Renewable Electricity Production from Tofu Wastewater and Palm Oil Mill Effluent (POME) via Microbial Fuel Cell

  • Ardiyan Harimawan Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung
  • Kenny Zephaniah Suryaga Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia
  • Putri Erna Saing Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia
  • Byan Baihaqi Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia
  • Christian Aslan Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia
  • Hary Devianto Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia
  • Dian Shofinita Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia
Keywords: COD Removal, Current and Power Density, Microbial Fuel Cell, POME, Tofu Wastewater

Abstract

Microbial fuel cell (MFC) technology is a renewable energy solution that offers multiple benefits, including environmental friendliness, direct electricity generation, and wastewater treatment. In wastewater treatment, MFCs convert organic matter into electricity while simultaneously treating wastewater. This study investigated a double-chamber MFC using tofu wastewater and palm oil mill effluent (POME) as substrates. A carbon-based material served as the electrode in a membrane electrode assembly (MEA). The results revealed that the MFC generated voltages of 546 mV and 876 mV for tofu wastewater and POME, respectively. The highest power and current densities measured were 12.45 mW/m² and 25.87 mA/m² for tofu wastewater, and 25.22 mW/m² and 52.8 mA/m² for POME. Furthermore, the chemical oxygen demand (COD) removal efficiencies were 52.7% for tofu wastewater and 56.7% for POME. These findings demonstrate the potential of MFC technology for power generation using tofu wastewater and POME, making it a promising approach for sustainable energy and wastewater treatment.

Author Biographies

Ardiyan Harimawan, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung

Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung

Kenny Zephaniah Suryaga, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia

Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia

Putri Erna Saing, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia

Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia

Byan Baihaqi, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia

Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia

Christian Aslan, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia

Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia

Hary Devianto, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia

Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia

Dian Shofinita, Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia

Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia

Department of Food Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Let. Jend. Purn. Dr. (HC). Mashudi No. 1/Jalan Raya Jatinangor KM 20.75, Sumedang 45363, Indonesia

References

Adisasmito, S., Situmorang, Y.A., Firdaus, F., Sasongko, D., Ramli, Y., Guan, G., and Indarto, A., 2023. “Unveiling characteristics of woody biomass torrefaction through kinetic modeling.” Bioenerg. Res. 17, 964–971. https://doi.org/10.1007/s12155-023-10687-3

Ahn, Y., and Logan, B.E., 2010. “Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures.” Bioresour. Technol. 101, 469–475. https://doi.org/10.1016/j.biortech.2009.07.039

Albarracin-arias, J.A., Yu, C., Maeda, T., Valdivieso, W., and Sanchez-torres, V., 2021. “Microbial community dynamics and electricity generation in MFCs inoculated with POME sludges and pure electrogenic culture.” Int. J. Hydrogen Energy 46, 36903–36916. https://doi.org/10.1016/j.ijhydene.2021.08.218

Alshammari, M.B., and Ahmad, A., 2025. “Electrochemical oxidation (biomass) and degradation of organic pollutant through a microbial fuel cell to produce electricity.” Biomass Convers. Biorefin. 15, 7853–7867. https://doi.org/10.1007/s13399-024-05597-z

Álvarez-Ley, J.E., Méndez-Novelo, R.I., Giácoman-Vallejos, G., Paniagua Solar, L.A., and San-Pedro, L., 2025. “Microbial fuel cells for power generation and wastewater treatment: a review of components, performance and sustainability.” Int. J. Hydrogen Energy 137, 429–447. https://doi.org/10.1016/j.ijhydene.2025.05.140

American Public Health Association, 1999. Standard methods for the examination of water and wastewater 20th edition. APHA American Public Health Association.

