Sustainable Biomass Production of Euglena gracilis Cultivated in Dairy Farm Wastewater: A Growth and Lipid Yield Assessment
Abstract
Dairy farming has a detrimental effect of wastewater that can pollute the environment, leading to eutrophication from increased nitrogen and phosphorus levels. Microalgae have significant potential for treating such wastewater. This study aimed to examine the influence of dairy farm wastewater concentrations on Euglena gracilis, particularly its growth, biomass, and lipid production and to develop a growth model for it. This study cultivated Euglena gracilis in Cramers & Myers (CM) medium for 18 days with wastewater concentrations of 0%, 10%, 25%, and 50%. The highest cell density, biomass, and lipid content were 64.5 x 10⁴ cells/mL, 0.560 g/L, and 0.175 g/L, respectively, in the 0% wastewater treatment. The 10% concentration yielded the best results, achieving a cell density, biomass, and lipid content of 27.0 x 10⁴ cells/mL, 0.290 g/L, and 0.127 g/L, respectively. The mathematical approach used shows that the Gompertz Model growth curve produces better simulation data than the Logistic Model. The Gompertz Model can describe Euglena gracilis cultivation with higher accuracy by accounting for the lag phase. Optimal wastewater concentration, to increase microalgae productivity, is an important aspect that can support a circular bioeconomy by using biomass as a raw material for high value products.
References
Abomohra, A., Li, M., Faisal, S., Li, L., and Elsayed, M., 2022. “Maximizing nitrogen removal and lipid production by microalgae under mixotrophic growth using Response Surface Methodology: Towards enhanced biodiesel production.” Fermentation 8 (12), 682. https://doi.org/10.3390/fermentation8120682
Alavianghavanini, A., Shayesteh, H., Bahri, P.A., Vadiveloo, A., and Moheimani, N.R., 2024. “Microalgae cultivation for treating agricultural effluent and producing value-added products.” Sci. Total Environ. 912, 1–18. https://doi.org/10.1016/j.scitotenv.2023.169369
Ali, S.S., Mastropetros, S.G., Schagerl, M., Sakarika, M., Elsamahy, T., El-Sheekh, M., Sun, J., and Kornaros, M., 2022. “Recent advances in wastewater microalgae-based biofuels production: A state-of-the-art review.” Energy Reports 8, 13253–13280. https://doi.org/10.1016/j.egyr.2022.09.143
Asiandu, A.P., Nugroho, A.P., Naser, A.S., Sadewo, B.R., Koerniawan, M.D., Budiman, A., Siregar, U.J., Suwanti, L.T., and Suyono, E.A., 2023. “The effect of tofu wastewater and pH on the growth kinetics and biomass composition of Euglena sp.” Curr. Appl. Sci. Technol. 23, 1–16. https://doi.org/10.55003/cast.2022.02.23.010
Baily, J.E., and Ollis, D.F., 1986. Biochemical engineering fundamentals, International edition. McGraw-Hill.
Bhushan, S., Eshkabilov, S., Jayakrishnan, U., Prajapati, S.K., and Simsek, H., 2023. “A comparative analysis of growth kinetics, image analysis, and biofuel potential of different algal strains.” Chemosphere 336, 139196. https://doi.org/10.1016/j.chemosphere.2023.139196
Chai, W.S., Chew, C.H., Munawaroh, H.S.H., Ashokkumar, V., Cheng, C.K., Park, Y.K., and Show, P.L., 2021. “Microalgae and ammonia: A review on inter-relationship.” Fuel 303, 1–12. https://doi.org/10.1016/j.fuel.2021.121303
