Role of Citric Acid Modification on Hydrodesulfurization of DBT and 4,6 DMDBT in the Presence of Pyridine Over CoMo/Al2O3

  • Pawinee Sintarako Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
  • Piyasan Praserthdam Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
  • Vivan Tammongkol 2 PTT Research and Technology Institute, PTT Public Company Limited, Ayutthaya, 13170 Thailand
  • Banpot Pokacharoenwatjana 2 PTT Research and Technology Institute, PTT Public Company Limited, Ayutthaya, 13170 Thailand
  • Watchara Yuanglamyai PTT Research and Technology Institute, PTT Public Company Limited, Ayutthaya, 13170 Thailand
  • Chattrapha Inthiwong PTT Research and Technology Institute, PTT Public Company Limited, Ayutthaya, 13170 Thailand
Keywords: Hydrodesulfurization, CoMo/Al2O3, Citric acid, DBT, 4,6 DMDBT, Pyridine

Abstract

In this study, the effect of pyridine as a basic nitrogen compound on HDS activity
of DBT and 4,6 DMDBT in treated diesel over modified CoMo/Al2O3 by citric acid has
been investigated. It has been obviously found that the modification of CoMo/Al2O3
catalyst by citric acid can inhibit the influence of pyridine on HDS activity of DBT and 4,6
DMDBT. This can be explained that when citric acid was applied in the catalyst
preparation, the increasing of total amount of acid sites and the enhancement of HDN
activity play an important role in the tolerance of pyridine.

