Renewable Electricity Production from Tofu Wastewater and Palm Oil Mill Effluent (POME) via Microbial Fuel Cell
Abstract
Microbial fuel cell (MFC) technology is a renewable energy solution that offers multiple benefits, including environmental friendliness, direct electricity generation, and wastewater treatment. In wastewater treatment, MFCs convert organic matter into electricity while simultaneously treating wastewater. This study investigated a double-chamber MFC using tofu wastewater and palm oil mill effluent (POME) as substrates. A carbon-based material served as the electrode in a membrane electrode assembly (MEA). The results revealed that the MFC generated voltages of 546 mV and 876 mV for tofu wastewater and POME, respectively. The highest power and current densities measured were 12.45 mW/m² and 25.87 mA/m² for tofu wastewater, and 25.22 mW/m² and 52.8 mA/m² for POME. Furthermore, the chemical oxygen demand (COD) removal efficiencies were 52.7% for tofu wastewater and 56.7% for POME. These findings demonstrate the potential of MFC technology for power generation using tofu wastewater and POME, making it a promising approach for sustainable energy and wastewater treatment.
References
Adisasmito, S., Situmorang, Y.A., Firdaus, F., Sasongko, D., Ramli, Y., Guan, G., and Indarto, A., 2023. “Unveiling characteristics of woody biomass torrefaction through kinetic modeling.” Bioenerg. Res. 17, 964–971. https://doi.org/10.1007/s12155-023-10687-3
Ahn, Y., and Logan, B.E., 2010. “Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures.” Bioresour. Technol. 101, 469–475. https://doi.org/10.1016/j.biortech.2009.07.039
Albarracin-arias, J.A., Yu, C., Maeda, T., Valdivieso, W., and Sanchez-torres, V., 2021. “Microbial community dynamics and electricity generation in MFCs inoculated with POME sludges and pure electrogenic culture.” Int. J. Hydrogen Energy 46, 36903–36916. https://doi.org/10.1016/j.ijhydene.2021.08.218
Alshammari, M.B., and Ahmad, A., 2025. “Electrochemical oxidation (biomass) and degradation of organic pollutant through a microbial fuel cell to produce electricity.” Biomass Convers. Biorefin. 15, 7853–7867. https://doi.org/10.1007/s13399-024-05597-z
Álvarez-Ley, J.E., Méndez-Novelo, R.I., Giácoman-Vallejos, G., Paniagua Solar, L.A., and San-Pedro, L., 2025. “Microbial fuel cells for power generation and wastewater treatment: a review of components, performance and sustainability.” Int. J. Hydrogen Energy 137, 429–447. https://doi.org/10.1016/j.ijhydene.2025.05.140
American Public Health Association, 1999. Standard methods for the examination of water and wastewater 20th edition. APHA American Public Health Association.
Aslan, C., Devianto, H., Wonoputri, V., Defrianto, D., Iedfaza, D., and Harimawan, A., 2025. “Influence of essential oil as biocorrosion inhibitor on biocorrosion of carbon steel by Pseudomonas sp. in B35 storage system.” Next Mater. 9, 101126. https://doi.org/10.1016/j.nxmate.2025.101126
Azni, M.E., Abidin, A.Z., Noorain, R., Hitam, S.M.S., Ernawati, L., Abdullah, R., Shoiful, A., and Mohamad, R., 2022. “Performance of Chlorella sp. and multicultural bacteria in removing pollutants from nutrient-rich wastewater.” ASEAN J. Chem. Eng. 22, 42–57. https://doi.org/10.22146/ajche.69427
