluorine Doping Induced Crystal Space Change and Performance Improvement of Single Crystalline LiNi0.6Co0.2Mn0.2O2 Layered Cathode Materials.” ChemElectroChem, 9, e202100756. https://doi.org/https://doi.org/10.1002/celc.202100756
Jan, S.S., Nurgul, S., Shi, X., Xia, H., and Pang, H., 2014. “Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification.” Electrochim. Acta, 149, 86–93. https://doi.org/10.1016/j.electacta.2014.10.093
Julien, C.M., Mauger, A., Zaghib, K., and Groult, H., 2014. “Comparative issues of cathode materials for Li-ion batteries.” Inorganics, 2, 132–154. https://doi.org/ 10.3390/inorganics2010132
Kasnatscheew, J., Evertz, M., Streipert, B., Wagner, R., Klöpsch, R., Vortmann, B., Hahn, H., Nowak, S., Amereller, M., Gentschev, A.-C., Lamp, P., and Winter, M., 2016. “The truth about the 1st cycle Coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes.” Phys. Chem. Chem. Phys., 18, 3956–3965. https://doi.org/10.1039/C5CP07718D
Kim, Y., 2012. “Lithium Nickel Cobalt Manganese Oxide Synthesized Using Alkali Chloride Flux: Morphology and Performance As a Cathode Material for Lithium Ion Batteries.” ACS Appl. Mater. Interfaces, 4, 2329–2333. https://doi.org/10.1021/am300386j
Konishi, H., Yoshikawa, M., and Hirano, T., 2013. “The effect of thermal stability for high-Ni-content layer-structured cathode materials, LiNi0.8Mn0.1−xCo0.1MoxO2 (x = 0, 0.02, 0.04).” J. Power Sources, 244, 23–28. https://doi.org/10.1016/j.jpowsour.2013.05.004
Konishi, H., Yuasa, T., and Yoshikawa, M., 2011. “Thermal stability of Li1−yNixMn(1−x)/2Co(1−x)/2O2 layer-structured cathode materials used in Li-Ion batteries.” J. Power Sources, 196, 6884–6888. https://doi.org/10.1016/j.jpowsour.2011.01.016
Li, T., Yuan, X.-Z., Zhang, L., Song, D., Shi, K., and Bock, C., 2020. “Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries.” Electrochem. Energy Rev., 3, 43–80. https://doi.org/10.1007/s41918-019-00053-3
Liu, S., Xiong, L., and He, C., 2014. “Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode.” J. Power Sources, 261, 285–291. https://doi.org/10.1016/j.jpowsour.2014.03.083
Luo, B., Jiang, B., Peng, P., Huang, J., Chen, J., Li, M., Chu, L., and Li, Y., 2019. “Improving the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode material via tungsten modification.” Electrochim. Acta, 297, 398–405. https://doi.org/10.1016/j.electacta.2018.11.202
Ma, C., and Tan, S.-Y., 2020. “Hydrothermal Synthesis and Electrochemical Performance of Micro-spherical LiNi1/3Co1/3Mn1/3O2 Cathode Material.” Int. J. Electrochem. Sci., 15, 9392–9401. https://doi.org/10.20964/2020.09.53
Myung, S.-T., Maglia, F., Park, K.-J., Yoon, C.S., Lamp, P., Kim, S.-J., and Sun, Y.-K., 2017. “Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives.” ACS Energy Lett., 2, 196–223. https://doi.org/10.1021/acsenergylett.6b00594
Or, T., Gourley, S.W.D., Kaliyappan, K., Yu, A., and Chen, Z., 2020. “Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook.” Carbon Energy, 2, 6–43. https://doi.org/https://doi.org/10.1002/cey2.29
Pan, C., Banks, C.E., Song, W., Wang, C., Chen, Q., and Ji, X., 2013. “Recent development of LiNixCoyMnzO2: Impact of micro/nano structures for imparting improvements in lithium batteries.” Trans. Nonferrous Met. Soc. China, 23, 108–119. https://doi.org/10.1016/S1003-6326(13)62436-X
Park, O.K., Cho, Y., Lee, S., Yoo, H.-C., Song, H.-K., and Cho, J., 2011. “Who will drive electric vehicles, olivine or spinel?” Energy Environ. Sci., 4, 1621–1633. https://doi.org/10.1039/C0EE00559B
Peng, L., Zhu, Y., Khakoo, U., Chen, D., and Yu, G., 2015. “Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability.” Nano Energy, 17, 36–42. https://doi.org/10.1016/j.nanoen.2015.07.031
Rahmawati, M., Purwanto, A., Widiyandari, H., Paramitha, T., Nizam, M., Dyartanti, E.R., Muzayahna, S.U., and Yudha, C.S., 2020. “Synthesis of NMC 111 via urea assisted solid state method.” AIP Conf. Proc., 2197, 50007. https://doi.org/10.1063/1.5140919
Seungbum, H., Yoon, B., Lim, H., Seo, H.-K., Lee, C.-R., and Seo, I., 2022. “Photo-Charging of Li(Ni0.65Co0.15Mn0.20)O2 Lithium-Ion Battery Using Silicon Solar Cells.” Materials (Basel)., 15. https://doi.org/10.3390/ma15082913
