Enhanced Polysaccharide Extraction from Chlorella pyrenoidosa Using Microwave-Assisted Technique and Response Surface Methodology Approach

  • Margaretha Praba Aulia Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika No 2, Yogyakarta, 55284, Indonesia
  • Muhammad Mufti Azis Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika No 2, Yogyakarta, 55284, Indonesia
  • Rochmadi Rochmadi Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika No 2, Yogyakarta, 55284, Indonesia
  • Arief Budiman Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika No 2, Yogyakarta, 55284, Indonesia
Keywords: Box Behnken Method, Chlorella pyrenoidosa, Microwave-Assisted Extraction (MAE), Optimization, Polysaccharide Extraction, Response Surface Methodology (RSM)

Abstract

Microalgal polysaccharides represent a high-value class of bioactive macromolecules with growing demand in pharmaceutical, nutraceutical, and functional food industries. Yet, inefficient and unsustainable extraction technologies severely constrain their industrial exploitation. Chlorella pyrenoidosa is a particularly attractive biomass source due to its rapid growth and high polysaccharide content, but its highly recalcitrant cell wall remains a major barrier to efficient recovery. The objective of this study was to optimize microwave-assisted extraction (MAE) conditions to maximize polysaccharide yield from Chlorella pyrenoidosa and to evaluate the effects of critical process variables using response surface methodology (RSM). Accordingly, a Box–Behnken experimental design was employed to systematically model and optimize the effects of extraction temperature, solid-to-liquid ratio, and irradiation time. Under optimized conditions (60 °C, 1:80 g/mL, 10 min), a maximum polysaccharide yield of 60.22% was achieved. The quadratic regression model exhibited excellent predictive accuracy (R² = 0.9893, p < 0.05), as confirmed by ANOVA. Compared with conventional extraction methods, the optimized MAE process delivered markedly higher extraction efficiency, substantial reductions in processing time and solvent usage, and superior alignment with green chemistry principles. Collectively, this work provides a scalable and industrially relevant green extraction framework that advances the valorization of microalgal biomass and supports the transition toward sustainable biorefinery platforms.

References

Ajami, M.R., Ganjloo, A., and Bimakr, M., 2023. “Continuous fast microwave-assisted extraction of radish leaves polysaccharides: optimization, preliminary characterization, biological, and techno-functional properties.” Biomass Convers. Biorefinery 13, 14987–15000. https://doi.org/10.1007/s13399-022-03522-w

Albarri, R., and Şahin, S., 2024. “Monitoring the recovery of bioactive molecules from Moringa oleifera leaves: microwave treatment vs ultrasound treatment.” Biomass Convers. Biorefinery 14, 1059–1071. https://doi.org/10.1007/s13399-021-02232-z

Aulia, M.P., Azis, M.M., Rochmadi, R., and Budiman, A., 2025. “Microwave-assisted extraction of polysaccharides from chlorella pyrenoidosa and its characterization.” Indones. J. Chem. 25, 800–810. https://doi.org/10.22146/ijc.103337

Aziz, T., Qadir, R., Anwar, F., Naz, S., Nazir, N., Nabi, G., Haiying, C., Lin, L., Alharbi, M., and Alasmari, A.F., 2024. “Optimal enzyme-assisted extraction of phenolics from leaves of Pongamia pinnata via response surface methodology and artificial neural networking.” Appl. Biochem. Biotechnol. 6508–6525. https://doi.org/10.1007/s12010-024-04875-w

Bai, C., Chen, R., Chen, Y., Bai, H., Sun, H., Li, D., Wu, W., Wang, Y., and Gong, M., 2024. “Plant polysaccharides extracted by high pressure: A review on yields, physicochemical, structure properties, and bioactivities.” Int. J. Biol. Macromol. 263, 129939. https://doi.org/10.1016/j.ijbiomac.2024.129939

Balacuit, J.N.G., Guillermo, J.D.A., Buenafe, R.J.Q., and Soriano, A.N., 2021. “Comparison of microwave-assisted extraction to soxhlet extraction of mango seed kernel oil using ethanol and n-hexane as solvents.” ASEAN J. Chem. Eng. 21, 158–169. https://doi.org/10.22146/ajche.63533

Baudelet, P.H., Ricochon, G., Linder, M., and Muniglia, L., 2017. “A new insight into cell walls of Chlorophyta.” Algal Res. 25, 333–371. https://doi.org/10.1016/j.algal.2017.04.008