Aslan, C., Devianto, H., Wonoputri, V., Defrianto, D., Iedfaza, D., and Harimawan, A., 2025. “Influence of essential oil as biocorrosion inhibitor on biocorrosion of carbon steel by Pseudomonas sp. in B35 storage system.” Next Mater. 9, 101126. https://doi.org/10.1016/j.nxmate.2025.101126

Azni, M.E., Abidin, A.Z., Noorain, R., Hitam, S.M.S., Ernawati, L., Abdullah, R., Shoiful, A., and Mohamad, R., 2022. “Performance of Chlorella sp. and multicultural bacteria in removing pollutants from nutrient-rich wastewater.” ASEAN J. Chem. Eng. 22, 42–57. https://doi.org/10.22146/ajche.69427

Baranitharan, E., Khan, M.R., Yousuf, A., Teo, W.F.A., Tan, G.Y.A., and Cheng, C.K., 2015. “Enhanced power generation using controlled inoculum from palm oil mill effluent fed microbial fuel cell.” Fuel 143, 72–79. https://doi.org/10.1016/j.fuel.2014.11.030

Christwardana, M., Joelianingsih, J., and Yoshi, L.A., 2021. “Performance of yeast microbial fuel cell integrated with sugarcane bagasse fermentation for cod reduction and electricity generation.” Bull. Chem. React. Eng. Catal. 16, 446–458. https://doi.org/10.9767/BCREC.16.3.9739.446-458

Coates, J., 2000. Interpretation of infrared spectra, a practical approach. in: Encyclopedia of Analytical Chemistry. Wiley Online Library, pp. 10815–10837. https://doi.org/10.1097/00010694-197107000-00005

Cong, V.H., Vien, T.D., and Hang, H.T.T., 2023. “Evaluation of electricity generation from wastewater by microbial fuel cell.” Vietnam J. Agric. Sci. 6, 1924–1930. https://doi.org/10.31817/vjas.2023.6.4.03

Daniel, D.K., Das Mankidy, B., Ambarish, K., and Manogari, R., 2009. “Construction and operation of a microbial fuel cell for electricity generation from wastewater.” Int. J. Hydrogen Energy 34, 7555–7560. https://doi.org/10.1016/j.ijhydene.2009.06.012

Dianursanti, Rizkytata, B.T., Gumelar, M.T., and Abdullah, T.H., 2014. “Industrial tofu wastewater as a cultivation medium of microalgae Chlorella vulgaris.” Energy Procedia 47, 56–61. https://doi.org/10.1016/j.egypro.2014.01.196

Dilip Kumar, S., Yasasve, M., Karthigadevi, G., Aashabharathi, M., Subbaiya, R., Karmegam, N., and Govarthanan, M., 2022. “Efficiency of microbial fuel cells in the treatment and energy recovery from food wastes: Trends and applications - A review.” Chemosphere 287, 132439. https://doi.org/10.1016/j.chemosphere.2021.132439

El-Badan, D.E.S., Khaled, M.A., and Ghanem, K.M., 2019. “A sustainable bioelectricity production from wastewater.” Egypt. J. Aquat. Biol. Fish. 23, 225–233. https://doi.org/10.21608/ejabf.2019.65179

Feng, Y., Wang, X., Logan, B.E., and Lee, H., 2008. “Brewery wastewater treatment using air-cathode microbial fuel cells.” Appl. Microbiol. Biotechnol. 78, 873–880. https://doi.org/10.1007/s00253-008-1360-2

Franks, A.E., Malvankar, N., and Nevin, K.P., 2010. “Bacterial biofilms: The powerhouse of a microbial fuel cell.” Biofuels 1, 589–604. https://doi.org/10.4155/bfs.10.25

Ghasemi, M., Wan Daud, W.R., Ismail, M., Rahimnejad, M., Ismail, A.F., Leong, J.X., Miskan, M., and Ben Liew, K., 2013. “Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance.” Int. J. Hydrogen Energy 38, 5480–5484. https://doi.org/10.1016/j.ijhydene.2012.09.148

Golzarian, M., Ghiasvand, M., Shokri, S., Bahreini, M., and Kazemi, F., 2024. “Performance evaluation of a dual-chamber plant microbial fuel cell developed for electricity generation and wastewater treatment.” Int. J. Environ. Sci. Technol. 21, 5947–5954. https://doi.org/10.1007/s13762-023-05415-5

Hamed, M.S., Majdi, H.S., and Hasan, B.O., 2020. “Effect of electrode material and hydrodynamics on the produced current in double chamber microbial fuel cells.” ACS Omega 5, 10339–10348. https://doi.org/10.1021/acsomega.9b04451