Shi, S.J., Tu, J.P., Tang, Y.Y., Zhang, Y.Q., Liu, X.Y., Wang, X.L., and Gu, C.D., 2013. “Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries.” J. Power Sources, 225, 338–346. https://doi.org/10.1016/j.jpowsour.2012.10.065
Shim, J.-H., Kim, C.-Y., Cho, S.-W., Missiul, A., Kim, J.-K., Ahn, Y.J., and Lee, S., 2014. “Effects of heat-treatment atmosphere on electrochemical performances of Ni-rich mixed-metal oxide (LiNi0.80Co0.15Mn0.05O2) as a cathode material for lithium ion battery.” Electrochim. Acta, 138, 15–21. https://doi.org/10.1016/j.electacta.2014.06.079
Subhan, A., Oemry, F., Khusna, S.N., and Hastuti, E., 2019. “Effects of activated carbon treatment on Li4Ti5O12 anode material synthesis for lithium-ion batteries.” Ionics (Kiel)., 25, 1025–1034. https://doi.org/10.1007/s11581-018-2633-0
Tan, S., Wang, L., Bian, L., Xu, J., Ren, W., Hu, P., and Chang, A., 2015. “Highly enhanced low temperature discharge capacity of LiNi1/3Co1/3Mn1/3O2 with lithium boron oxide glass modification.” J. Power Sources, 277, 139–146. https://doi.org/10.1016/j.jpowsour.2014.11.149
Toprakci, O., Toprakci, H.A.K., Ji, L., and Zhang, X., 2010. “Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-Ion Batteries.” KONA Powder Part. J., 28, 50–73. https://doi.org/10.14356/kona.2010008
Trevisanello, E., Ruess, R., Conforto, G., Richter, F.H., and Janek, J., 2021. “Polycrystalline and Single Crystalline NCM Cathode Materials—Quantifying Particle Cracking, Active Surface Area, and Lithium Diffusion.” Adv. Energy Mater., 11, 2003400. https://doi.org/https://doi.org/10.1002/aenm.202003400
Wang, L., Wang, Y., Yang, Xiaheng, Wang, J., Yang, Xiduo, and Tang, J., 2019. “Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries.” J. Mater. Sci., 54, 12723–12736. https://doi.org/10.1007/s10853-019-03807-y
Wang, L., Wu, B., Mu, D., Liu, X., Peng, Y., Xu, H., Liu, Q., Gai, L., and Wu, F., 2016. “Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries.” J. Alloys Compd., 674, 360–367. https://doi.org/10.1016/j.jallcom.2016.03.061
Widiyandari, H., Sukmawati, A.N., Sutanto, H., Yudha, C., and Purwanto, A., 2019. “Synthesis of LiNi0.8Mn0.1Co0.1O2 cathode material by hydrothermal method for high energy density lithium ion battery.” J. Phys. Conf. Ser., 1153, 12074. https://doi.org/10.1088/1742-6596/1153/1/012074
Wu, L., Nam, K.-W., Wang, X., Zhou, Y., Zheng, J.-C., Yang, X.-Q., and Zhu, Y., 2011. “Structural Origin of Overcharge-Induced Thermal Instability of Ni-Containing Layered-Cathodes for High-Energy-Density Lithium Batteries.” Chem. Mater., 23, 3953–3960. https://doi.org/ 10.1021/cm201452q
Wu, Y., Li, M., Wahyudi, W., Sheng, G., Miao, X., Anthopoulos, T.D., Huang, K.-W., Li, Y., and Lai, Z., 2019. “Performance and Stability Improvement of Layered NCM Lithium-Ion Batteries at High Voltage by a Microporous Al2O3 Sol-Gel Coating.” ACS omega., 4 (9), 13972–13980 https://doi.org/10.1021/acsomega.9b01706
Yang, Z., Lu, J., Bian, D., Zhang, W., Yang, X., Xia, J., Chen, G., Gu, H., and Ma, G., 2014. “Stepwise coprecipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries.” J. Power Sources, 272, 144–151. https://doi.org/10.1016/j.jpowsour.2014.08.052
Zheng, X., Li, X., Huang, Z., Zhang, B., Wang, Z., Guo, H., and Yang, Z., 2015. “Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by ultrasonic-assisted coprecipitation method.” J. Alloys Compd., 644, 607–614. https://doi.org/10.1016/j.jallcom.2015.04.173
Zhu, H., Li, J., Chen, Z., Li, Q., Xie, T., Li, L., and Lai, Y., 2014. “Molten salt synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode materials.” Synth. Met., 187, 123–129. https://doi.org/10.1016/j.synthmet.2013.10.032.
Copyright holder for articles is ASEAN Journal of Chemical Engineering. Articles published in ASEAN J. Chem. Eng. are distributed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
Authors agree to transfer all copyright rights in and to the above work to the ASEAN Journal of Chemical Engineering Editorial Board so that the Editorial Board shall have the right to publish the work for non-profit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors’ personal use or for company use if the source and the journal copyright notice is indicated, and if the reproduction is not made for the purpose of sale.