Breig, S.J.M., and Luti, K.J.K., 2021. “Response surface methodology: A review on its applications and challenges in microbial cultures.” Mater. Today Proc. 42, 2277–2284. https://doi.org/10.1016/j.matpr.2020.12.316

Chan, C.H., 2013. “Optimization and modelling of microwave-assisted extracting of active compounds from cocoa leaves.” J. Petrol. 369, 1689–1699. https://doi.org/10.13140/2.1.1134.3366

Chan, C.H., Lim, J.J., Yusoff, R., and Ngoh, G.C., 2015. “A generalized energy-based kinetic model for microwave-assisted extraction of bioactive compounds from plants.” Sep. Purif. Technol. 143, 152–160. https://doi.org/10.1016/j.seppur.2015.01.041

Chan, C.H., Yusoff, R., Ngoh, G.C., and Kung, F.W.L., 2011. “Microwave-assisted extractions of active ingredients from plants.” J. Chromatogr. A 1218, 6213–6225. https://doi.org/10.1016/j.chroma.2011.07.040

Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A.S., and Abert-Vian, M., 2017. “Review of green food processing techniques. Preservation, transformation, and extraction.” Innov. Food Sci. Emerg. Technol. 41, 357–377. https://doi.org/10.1016/j.ifset.2017.04.016

Chen, Y., Liu, X., Wu, L., Tong, A., Zhao, L., Liu, B., and Zhao, C., 2018. “Physicochemical characterization of polysaccharides from Chlorella pyrenoidosa and its anti-ageing effects in Drosophila melanogaster.” Carbohydr. Polym. 185, 120–126. https://doi.org/10.1016/j.carbpol.2017.12.077

Chen, Y.X., Liu, X.Y., Xiao, Z., Huang, Y.F., and Liu, B., 2016. “Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations.” Int. J. Biol. Macromol. 91, 505–509. https://doi.org/10.1016/j.ijbiomac.2016.05.086

Chew, S.K., Teoh, W.H., Hong, S.L., and Yusoff, R., 2022. “Extraction of rutin from the leaf of male carica papaya linn. using microwave-assisted and ultrasound-assisted extractive methods.” ASEAN J. Chem. Eng. 22, 347–363. https://doi.org/10.22146/ajche.77375

Costa, J.A.V., Lucas, B.F., Alvarenga, A.G.P., Moreira, J.B., and de Morais, M.G., 2021. “Microalgae polysaccharides: An overview of production, characterization, and potential applications.” Polysaccharides 2, 759–772. https://doi.org/10.3390/polysaccharides2040046

Dobrincic, A., Pedisic, S., Zoric, Z., Jurin, M., Roje, M., Rakovac, R.C.-, and Dragovic-Uzelac, V., 2021. “Microwave assisted extraction and pressurized liquid extraction of sulfated polysaccharides from fucus virsoides.” Foods 10(7), 1481. https://doi.org/10.3390/foods10071481

Du, G., Liu, Y., Zhang, J., Fang, S., and Wang, C., 2025. “Microwave-assisted extraction of dandelion root polysaccharides: Extraction process optimization, purification, structural characterization, and analysis of antioxidant activity.” Int. J. Biol. Macromol. 299, 139732. https://doi.org/10.1016/j.ijbiomac.2025.139732

Eskilsson, C.S., and Bjorklund, E., 2000. “Analytical-scale microwave-assisted extraction”. J. Chromatogr A. 902, 227–250. https://doi.org/10.1016/S0021-9673(00)00921-3

FAO, 2023. Fao Publications Catalogue 2023. FAO Office of Communications.

Gaignard, C., Gargouch, N., Dubessay, P., Delattre, C., Pierre, G., Laroche, C., Fendri, I., Abdelkafi, S., and Michaud, P., 2019. “New horizons in culture and valorization of red microalgae.” Biotechnol. Adv. 37, 193–222. https://doi.org/10.1016/j.biotechadv.2018.11.014

Gharibzahedi, S.M.T., Marti-Quijal, F.J., Barba, F.J., and Altintas, Z., 2022. “Current emerging trends in antitumor activities of polysaccharides extracted by microwave- and ultrasound-assisted methods.” Int. J. Biol. Macromol. 202, 494–507. https://doi.org/10.1016/j.ijbiomac.2022.01.088

Guo, W., Zhu, S., Li, S., Feng, Y., Wu, H., and Zeng, M., 2021. “Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice.” Int. J. Biol. Macromol. 182, 1371–1383. https://doi.org/10.1016/j.ijbiomac.2021.05.067