Baranitharan, E., Khan, M.R., Yousuf, A., Teo, W.F.A., Tan, G.Y.A., and Cheng, C.K., 2015. “Enhanced power generation using controlled inoculum from palm oil mill effluent fed microbial fuel cell.” Fuel 143, 72–79. https://doi.org/10.1016/j.fuel.2014.11.030
Christwardana, M., Joelianingsih, J., and Yoshi, L.A., 2021. “Performance of yeast microbial fuel cell integrated with sugarcane bagasse fermentation for cod reduction and electricity generation.” Bull. Chem. React. Eng. Catal. 16, 446–458. https://doi.org/10.9767/BCREC.16.3.9739.446-458
Coates, J., 2000. Interpretation of infrared spectra, a practical approach. in: Encyclopedia of Analytical Chemistry. Wiley Online Library, pp. 10815–10837. https://doi.org/10.1097/00010694-197107000-00005
Cong, V.H., Vien, T.D., and Hang, H.T.T., 2023. “Evaluation of electricity generation from wastewater by microbial fuel cell.” Vietnam J. Agric. Sci. 6, 1924–1930. https://doi.org/10.31817/vjas.2023.6.4.03
Daniel, D.K., Das Mankidy, B., Ambarish, K., and Manogari, R., 2009. “Construction and operation of a microbial fuel cell for electricity generation from wastewater.” Int. J. Hydrogen Energy 34, 7555–7560. https://doi.org/10.1016/j.ijhydene.2009.06.012
Dianursanti, Rizkytata, B.T., Gumelar, M.T., and Abdullah, T.H., 2014. “Industrial tofu wastewater as a cultivation medium of microalgae Chlorella vulgaris.” Energy Procedia 47, 56–61. https://doi.org/10.1016/j.egypro.2014.01.196
Dilip Kumar, S., Yasasve, M., Karthigadevi, G., Aashabharathi, M., Subbaiya, R., Karmegam, N., and Govarthanan, M., 2022. “Efficiency of microbial fuel cells in the treatment and energy recovery from food wastes: Trends and applications - A review.” Chemosphere 287, 132439. https://doi.org/10.1016/j.chemosphere.2021.132439
El-Badan, D.E.S., Khaled, M.A., and Ghanem, K.M., 2019. “A sustainable bioelectricity production from wastewater.” Egypt. J. Aquat. Biol. Fish. 23, 225–233. https://doi.org/10.21608/ejabf.2019.65179
Feng, Y., Wang, X., Logan, B.E., and Lee, H., 2008. “Brewery wastewater treatment using air-cathode microbial fuel cells.” Appl. Microbiol. Biotechnol. 78, 873–880. https://doi.org/10.1007/s00253-008-1360-2
Franks, A.E., Malvankar, N., and Nevin, K.P., 2010. “Bacterial biofilms: The powerhouse of a microbial fuel cell.” Biofuels 1, 589–604. https://doi.org/10.4155/bfs.10.25
Ghasemi, M., Wan Daud, W.R., Ismail, M., Rahimnejad, M., Ismail, A.F., Leong, J.X., Miskan, M., and Ben Liew, K., 2013. “Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance.” Int. J. Hydrogen Energy 38, 5480–5484. https://doi.org/10.1016/j.ijhydene.2012.09.148
Golzarian, M., Ghiasvand, M., Shokri, S., Bahreini, M., and Kazemi, F., 2024. “Performance evaluation of a dual-chamber plant microbial fuel cell developed for electricity generation and wastewater treatment.” Int. J. Environ. Sci. Technol. 21, 5947–5954. https://doi.org/10.1007/s13762-023-05415-5
Hamed, M.S., Majdi, H.S., and Hasan, B.O., 2020. “Effect of electrode material and hydrodynamics on the produced current in double chamber microbial fuel cells.” ACS Omega 5, 10339–10348. https://doi.org/10.1021/acsomega.9b04451
Harimawan, A., 2022. “Dynamic and steady model development of two-chamber batch microbial fuel cell (MFC).” Reaktor 21, 160–169. https://doi.org/10.14710/reaktor.1.1.160-169