Condor, B.E., de Luna, M.D.G., Lacson, C.F.Z., Acebu, P.I.G., Abarca, R.R.M., Nagarajan, D., Lee, D.J., and Chang, J.S., 2024. “Effects of carbon dioxide concentration and swine wastewater on the cultivation of Chlorella vulgaris FSP-E and bioethanol production from microalgae biomass.” Appl. Energy 369, 1–9. https://doi.org/10.1016/j.apenergy.2024.123617
Cui, H., Ma, H., Chen, S., Yu, J., Xu, W., Zhu, X., Gujar, A., Ji, C., Xue, J., Zhang, C., and Li, R., 2020. “Mitigating excessive ammonia nitrogen in chicken farm flushing wastewater by mixing strategy for nutrient removal and lipid accumulation in the green alga Chlorella sorokiniana.” Bioresour. Technol. 303, 1–10. https://doi.org/10.1016/j.biortech.2020.122940
Ding, J., Zhao, F., Cao, Y., Xing, L., Liu, W., Mei, S., and Li, S., 2015. “Cultivation of microalgae in dairy farm wastewater without sterilization.” Int. J. Phytoremediation 17, 222–227. https://doi.org/10.1080/15226514.2013.876970
Eida, M.F., Darwesh, O.M., and Matter, I.A., 2018. “Cultivation of oleaginous microalgae Scenedesmus obliquus on secondary treated municipal wastewater as growth medium for biodiesel production.” J. Ecol. Eng. 19, 38–51. https://doi.org/10.12911/22998993/91274
Ekka, B., Mieriņa, I., Juhna, T., Turks, M., and Kokina, K., 2022. “Quantification of different fatty acids in raw dairy wastewater.” Clean. Eng. Technol. 7, 1–6. https://doi.org/10.1016/j.clet.2022.100430
Erfianti, T., Fakhruddin Yusuf, A., Handayani, S., Ryan Sadewo, B., Setiadi Daryono, B., Budiman, A., and Agus Suyono, E., 2024. “Enhancing growth and metabolite profiles in indigenous Euglena gracilis through explorative light spectrum effect.” Egypt. J. Aquat. Res. 50, 318–331. https://doi.org/10.1016/j.ejar.2024.09.003
Erfianti, T., Maghfiroh, K.Q., Amelia, R., Kurnianto, D., Sadewo, B.R., Marno, S., Devi, I., Dewayanto, N., Budiman, A., and Suyono, E.A., 2023. “Nitrogen sources affect the growth of local strain Euglena sp. isolated from Dieng Peatland, Central Java, Indonesia, and their potential as bio-avtur.” IOP Conf. Ser. Earth Environ. Sci. 1151. https://doi.org/10.1088/1755-1315/1151/1/012059
Esteves, A.F., Salgado, E.M., Vilar, V.J.P., Gonçalves, A.L., and Pires, J.C.M., 2024. “A growth phase analysis on the influence of light intensity on microalgal stress and potential biofuel production.” Energy Convers. Manag. 311, 1–8. https://doi.org/10.1016/j.enconman.2024.118511
Feregrino-Mondragón, R.D., Vega-Segura, A., Sánchez-Thomas, R., Silva-Flores, M., Rodríguez-Zavala, J.S., Marín-Hernández, Á., Pérez-Torres, I., Torres-Márquez, M.E., Moreno-Sánchez, R., and Jasso-Chávez, R., 2021. “The essential role of mitochondria in the consumption of waste-organic matter and production of metabolites of biotechnological interest in Euglena gracilis.” Algal Res. 56. https://doi.org/10.1016/j.algal.2021.102302
Gompertz B, 1825. “On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies.” Philos. Trans. R. Soc. London 115, 513–583.
Hanief, S., Prasakti, L., Pradana, Y.S., Cahyono, R.B., and Budiman, A., 2020. “Growth kinetic of Botryococcus braunii microalgae using Logistic and Gompertz Models.” AIP Conf. Proc. 2296, 1–8. https://doi.org/10.1063/5.0030459
Hilmi, W., Hakim, A., Erfianti, T., Dhiaurahman, A.N., Maghfiroh, Q., Amelia, R., Nurafifah, I., Kurnianto, D., Umi, D., Suyono, E.A., Marno, S., Devi, I., 2023. “The Effect of IAA phytohormone (Indole-3-Acetic Acid) on the growth, lipid, protein, carbohydrate, and pigment content in Euglena sp.” Malaysian Journal of Fundamental and Applied Sciences 19, 513–524.