Hamidu, L.A.J., Aroke, U.O., Osha, O.A., and Muhammad, I.M., 2021. “D-optimal response mixture design modelling of polystyrene waste adhesive formulations.” Int. J. Eng. Technol. Manag. Res. 8, 7–17. https://doi.org/10.29121/ijetmr.v8.i3.2021.867

Hidhayati, N., Purba, L.D.A., Firman, N.F.A., Admirasari, R., Rahman, D.Y., Agustini, N.W.S., Maryati, M., Anam, K., and Prayitno, J., 2024. “Current status and future prospects of Chlorella as raw materials in cosmeceuticals: cultivation, extraction, and commercial applications.” J. Appl. Phycol. 37, 343–354. https://doi.org/10.1007/s10811-024-03372-1

Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Hadiyanto, H., and Budiman, A., 2019. “Comparative analysis between pyrolysis products of Spirulina platensis biomass and its residues.” Int. J. Renew. Energy Dev. 8, 133–140. https://doi.org/10.14710/ijred.8.2.133-140

Jamilatun, S., Budiman, A., Budhijanto, and Rochmadi, 2017. “Non-catalytic slow pyrolysis of spirulina platensis residue for production of liquid biofuel.” Int. J. Renew. Energy Res. 7, 1901–1908. https://doi.org/10.20508/ijrer.v7i4.6305.g7233

Jamilatun, S., Suhendra, Budhijanto, Rochmadi, Taufikurahman, Yuliestyan, A., and Budiman, A., 2020. “Catalytic and noncatalytic pyrolysis of spirulina platensis residue (spr): Effects of temperature and catalyst content on bio-oil yields and its composition.” AIP Conf. Proc. 2248, 060003. https://doi.org/10.1063/5.0013164

Kaderides, K., Papaoikonomou, L., Serafim, M., and Goula, A.M., 2019. “Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction.” Chem. Eng. Process. - Process Intensif 137, 1–11. https://doi.org/10.1016/j.cep.2019.01.006

Kumar, C.S., M. Sivakumar, and K. Ruckmani, 2016. “Microwave-assisted extraction of polysaccharides from Cyphomandra betacea and its biological activities.” Int. J. Biol. Macromol. 92, 682–693. https://doi.org/10.1016/j.ijbiomac.2016.07.062

Kumar, K.A., and Gomez, S., 2024. “Microwave-assisted extraction of bioactives in fruits and vegetables: a comprehensive review". J. Food Bioact. 28, 41–49. https://doi.org/10.26599/JFB.2024.95028394

Liu, F., Chen, H., Qin, L., Al-Haimi, A.A.N.M., Xu, J., Zhou, W., Zhu, S., and Wang, Z., 2023. “Effect and characterization of polysaccharides extracted from Chlorella sp. by hot-water and alkali extraction methods.” Algal Res. 70, 102970. https://doi.org/10.1016/j.algal.2023.102970

Mahardika, R.G., and Roanisca, O., 2019. “Microwave-assisted extraction of polyphenol content from leaves of tristaniopsis merguensis griff.” ASEAN J. Chem. Eng. 19, 110–119. https://doi.org/10.22146/ajche.50448

Mena-García, A., Ruiz-Matute, A.I., Soria, A.C., and Sanz, M.L., 2019. “Green techniques for extraction of bioactive carbohydrates.” TrAC - Trends Anal. Chem. 119, 115612. https://doi.org/10.1016/j.trac.2019.07.023

Mkumbuzi, E., Bruce Sithole, B., and Van Zyl, W.E., 2024. “Microwave-assisted extraction of acetosolv lignin from sugarcane bagasse and electrospinning of lignin/PEO nanofibres for carbon fibre production.” Green Process. Synth. 13, 28–31. https://doi.org/10.1515/gps-2023-0258

Netanel Liberman, G., Ochbaum, G., Mejubovsky-Mikhelis, M., Bitton, R., and (Malis) Arad, S., 2020. “Physico-chemical characteristics of the sulfated polysaccharides of the red microalgae Dixoniella grisea and Porphyridium aerugineum.” Int. J. Biol. Macromol. 145, 1171–1179. https://doi.org/10.1016/j.ijbiomac.2019.09.205

Nielsen, S.S., 2010. Phenol-sulfuric acid method for total carbohydrates. In: Nielsen, S.S. (eds) Food Analysis Laboratory Manual. Food Science Texts Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1463-7_6

Ositadinma, I.C., Tagbo, N.J., and Elijah, O.C., 2019. “Optimum process parameters for activated carbon production from rice husk for phenol adsorption.” Curr. J. Appl. Sci. Technol. 1–11. https://doi.org/10.9734/cjast/2019/v36i630264

Patil, A., and Singh, A.K., 2016. “Optimization of microwave assisted mechanical extraction of oil from canola seeds by using response surface methodology.” Agric. Eng. Int. CIGR J. 18, 297–308.