Harimawan, A., Devianto, H., Al-aziz, R.H.R.M.T., and Shofinita, D., 2018. “Influence of electrode distance on electrical energy production of microbial fuel cell using tapioca wastewater.” J. Eng. technol. Sci. 50, 841–855. https://doi.org/10.5614/j.eng.technol.sci.2018.50.6.7
Harimawan, A., Devianto, H., Baihaqi, B., Nisa, N.K., and Aslan, C., 2025. “Influence of consortium culture and mixed culture on carbon steel corrosion in B30 storage system.” Colloids Surf. B Biointerfaces 251, 114587. https://doi.org/10.1016/j.colsurfb.2025.114587
Harimawan, A., Devianto, H., Khodiyat, N., Gatalie, K.L., and Aslan, C., 2024. “The effect of illumination, electrode distance, and illumination periods on the performance of phototrophic sediment microbial fuel cells (PSMFCs).” J. Eng. Technol. Sci. 56, 1–10. https://doi.org/10.5614/j.eng.technol.sci.2024.56.1.1
Hidayat, A.R.P., Widyanto, A.R., Asranudin, A., Ediati, R., Sulistiono, D.O., Putro, H.S., Sugiarso, D., Prasetyoko, D., Purnomo, A.S., Bahruji, H., Ali, B.T.I., and Caralin, I.S., 2022. “Recent development of double chamber microbial fuel cell for hexavalent chromium waste removal.” J. Environ. Chem. Eng. 10, 107505. https://doi.org/10.1016/j.jece.2022.107505
Holechek, J.L., Geli, H.M.E., Sawalhah, M.N., and Valdez, R., 2022. “A global assessment: Can Renewable energy replace fossil fuels by 2050?” Sustain. 14(8), 4792. https://doi.org/10.3390/su14084792
Jayashree, C., Tamilarasan, K., Rajkumar, M., Arulazhagan, P., Yogalakshmi, K.N., Srikanth, M., and Banu, J.R., 2016. “Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm.” J. Environ. Manage. 180, 351–358. https://doi.org/10.1016/j.jenvman.2016.05.050
Kim, B.H., Park, H.S., Kim, H.J., Kim, G.T., Chang, I.S., Lee, J., and Phung, N.T., 2004. “Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell.” Appl. Microbiol. Biotechnol. 63, 672–681. https://doi.org/10.1007/s00253-003-1412-6
Kramer, J., Soukiazian, S., Mahoney, S., and Hicks-Garner, J., 2012. “Microbial fuel cell biofilm characterization with thermogravimetric analysis on bare and polyethyleneimine surface modified carbon foam anodes.” J. Power Sources 210, 122–128. https://doi.org/10.1016/j.jpowsour.2012.03.022
Kumar, S.S., Kumar, V., Malyan, S.K., Sharma, J., Mathimani, T., Maskarenj, M.S., Ghosh, P.C., and Pugazhendhi, A., 2019. “Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams.” Fuel 254, 115526. https://doi.org/10.1016/j.fuel.2019.05.109
Liu, H., Cheng, S., and Logan, B.E., 2005. “Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration.” Environ. Sci. Technol. 39, 5488–5493. https://doi.org/10.1021/es050316c
Liu, L., Tsyganova, O., Lee, D.J., Chang, J.S., Wang, A., and Ren, N., 2013. “Double-chamber microbial fuel cells started up under room and low temperatures.” Int. J. Hydrogen Energy 38, 15574–15579. https://doi.org/10.1016/j.ijhydene.2013.02.090
Logan, B.E., and Rabaey, K., 2012. “Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.” Science 337, 686–690. https://doi.org/10.1126/science.1217412
Lu, X., Al-Qadiri, H.M., Lin, M., and Rasco, B.A., 2011. “Application of mid-infrared and raman spectroscopy to the study of bacteria.” Food Bioprocess Technol. 4, 919–935. https://doi.org/10.1007/s11947-011-0516-8
Mahmood, N.A.N., Ghazali, N.F., Ibrahim, K.A., and Ali, M.A., 2017. “Anodic pH Evaluation on performance of power generation from palm oil empty fruit bunch (EFB) in dual chambered microbial fuel cell (MFC).” Chem. Eng. Trans. 56, 1795–1800. https://doi.org/10.3303/CET1756300