References

Topsøe, H.; Clausen, B.S.; Massoth, F.E. (1996). Hydrotreating Catalysis Science and Technology, Springer-Verlag New York.
Segawa, K.; Takahashi, K.; Satoh, S. (2000). Development of new catalysts for deep hydrodesulfurization of gas oil, Catal. Today, 63, 123.
Yumoto, M.; Usui, K.; Watanabe, K.; Idei, K.; Yamazaki, H. (1997). Development of a Cosmo deep HDS catalyst for diesel fuel, Catal. Today, 35, 45.
Robinson, W.; Robinson, W.R.A.M.; van Veen, J.A.R.; de Beer, V.H.J.; van Santen, R.A. (1999). Development of deep hydrodesulfurization catalysts I. CoMo and NiMo catalysts tested with substituted/ dibenzothiophene, Fuel Process. Technol., 61, 89.
Takatsuka, T.; Inoue, S.; Wada, Y. (1997). Deep hydrodesulfurization process for diesel oil, Catal. Today, 39, 69.
Song, C. (2003). An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel, Catal. Today, 86, 211.
Mazoyer, P.; Geantet, C.; Diehl, F.; Loridant, S.; Lacroix, M. (2008). Role of chelating agent on the oxidic state of hydrotreating catalysts, Catal. Today, 130, 75.
Lélias, M.A.; Kooyman, P.J.; Mariey, L.; Oliviero, L.; Travert, A.; van Gestel, J.; van Veen, J.A.R.; Maugé, F. (2009). Effect of NTA addition on the structure and activity of the active phase of cobalt-molybdenum sulfide hydrotreating catalysts, J. Catal., 267, 14.
Lélias, M.A.; Le Guludec, E.; Mariey, L.; van Gestel, J.; Travert, A.; Oliviero, L.; Mauge, F. (2010). Effect of EDTA addition on the structure and activity of the active phaseof cobalt– molybdenum sulfide hydrotreatment catalysts, Catal. Today, 150, 179.
Castillo-Villalón, P.; Ramirez, J.; Castañeda, R. . (2012). Relationship between the hydrodesulfurization of thiophene, dibenzothiophene, and 4,6- dimethyl dibenzothiophene and the local structure of Co in Co–Mo–S sites: Infrared study of adsorbed CO, J. Catal, 294, 54..
Badoga, S.; Mouli, K.C.; Soni, K.K.; Dalai, A.K.; Adjaye, J. (2012). Beneficial influence of EDTA on the structure and catalytic properties of sulfide NiMo/SBA-15 catalysts for hydrotreating of light gas oil, Appl. Catal. B: Envir., 125, 67.
Leonova, K.A.; Klimov, O.V.; Kochubey, D.I.; Chesalov, Y.A. (2014). Optimal pretreatment conditions for Co–Mo hydrotreatment catalystsprepared using ethylenediamine as a chelating agent, Catal. Today, 220– 222, 327.
Wu, H.; Duan, A.; Zhao, Z.; Qi, D.; Li, J.; Liu, B.; Jiang, G.; Liu, J.; Wei, Y.; Zhang, X. (2014). Preparation of NiMo/KIT-6 hydrodesulfurization catalysts with tunable sulfidation and dispersion degrees of active phase by addition of citric acid as chelating agent, Fuel, 130, 203.
Rinaldi, N.; Usman; Al-Dalama, K.; Kubota, T.; Okamoto, Y. (2009). Preparation of Co–Mo/B2O3/Al2O3 catalysts for hydrodesulfurization: Effect of citric acid addition, Appl. Catal. A : Gen., 360, 130.
Rinaldi, N.; Kubota, T.; Okamoto, Y. (2010). Effect of citric acid addition on the hydrodesulfurization activity of MoO3/Al2O3 Catalysts, Appl Catal A: Gen, 374, 228.
Nikulshin, P.A.; Ishutenko, D.I.; Mozhaev, A.A.; Maslakov, K.I.; Pimerzin, A.A. (2014). Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10–heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions, J. Catal., 312, 152.
Castillo-Villalón, P.; Ramirez, J.; Vargas- Luciano, J.A. (2014). Analysis of the role of citric acid in the preparation of highly active HDS catalysts, J. Catal., 320, 127.
Li, H.; Li, M.; Chu, Y.; Liu, F.; Nie, H. (2011). Essential role of citric acid in preparation of efficient NiW/Al2O3 HDS catalysts, Appl. Catal. A : Gen, 403, 75.
Valencia, D.; Klimova, T. (2012). Kinetic study of NiMo/SBA-15 catalysts prepared with citric acid in hydrodesulfurization of dibenzothiophene, Catal. Comm., 21, 77.
Valencia, D.; Klimova, T. (2013). Citric acid loading for MoS2-based catalysts supported on SBA-15. New catalytic materials with high hydrogenolysis ability in hydrodesulfurization, Appl. Catal. B: Envir., 129, 137– 145.
Sintarako, P.; Praserthdam, P.; Thammongkol,V.; Pokacharoenwatjana, B.; Yuanglamyai, W.; Inthiwong, C. (2015). The suppression of a basic nitrogen compound influence on hydrodesulfurization activity of dibenzothiophene in treated diesel over Al2O3 supported CoMo catalysts by ZrO2 as a secondary support, Catal. Comm., 62, 89.
Zhang, D.; Duan, A.; Zhao, Z.; Wan, G.; Gao, Z.; Jiang, G.; Chi, K.; Chuang, K.H. (2010). Preparation, characterization and hydrotreating performances of ZrO2–Al2O3-supported NiMo catalysts, Catal. Today, 149, 62.
Turaga, U.T.; Ma, X.; Song, C. (2003). Influence of nitrogen compounds on deep hydrodesulfurization of 4,6- dimethyldibenzothiophene over Al2O3- and MCM-41-supported Co- Mo sulfide catalysts, Catal. Today, 86, 265.
Laredo, S.G.C.; los Reyes, J.A.D.; Cano, D.J.L.; Castillo, M.J.J. (2001). Inhibition effects of nitrogen compounds on the hydrodesulfurization of dibenzothiophene, Appl. Catal. A : Gen., 207, 103.
Laredo, G.C.; Altamirano, E.; los Reyes, J.A.D. (2003). Inhibition effects of nitrogen compounds on the hydrodesulfurization of dibenzothiophene: Part 2, Appl. Catal. A : Gen, 243, 207.
Mizutani, H.; Godo, H.; Ohsaki, T.; Kato, Y.; Fujikawa, T.; Saih, Y.; Funamoto, T.; Segawa, K. (2005). Inhibition effect of nitrogen compounds on CoMoP/Al2O3 catalysts with alkali or zeolite added in hydrodesulfurization of dibenzothiophene and 4,6- dimethyldibenzothiophene, Appl. Catal. A : Gen., 295, 193.
Murti, S.D.S.; Yang, H.; Choi, K.H,; Korai, Y.; Mochida, I. (2003). Influences of nitrogen species on the hydrodesulfurization reactivity of a gas oil over sulfide catalysts of variable activity, Appl. Catal. A : Gen., 252, 331.
Kwak, C.; Lee, J.J.; Bae, J.S.; Moon, S.H. (2001). Poisoning effect of nitrogen compounds on the performance of CoMoS/Al2O3 catalyst in the hydrodesulfurization of dibenzothiophene, 4- methyldibenzothiophene, and 4,6- dimethyldibenzothiophene, Appl. Catal. B : Envir., 35, 59.
Vit, Z.; Kaluza, L.; Gulkova, D. (2014). Comparison of nitrogen tolerance of PdMo/Al2O3 and CoMo/Al2O3 catalysts in hydrodesulfurization of model compounds, Fuel, 120, 86.
Yang, H.; Chen, J.; Fairbridge, C.; Briker, Y.; Zhu, Y.J.; Ring, Z. (2004). Inhibition of nitrogen compounds on the hydrodesulfurization of substituted dibenzothiophenes in light cycle oil, Fuel Process. Technol., 85, 1415.
Montesinos-Castellanos, A.; Zepeda, T.A.; Pawelec, B.; Lima, E.; Fierro, J.L.G.; Olivas, A.; de los Reyes, J.A. (2008). Influence of reduction temperature and metal loading on the performance of molybdenum phosphide catalysts for dibenzothiophene hydrodesulfurization, Appl. Catal. A : Gen., 334, 330.
Cordero, R.L.; Agudo, A.L. (2000). Effect of water extraction on the surface properties of Mo/Al2O3 and NiMo/Al2O3 hydrotreating catalysts, Appl. Catal. A : Gen., 202, 23.
Ding, L.; Zheng, Y.; Zhang, Z.; Ring, Z.; Chen, J. (2007). HDS, HDN, HDA, and hydrocracking of model compounds over Mo-Ni catalysts with various acidities, Appl. Catal. A : Gen., 319, 25.
Pawelec, B.; Fierro, J.L.G.; Montesinos, A.; Zepeda, T.A. (2008). Influence of the acidity of nanostructured CoMo/P/Ti- HMS catalysts on the HDS of 4,6- DMDBT reaction pathways, Appl. Catal. B : Envir., 80, 1.
Chen, W.; Mauge, F.; van Gestel, J.; Nie, H.; Li, D.; Long, X. (2013). Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts, J. Catal., 304, 47
Published
2015-06-30
How to Cite
Sintarako, P., Praserthdam, P., Tammongkol, V., Pokacharoenwatjana, B., Yuanglamyai, W., & Inthiwong, C. (2015). Role of Citric Acid Modification on Hydrodesulfurization of DBT and 4,6 DMDBT in the Presence of Pyridine Over CoMo/Al2O3. ASEAN Journal of Chemical Engineering, 15(1), 62-71. Retrieved from https://jurnal.ugm.ac.id/v3/AJChE/article/view/8870
Section
Articles