Prakash Maran, J., Manikandan, S., and Mekala, V., 2013. “Modeling and optimization of betalain extraction from Opuntia ficus-indica using Box-Behnken design with desirability function.” Ind. Crops Prod. 49, 304–311. https://doi.org/10.1016/j.indcrop.2013.05.012

Rahman, S.S.A., Pasupathi, S., Venkatachalam, P., Jothi, A., and Karuppiah, S., 2023. “Modeling, optimization, and characterization of polysaccharides from Strychnos potatorum using microwave-assisted extraction.” Biomass Conv. Bioref. 15, 2111–2129. https://doi.org/10.1007/s13399-023-04321-7

Ringgani, R., Azis, M.M., Rochmadi, and Budiman, A., 2022. “Kinetic study of levulinic acid from Spirulina platensis residue.” Appl. Biochem. Biotechnol. 194, 2684–2699. https://doi.org/10.1007/s12010-022-03806-x

Sadewo, B.R., Dewayanto, N., Rochmadi, Juniawan, A.S., and Budiman, A., 2024. “Optimization study of phycocyanin ultrasound-assisted extraction process from spirulina (Arthospira platensis) using different solvent.” Egypt. J. Chem. 67, 589–608. https://doi.org/10.21608/EJCHEM.2024.245730.8802

Sevag, M.G., Lackman, D.B., and Smolens, J., 1938. “The Isolation of the components of streptococcal nucleoproteins in serologically active form.” J. Biol. Chem. 124, 425–436. https://doi.org/10.1016/s0021-9258(18)74048-9

Shang, A., Luo, M., Gan, R.Y., Xu, X.Y., Xia, Y., Guo, H., Liu, Y., and Li, H. Bin, 2020. “Effects of microwave-assisted extraction conditions on antioxidant capacity of sweet tea (Lithocarpus polystachyus rehd.).” Antioxidants 9, 1–17. https://doi.org/10.3390/antiox9080678

Shi, Y., Sheng, J., Yang, F., and Hu, Q., 2007. “Purification and identification of polysaccharide derived from Chlorella pyrenoidosa.” Food Chem. 103, 101–105. https://doi.org/10.1016/j.foodchem.2006.07.028

Silva, A. de S. e., de Magalhães, W.T., Moreira, L.M., Rocha, M.V.P., and Bastos, A.K.P., 2018. “Microwave-assisted extraction of polysaccharides from Arthrospira (Spirulina) platensis using the concept of green chemistry.” Algal Res. 35, 178–184. https://doi.org/10.1016/j.algal.2018.08.015

Su, C.H., Lai, M.N., and Ng, L.T., 2017. “Effects of different extraction temperatures on the physicochemical properties of bioactive polysaccharides from Grifola frondosa.” Food Chem. 220, 400–405. https://doi.org/10.1016/j.foodchem.2016.09.181

Takahasi, A.P.D., Mansur, D., Prasetyo, W.D., Simanungkalit, S.P., Purba, W.L.I., Rizal, W.A., Sarwono, A., and Iskandar, Y.A., 2025. “Optimization of liquid fuel production from co-pyrolysis of oil palm fronds and expanded polystyrene using response surface methodology.” Case Stud. Chem. Environ. Eng. 11, 101074. https://doi.org/10.1016/j.cscee.2024.101074

Tan, Y.H., Chai, M.K., Wong, L.S., Ong, M.Y., and Rajamani, R., 2025. “Optimizing microwave-assisted extraction of carbohydrate from Scenedesmus sp. cultivated in domestic wastewater.” Int. J. Technol. 16, 255–274. https://doi.org/10.14716/ijtech.v16i1.7301

Toif, M.E., Hidayat, M., Rochmadi, R., and Budiman, A., 2021. “Reaction kinetics of levulinic acid synthesis from glucose using bronsted acid catalyst.” Bull. Chem. React. Eng. Catal. 16, 904–915. https://doi.org/10.9767/BCREC.16.4.12197.904-915

Variyana, Y., Ma’Sum, Z., Bhuana, D.S., and Mahfud, M., 2023. “Extraction of java lemongrass (Cymbopogon citratus) using microwave-assisted hydro distillation in pilot scale: Parametric study and modelling.” ASEAN J. Chem. Eng. 23, 210–223. https://doi.org/10.22146/ajche.79220