Mittal, N., and Kumar, A., 2022. “Microbial fuel cell as water-energy-environment nexus: a relevant strategy for treating streamlined effluents.” Energy Nexus 7, 100097. https://doi.org/10.1016/j.nexus.2022.100097
Mittal, Y., Dash, S., Srivastava, P., Mishra, P.M., Aminabhavi, T.M., and Yadav, A.K., 2022. “Azo dye containing wastewater treatment in earthen membrane based unplanted two chambered constructed wetlands-microbial fuel cells: A new design for enhanced performance.” Chem. Eng. J. 427, 131856. https://doi.org/10.1016/j.cej.2021.131856
Mkilima, T., Saspugayeva, G., Dakieva, K., Tussupova, Z., Zhaken, A., Kumarbekuly, S., Daribay, A., and Khussainov, M., 2024. “Enhancing slaughterhouse wastewater treatment through the integration of microbial fuel cell and Electro-Fenton systems: A comprehensive comparative analysis.” J. Water Process Eng. 57, 104743. https://doi.org/10.1016/j.jwpe.2023.104743
Moradian, J.M., Fang, Z., and Yong, Y.C., 2021. “Recent advances on biomass-fueled microbial fuel cell.” Bioresour. Bioprocess 8, 14. https://doi.org/10.1186/s40643-021-00365-7
Mosharaf, M.K., Tanvir, M.Z.H., Haque, M.M., Haque, M.A., Khan, M.A.A., Molla, A.H., Alam, M.Z., Islam, M.S., and Talukder, M.R., 2018. “Metal-adapted bacteria isolated from wastewaters produce biofilms by expressing proteinaceous curli fimbriae and cellulose nanofibers.” Front. Microbiol. 9, 1–17. https://doi.org/10.3389/fmicb.2018.01334
Murugaiyan, J., Narayanan, A., and Naina Mohamed, S., 2025. “Influence of operating parameters on electricity production in up-flow microbial fuel cell during distillery wastewater treatment.” Water Conserv. Sci. Eng. 10. https://doi.org/10.1007/s41101-024-00325-0
Naina Mohamed, S., Thota Karunakaran, R., and Manickam, M., 2018. “Enhancement of bioelectricity generation from treatment of distillery wastewater using microbial fuel cell.” Environ. Prog. Sustain. Energy 37, 663–668. https://doi.org/10.1002/ep.12734
Nanda, P.K., Rao, K.K., and Nayak, P.L., 2006. “Biodegradable polymers. XI. Spectral, thermal, morphological, and biodegradability properties of environment-friendly green plastics of soy protein.” J. Appl. Polym. Sci. 103 (5), 3134-3142. https://doi.org/10.1002/app.24590
Nandiyanto, A.B.D., Oktiani, R., and Ragadhita, R., 2019. “How to read and interpret ftir spectroscope of organic material.” Indones. J. Sci. Technol. 4, 97–118. https://doi.org/10.17509/ijost.v4i1.15806
Omoike, A., and Chorover, J., 2004. “Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: Aqueous chemistry and adsorption effects.” Biomacromolecules 5, 1219–1230. https://doi.org/10.1021/bm034461z
Pan, Y., Breidt, F., and Gorski, L., 2010. “Synergistic effects of sodium chloride, glucose, and temperature on biofilm formation by listeria monocytogenes Serotype 1/2a and 4b Strains.” Appl. Environ. Microbiol. 76, 1433–1441. https://doi.org/10.1128/AEM.02185-09
Pant, D., Van Bogaert, G., Diels, L., and Vanbroekhoven, K., 2010. “A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production.” Bioresour. Technol. 101, 1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017