Harimawan, A., 2022. “Dynamic and steady model development of two-chamber batch microbial fuel cell (MFC).” Reaktor 21, 160–169. https://doi.org/10.14710/reaktor.1.1.160-169

Harimawan, A., Devianto, H., Al-aziz, R.H.R.M.T., and Shofinita, D., 2018. “Influence of electrode distance on electrical energy production of microbial fuel cell using tapioca wastewater.” J. Eng. technol. Sci. 50, 841–855. https://doi.org/10.5614/j.eng.technol.sci.2018.50.6.7

Harimawan, A., Devianto, H., Baihaqi, B., Nisa, N.K., and Aslan, C., 2025. “Influence of consortium culture and mixed culture on carbon steel corrosion in B30 storage system.” Colloids Surf. B Biointerfaces 251, 114587. https://doi.org/10.1016/j.colsurfb.2025.114587

Harimawan, A., Devianto, H., Khodiyat, N., Gatalie, K.L., and Aslan, C., 2024. “The effect of illumination, electrode distance, and illumination periods on the performance of phototrophic sediment microbial fuel cells (PSMFCs).” J. Eng. Technol. Sci. 56, 1–10. https://doi.org/10.5614/j.eng.technol.sci.2024.56.1.1

Hidayat, A.R.P., Widyanto, A.R., Asranudin, A., Ediati, R., Sulistiono, D.O., Putro, H.S., Sugiarso, D., Prasetyoko, D., Purnomo, A.S., Bahruji, H., Ali, B.T.I., and Caralin, I.S., 2022. “Recent development of double chamber microbial fuel cell for hexavalent chromium waste removal.” J. Environ. Chem. Eng. 10, 107505. https://doi.org/10.1016/j.jece.2022.107505

Holechek, J.L., Geli, H.M.E., Sawalhah, M.N., and Valdez, R., 2022. “A global assessment: Can Renewable energy replace fossil fuels by 2050?” Sustain. 14(8), 4792. https://doi.org/10.3390/su14084792

Jayashree, C., Tamilarasan, K., Rajkumar, M., Arulazhagan, P., Yogalakshmi, K.N., Srikanth, M., and Banu, J.R., 2016. “Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm.” J. Environ. Manage. 180, 351–358. https://doi.org/10.1016/j.jenvman.2016.05.050

Kim, B.H., Park, H.S., Kim, H.J., Kim, G.T., Chang, I.S., Lee, J., and Phung, N.T., 2004. “Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell.” Appl. Microbiol. Biotechnol. 63, 672–681. https://doi.org/10.1007/s00253-003-1412-6

Kramer, J., Soukiazian, S., Mahoney, S., and Hicks-Garner, J., 2012. “Microbial fuel cell biofilm characterization with thermogravimetric analysis on bare and polyethyleneimine surface modified carbon foam anodes.” J. Power Sources 210, 122–128. https://doi.org/10.1016/j.jpowsour.2012.03.022

Kumar, S.S., Kumar, V., Malyan, S.K., Sharma, J., Mathimani, T., Maskarenj, M.S., Ghosh, P.C., and Pugazhendhi, A., 2019. “Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams.” Fuel 254, 115526. https://doi.org/10.1016/j.fuel.2019.05.109

Liu, H., Cheng, S., and Logan, B.E., 2005. “Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration.” Environ. Sci. Technol. 39, 5488–5493. https://doi.org/10.1021/es050316c

Liu, L., Tsyganova, O., Lee, D.J., Chang, J.S., Wang, A., and Ren, N., 2013. “Double-chamber microbial fuel cells started up under room and low temperatures.” Int. J. Hydrogen Energy 38, 15574–15579. https://doi.org/10.1016/j.ijhydene.2013.02.090

Logan, B.E., and Rabaey, K., 2012. “Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.” Science 337, 686–690. https://doi.org/10.1126/science.1217412

Lu, X., Al-Qadiri, H.M., Lin, M., and Rasco, B.A., 2011. “Application of mid-infrared and raman spectroscopy to the study of bacteria.” Food Bioprocess Technol. 4, 919–935. https://doi.org/10.1007/s11947-011-0516-8