Wan, X., Li, X., Liu, D., Gao, X., Chen, Y., Chen, Z., Fu, C., Lin, L., Liu, B., and Zhao, C., 2021. “Physicochemical characterization and antioxidant effects of green microalga Chlorella pyrenoidosa polysaccharide by regulation of microRNAs and gut microbiota in Caenorhabditis elegans.” Int. J. Biol. Macromol. 168, 152–162. https://doi.org/10.1016/j.ijbiomac.2020.12.010

Wan, X.Z., Ai, C., Chen, Y.H., Gao, X.X., Zhong, R.T., Liu, B., Chen, X.H., and Zhao, C., 2020. “Physicochemical characterization of a polysaccharide from green microalga chlorella pyrenoidosa and its hypolipidemic activity via gut microbiota regulation in rats.” J. Agric. Food Chem. 68, 1186–1197. https://doi.org/10.1021/acs.jafc.9b06282

Wang, B., Liu, Q., Huang, Y., Yuan, Y., Ma, Q., Du, M., Cai, T., and Cai, Y., 2018. “Extraction of polysaccharide from spirulina and evaluation of its activities.” Evidence-based Complement. Altern. Med. 2018, 425615. https://doi.org/10.1155/2018/3425615

Wang, J., Zhang, J., Wang, X., Zhao, B., Wu, Y., and Yao, J., 2009. “A comparison study on microwave-assisted extraction of Artemisia sphaerocephala polysaccharides with conventional method: Molecule structure and antioxidant activities evaluation.” Int. J. Biol. Macromol. 45, 483–492. https://doi.org/10.1016/j.ijbiomac.2009.09.004

Wu, D., Fu, M., Guo, H., Hu, Y., Zheng, X., and Gan, R., 2022. “Microwave-assisted deep eutectic solvent extraction, structural characteristics, and biological functions of polysaccharides from sweet tea (Lithocarpus litseifolius) Leaves”. Antioxidants 11(8), 3–8. https://doi.org/10.3390/antiox11081578

Yu, M., Chen, M., Gui, J., Huang, S., Liu, Y., Shentu, H., He, J., Fang, Z., Wang, W., and Zhang, Y., 2019. “Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo.” Int. J. Biol. Macromol., 137, 139–150. https://doi.org/10.1016/j.ijbiomac.2019.06.222

Yuan, J., Zhao, L., Li, Y., Xing, G., Chen, D., and Yang, Y., 2025. “Glucose as a Metabolic Enhancer: Promoting Nonylphenol Detoxification by Chlorella pyrenoidosa.” Water (Switzerland), 17. https://doi.org/10.3390/w17020244

Yuan, Q., Li, H., Wei, Z., Lv, K., Gao, C., Liu, Y., and Zhao, L., 2020. “Isolation, structures and biological activities of polysaccharides from Chlorella: A review.” Int. J. Biol. Macromol., 163, 2199–2209. https://doi.org/10.1016/j.ijbiomac.2020.09.080

Zhan, Q., Zhong, H., Yin, M., Peng, J., and Chen, M., 2022. “Optimization of the polysaccharide extraction process from Rosa roxburghii Tratt using Box-Behnken response surface methodology and monosaccharide composition analysis.” Food Sci. Technol. 42, 1–11. https://doi.org/10.1590/fst.86322

Zhang, J., Ye, Z., Liu, G., Liang, L., Wen, C., Liu, X., Li, Y., Ji, T., Liu, D., Ren, J., and Xu, X., 2022. “Subcritical water enhanced with deep eutectic solvent for extracting polysaccharides from lentinus edodes and their antioxidant activities.” Molecules 27, 3612. https://doi.org/10.3390/molecules27113612

Zhou, L., Luo, S., Li, J., Zhou, Y., Wang, X., Kong, Q., Chen, T., Feng, S., Yuan, M., and Ding, C., 2021. “Optimization of the extraction of polysaccharides from the shells of Camellia oleifera and evaluation on the antioxidant potential in vitro and in vivo.” J. Funct. Foods 86, 104678. https://doi.org/10.1016/j.jff.2021.104678

Published
2025-12-31
How to Cite
Aulia, M. P., Azis , M. M., Rochmadi, R., & Budiman, A. (2025). Enhanced Polysaccharide Extraction from Chlorella pyrenoidosa Using Microwave-Assisted Technique and Response Surface Methodology Approach. ASEAN Journal of Chemical Engineering, 25(3), 603-623. https://doi.org/10.22146/ajche.22619
Section
Articles