Indrayani, I., Haslianti, H., Asmariani, A., Muskita, W.H., and Balubi, M., 2020. “Growth, biomass and lipid productivity of a newly isolated tropical marine diatom, Skeletonema sp. Uho29, under different light intensities.” Biodiversitas 21, 1498–1503. https://doi.org/10.13057/biodiv/d210430
Janssen, J.H., Kastenhofer, J., de Hoop, J.A., Lamers, P.P., Wijffels, R.H., and Barbosa, M.J., 2018. “Effect of nitrogen addition on lipid productivity of nitrogen starved Nannochloropsis gaditana.” Algal Res. 33, 125–132. https://doi.org/10.1016/j.algal.2018.05.009
Jiang, Y., Pu, X., Zheng, D., Zhu, T., Wang, S., Deng, L., and Wang, W., 2018. “Cultivation of lipid-producing microalgae in struvite-precipitated liquid digestate for biodiesel production.” Biotechnol. Biofuels 11, 1–9. https://doi.org/10.1186/s13068-018-1102-3
Khadim, H.J., Abdelkareem, H.N., Hussein, H.A.M., and Mohamed, A.I., 2024. “Growth kinetic and biodiesel lipid extraction of Nannochloropsis oculata microalgae in a photobioreactor under varying salinity conditions.” J. Ecol. Eng. 25, 46–54. https://doi.org/10.12911/22998993/192636
Khoo, K.S., Ahmad, I., Chew, K.W., Iwamoto, K., Bhatnagar, A., and Show, P.L., 2023. “Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review.” Prog. Energy Combust. Sci. 96, 1–41. https://doi.org/10.1016/j.pecs.2023.101071
Li, G., Zhang, J., Li, H., Hu, R., Yao, X., Liu, Y., Zhou, Y., and Lyu, T., 2021. “Towards high-quality biodiesel production from microalgae using original and anaerobically-digested livestock wastewater.” Chemosphere 273, 1–9. https://doi.org/10.1016/j.chemosphere.2020.128578
Li, X., Li, W., Zhai, J., Wei, H., and Wang, Q., 2019. “Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation.” Bioresour. Technol. 273, 368–376. https://doi.org/10.1016/j.biortech.2018.11.042
Liyanaarachchi, V.C., Premaratne, M., Ariyadasa, T.U., Nimarshana, P.H.V., and Malik, A., 2021. “Two-stage cultivation of microalgae for production of high-value compounds and biofuels: A review.” Algal Res. 57, 1–21. https://doi.org/10.1016/j.algal.2021.102353
Lv, J., Liu, Y., Feng, J., Liu, Q., Nan, F., and Xie, S., 2018. “Nutrients removal from undiluted cattle farm wastewater by the two-stage process of microalgae-based wastewater treatment.” Bioresour. Technol. 264, 311–318. https://doi.org/10.1016/j.biortech.2018.05.085
Maeanti, R.F., Fauzi, A., and Istiqomah, A., 2013. “Evaluasi kelayakan finansial Usaha peternakan dan pengembangan biogas: studi kasus Desa Suntenjaya, Bandung.” J. Ekon. dan Pembang. Indones. 14 (1), 27-42.
Maghfiroh, K.Q., Erfianti, T., NurAfifah, I., Amelia, R., Kurnianto, D., Sadewo, B.R., Maggandari, R., Aji, B.R., Budiman, A., and Suyono, E.A., 2023. “The effect of photoperiodism on nutritional potency of Euglena sp. Indonesian strains.” Malays. J. Nutr. 29, 453–466. https://doi.org/10.31246/mjn-2023-0004
Naser, A.S., Asiandu, A.P., Sadewo, B.R., Tsurayya, N., Putra, A.S., Kurniawan, K.I.A., and Suyono, E.A., 2023. “The effect of salinity and tofu whey wastewater on the growth kinetics, biomass, and primary metabolites in Euglena sp.” J. Appl. Biol. Biotechnol. 11, 124–132. https://doi.org/10.7324/JABB.2023.114931
Nurafifah, I., Hardianto, M.A., Erfianti, T., Amelia, R., Maghfiroh, K.Q., Kurnianto, D., Siswanti, D.U., Sadewo, B.R., Maggandari, R., and Suyono, E.A., 2023. “The effect of acidic pH on growth kinetics, biomass productivity, and primary metabolite contents of Euglena sp.” Makara J. Sci. 27, 97–105. https://doi.org/10.7454/mss.v27i2.1506
Paranjape, K., Leite, G.B., and Hallenbeck, P.C., 2016. “Effect of nitrogen regime on microalgal lipid production during mixotrophic growth with glycerol.” Bioresour. Technol. 214, 778–786. https://doi.org/10.1016/j.biortech.2016.05.020
Phukoetphim, N., Salakkam, A., Laopaiboon, P., and Laopaiboon, L., 2017. “Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: Logistic and modified Gompertz models.” J. Biotechnol. 243, 69–75. https://doi.org/10.1016/j.jbiotec.2016.12.012
Prihantini, N.B., Damayanti, D., and Yuniati, R., 2010. “Pengaruh konsentrasi medium ekstrak tauge (MET) terhadap pertumbuhan Scenedesmus Isolat Subang.” MAKARA Sci. Ser. 11. https://doi.org/10.7454/mss.v11i1.213