Parthipan, P., Elumalai, P., Ting, Y.P., Rahman, P.K.S.M., and Rajasekar, A., 2018. “Characterization of hydrocarbon degrading bacteria isolated from Indian crude oil reservoir and their influence on biocorrosion of carbon steel API 5LX.” Int. Biodeterior. Biodegrad. 129, 67–80. https://doi.org/10.1016/j.ibiod.2018.01.006
Permana, D., and Djaenudin, 2019. “Performance of single chamber microbial fuel cell (SCMFC) for biological treatment of tofu wastewater.” IOP Conf. Ser. Earth Environ. Sci. 277. https://doi.org/10.1088/1755-1315/277/1/012008
Prabowo, A.K., Tiarasukma, A.P., Christwardana, M., and Ariyanti, D., 2016. “Microbial fuel cells for simultaneous electricity generation and organic degradation from slaughterhouse wastewater.” Int. J. Renew. Energy Dev. 5, 107–112. https://doi.org/10.14710/ijred.5.2.107-112
Pusparizkita, Y.M., Aslan, C., Schmahl, W.W., Devianto, H., Harimawan, A., Setiadi, T., Ng, Y.J., Bayuseno, A.P., and Show, P.L., 2023. “Microbiologically influenced corrosion of the ST-37 carbon steel tank by Bacillus licheniformis present in biodiesel blends.” Biomass Bioenergy 168, 106653. https://doi.org/10.1016/j.biombioe.2022.106653
Quilès, F., Humbert, F., and Delille, A., 2010. “Analysis of changes in attenuated total reflection FTIR fingerprints of Pseudomonas fluorescens from planktonic state to nascent biofilm state.” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 75, 610–616. https://doi.org/10.1016/j.saa.2009.11.026
Rabaey, K., and Verstraete, W., 2005. “Microbial fuel cells: Novel biotechnology for energy generation.” Trends Biotechnol. 23, 291–298. https://doi.org/10.1016/j.tibtech.2005.04.008
Ramli, Y., Steven, S., Restiawaty, E., and Bindar, Y., 2022. “Simulation study of bamboo leaves valorization to small-scale electricity and bio-silica using ASPEN Plus.” Bioenergy Res. 15, 1918–1926. https://doi.org/10.1007/s12155-022-10403-7
Reda, S., Safwat, S.M., Elawwad, A., and Abdel-Halim, H., 2025. “Dual-chamber microbial fuel cells for enhanced bioelectricity generation and chemical oxygen demand removal from sludges: A comparative study of different real sludge generated from a wastewater treatment plant.” Biomass Bioenergy 201, 108063. https://doi.org/10.1016/j.biombioe.2025.108063
Rinaldi, W., Abubakar, A., Rahmi, R.F., and Silmina, S., 2018. “Tofu wastewater treatment by sediment microbial fuel cells.” IOP Conf. Ser. Mater. Sci. Eng. 334. https://doi.org/10.1088/1757-899X/334/1/012068
Rizqi, H.D., Jaafar, J., Purnomo, A.S., Khan, Z., Yoshida, N., Aziz, F., Salleh, W.N.W., Latif, A.A., Saidin, A.N., Mokhter, M.A., Othman, M.H.D., Rahman, M.A., and Saidin, M.A.R., 2025. “A review of the microbial fuel cell for simultaneous effluent treatment and energy generation from POME by systematically manipulating the publication metrics from a highly trusted database platform.” J. Water Process Eng. 77, 108370. https://doi.org/10.1016/j.jwpe.2025.108370
Rossi, R., Cavina, M., and Setti, L., 2016. “Characterization of electron transfer mechanism in mediated microbial fuel cell by entrapped electron mediator in saccharomyces cerevisiae.” Chem. Eng. Trans. 49, 559–564. https://doi.org/10.3303/CET1649094
Schmitt, J., and Flemming, H.C., 1998. “FTIR-spectroscopy in microbial and material analysis.” Int. Biodeterior. Biodegrad. 41, 1–11. https://doi.org/10.1016/S0964-8305(98)80002-4
Soetaert, W., and Vandamme, E.J., 2010. Industrial biotechnology: sustainable growth and economic success. Wiley-VCH, Weinheim.