Pruvost, J., Van Vooren, G., Le Gouic, B., Couzinet-Mossion, A., and Legrand, J., 2011. “Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application.” Bioresour. Technol. 102, 150–158. https://doi.org/10.1016/j.biortech.2010.06.153
Puja Asiandu, A., Puspito Nugroho, A., Saifun Naser, A., Ryan Sadewo, B., Donny Koerniawan, M., Budiman, A., Juniarti Siregar, U., Tri Suwanti, L., and Agus Suyono, E., 2022. “The effect of tofu wastewater and pH on the growth kinetics and biomass composition of Euglena sp.” Curr. Appl. Sci. Technol. 23, 1–17. https://doi.org/10.55003/cast.2022.02.23.010
Putri, A.N.A., Renaldy, B., Mujahidah, U., Inaba, Y., Kurnianto, D., Samodra, A., Sadewo, B.R., and Suyono, E.A., 2024. “Application of Euglena sp. isolated from Yogyakarta, Indonesia on nutrient removal from palm oil mill effluent (POME).” J. Oil Palm Res. 36, 267–275. https://doi.org/10.21894/jopr.2023.0025
Qian, W., Yang, Y., Chou, S., Ge, S., Li, P., Wang, X., Zhuang, L.L., and Zhang, J., 2024. “Effect of N/P ratio on attached microalgae growth and the differentiated metabolism along the depth of biofilm.” Environ. Res. 240, 117428. https://doi.org/10.1016/j.envres.2023.117428
Rivas Lucero, B.A., Gutiérrez, M., Eduardo Magaña Magaña, J., Salcido, F.M., and Fierro, W.M., 2018. “Salt content of dairy farm effluents as an indicator of salinization risk to soils.” Soil Syst. 2, 1–9. https://doi.org/10.3390/soilsystems2040061
Song, Y., Wang, L., Qiang, X., Gu, W., Ma, Z., and Wang, G., 2022. “The promising way to treat wastewater by microalgae: Approaches, mechanisms, applications and challenges.” J. Water Process Eng. 49, 1–10. https://doi.org/10.1016/j.jwpe.2022.103012
Soni, R.A., Sudhakar, K., and Rana, R.S., 2017. “Spirulina – From growth to nutritional product: A review.” Trends Food Sci. Technol. 69, 157–171. https://doi.org/10.1016/j.tifs.2017.09.010
Tang, J., Qu, X., Chen, S., Pu, Y., He, X., Zhou, Z., Wang, H., Jin, N., Huang, J., Shah, F., Hu, Y., and Abomohra, A., 2023. “Microalgae cultivation using municipal wastewater and anaerobic membrane effluent: lipid production and nutrient removal.” Water 15, 1–13. https://doi.org/10.3390/w15132388
Tango, M.D., Zanetoni Filho, J.A., Daniel, L.A., Leite, L. de S., Hoffmann, M.T., and Moutinho, F.H.M., 2023. “Effects of bicarbonate addition and N:P Ratio on microalgae growth and resource recovery from domestic wastewater.” AgriEngineering 5, 1178–1195. https://doi.org/10.3390/agriengineering5030075
Ugya, A.Y., and Meguellati, K., 2022. “Microalgae biomass modelling and optimisation for sustainable biotechnology - A concise review.” J. Ecol. Eng. 23, 309–318. https://doi.org/10.12911/22998993/150627
Vargas-Estrada, L., Longoria, A., Okoye, P.U., and Sebastian, P.J., 2021. “Energy and nutrients recovery from wastewater cultivated microalgae: Assessment of the impact of wastewater dilution on biogas yield.” Bioresour. Technol. 341, 125755. https://doi.org/10.1016/j.biortech.2021.125755
Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J., and Ruan, R.R., 2010. “Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp.” Bioresour. Technol. 101, 2623–2628. https://doi.org/10.1016/j.biortech.2009.10.062
Yaakob, M.A., Mohamed, R.M.S.R., Al-Gheethi, A., Ravishankar, G.A., and Ambati, R.R., 2021. “Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview.” Cells 10, 1–19. https://doi.org/10.3390/cells10020393
Yan, K.T.H., Hie, I.S.Y., Samaranayake, E.A., Chang, J.L.K., and Wang, A.Z.H., 2023. “Medium and process optimizations for Euglena gracilis with high biomass production enriched with protein.” Algal Res. 75, 103265. https://doi.org/10.1016/j.algal.2023.103265
Copyright (c) 2025 ASEAN Journal of Chemical Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright holder for articles is ASEAN Journal of Chemical Engineering. Articles published in ASEAN J. Chem. Eng. are distributed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
Authors agree to transfer all copyright rights in and to the above work to the ASEAN Journal of Chemical Engineering Editorial Board so that the Editorial Board shall have the right to publish the work for non-profit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors’ personal use or for company use if the source and the journal copyright notice is indicated, and if the reproduction is not made for the purpose of sale.