Sun, F., Chen, J., Sun, Z., Zheng, X., Tang, M., and Yang, Y., 2024. “Promoting bioremediation of brewery wastewater, production of bioelectricity and microbial community shift by sludge microbial fuel cells using biochar as anode.” Sci. Total Environ. 929, 172418. https://doi.org/10.1016/j.scitotenv.2024.172418
Taha, M.R., and Ibrahim, A.H., 2014. “COD removal from anaerobically treated palm oil mill effluent (AT-POME) via aerated heterogeneous Fenton process: Optimization study.” J. Water Process Eng. 1, 8–16. https://doi.org/10.1016/j.jwpe.2014.02.002
Tan, W., Ye, J., Wang, Y., Zhou, Y., Xia, Y., Feng, Q., and Xu, L., 2025. “Nickel phosphide modified nickel cobaltate as microbial fuel cell anode to facilitate the treatment of shale gas flowback wastewater: Electricity generation performance and mechanism.” Sustain. Energy Technol. Assessments 73, 104127. https://doi.org/10.1016/j.seta.2024.104127
Tiwari, A., Yadav, N., Jadhav, D.A., Sandhwar, V.K., Saxena, S., Anghan, K., and Suransh, J., 2024. “Low-cost earthen membrane: Inclusion of wood ash to improve performance of microbial fuel cell.” Environ. Eng. Res. 30, 240298–0. https://doi.org/10.4491/eer.2024.298
Ullah, Z., and Zeshan, S., 2020. “Effect of substrate type and concentration on the performance of a double chamber microbial fuel cell.” Water Sci. Technol. 81, 1336–1344. https://doi.org/10.2166/wst.2019.387
Uria, N., Ferrera, I., and Mas, J., 2017. “Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms.” BMC Microbiol. 17, 1–12. https://doi.org/10.1186/s12866-017-1115-2
Wu, T.Y., Mohammad, A.W., Md. Jahim, J., and Anuar, N., 2007. “Palm oil mill effluent (POME) treatment and bioresources recovery using ultrafiltration membrane: Effect of pressure on membrane fouling.” Biochem. Eng. J. 35, 309–317. https://doi.org/10.1016/j.bej.2007.01.029
You, S., Zhao, Q., Zhang, J., Jiang, J., and Zhao, S., 2006. “A microbial fuel cell using permanganate as the cathodic electron acceptor.” J. Power Sources, 162, 1409–1415. https://doi.org/10.1016/j.jpowsour.2006.07.063
Yusnitati, Anindita, H.N., Adha, A., Septriana, D., Priambodo, T.B., Hastuti, Z.D., Santoso, E., Wulandari, W., Zuldian, P., Primeia, S., Baruji, T., Yurismono, H., Prasetyo, D.H., Murti, S.D.S., Senda, S.P., and Saputra, H., 2024. “Biohydrogen production from palm oil mill effluent (POME) in Indonesia: Potential, challenges, and prospects.” Int. J. Hydrogen Energy 138, 1315-1335. https://doi.org/10.1016/j.ijhydene.2024.11.277
Zhang, W., Xu, D., Zhao, Y., Gao, D., Xie, Z., Zhang, X., Wu, B., Huang, T., and Peng, L., 2025. “Enhancing electricity generation and pollutant degradation in microbial fuel cells using cyanobacteria-derived biochar electrodes.” Bioresour. Technol. 418, 132000. https://doi.org/10.1016/j.biortech.2024.132000
Zuli Pratiwi, W., Hadiyanto, H., Purwanto, P., and Nur Fadlilah, M., 2020. “Bioelectricity production from tofu wastewater using microbial fuel cells with microalgae Spirulina sp as catholyte.” E3S Web Conf. 202. https://doi.org/10.1051/e3sconf/202020208007
Copyright (c) 2025 ASEAN Journal of Chemical Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright holder for articles is ASEAN Journal of Chemical Engineering. Articles published in ASEAN J. Chem. Eng. are distributed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
Authors agree to transfer all copyright rights in and to the above work to the ASEAN Journal of Chemical Engineering Editorial Board so that the Editorial Board shall have the right to publish the work for non-profit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors’ personal use or for company use if the source and the journal copyright notice is indicated, and if the reproduction is not made for the purpose of sale.