Mahmood, N.A.N., Ghazali, N.F., Ibrahim, K.A., and Ali, M.A., 2017. “Anodic pH Evaluation on performance of power generation from palm oil empty fruit bunch (EFB) in dual chambered microbial fuel cell (MFC).” Chem. Eng. Trans. 56, 1795–1800. https://doi.org/10.3303/CET1756300

Mittal, N., and Kumar, A., 2022. “Microbial fuel cell as water-energy-environment nexus: a relevant strategy for treating streamlined effluents.” Energy Nexus 7, 100097. https://doi.org/10.1016/j.nexus.2022.100097

Mittal, Y., Dash, S., Srivastava, P., Mishra, P.M., Aminabhavi, T.M., and Yadav, A.K., 2022. “Azo dye containing wastewater treatment in earthen membrane based unplanted two chambered constructed wetlands-microbial fuel cells: A new design for enhanced performance.” Chem. Eng. J. 427, 131856. https://doi.org/10.1016/j.cej.2021.131856

Mkilima, T., Saspugayeva, G., Dakieva, K., Tussupova, Z., Zhaken, A., Kumarbekuly, S., Daribay, A., and Khussainov, M., 2024. “Enhancing slaughterhouse wastewater treatment through the integration of microbial fuel cell and Electro-Fenton systems: A comprehensive comparative analysis.” J. Water Process Eng. 57, 104743. https://doi.org/10.1016/j.jwpe.2023.104743

Moradian, J.M., Fang, Z., and Yong, Y.C., 2021. “Recent advances on biomass-fueled microbial fuel cell.” Bioresour. Bioprocess 8, 14. https://doi.org/10.1186/s40643-021-00365-7

Mosharaf, M.K., Tanvir, M.Z.H., Haque, M.M., Haque, M.A., Khan, M.A.A., Molla, A.H., Alam, M.Z., Islam, M.S., and Talukder, M.R., 2018. “Metal-adapted bacteria isolated from wastewaters produce biofilms by expressing proteinaceous curli fimbriae and cellulose nanofibers.” Front. Microbiol. 9, 1–17. https://doi.org/10.3389/fmicb.2018.01334

Murugaiyan, J., Narayanan, A., and Naina Mohamed, S., 2025. “Influence of operating parameters on electricity production in up-flow microbial fuel cell during distillery wastewater treatment.” Water Conserv. Sci. Eng. 10. https://doi.org/10.1007/s41101-024-00325-0

Naina Mohamed, S., Thota Karunakaran, R., and Manickam, M., 2018. “Enhancement of bioelectricity generation from treatment of distillery wastewater using microbial fuel cell.” Environ. Prog. Sustain. Energy 37, 663–668. https://doi.org/10.1002/ep.12734

Nanda, P.K., Rao, K.K., and Nayak, P.L., 2006. “Biodegradable polymers. XI. Spectral, thermal, morphological, and biodegradability properties of environment-friendly green plastics of soy protein.” J. Appl. Polym. Sci. 103 (5), 3134-3142. https://doi.org/10.1002/app.24590

Nandiyanto, A.B.D., Oktiani, R., and Ragadhita, R., 2019. “How to read and interpret ftir spectroscope of organic material.” Indones. J. Sci. Technol. 4, 97–118. https://doi.org/10.17509/ijost.v4i1.15806

Omoike, A., and Chorover, J., 2004. “Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: Aqueous chemistry and adsorption effects.” Biomacromolecules 5, 1219–1230. https://doi.org/10.1021/bm034461z

Pan, Y., Breidt, F., and Gorski, L., 2010. “Synergistic effects of sodium chloride, glucose, and temperature on biofilm formation by listeria monocytogenes Serotype 1/2a and 4b Strains.” Appl. Environ. Microbiol. 76, 1433–1441. https://doi.org/10.1128/AEM.02185-09

Pant, D., Van Bogaert, G., Diels, L., and Vanbroekhoven, K., 2010. “A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production.” Bioresour. Technol. 101, 1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017

Parthipan, P., Elumalai, P., Ting, Y.P., Rahman, P.K.S.M., and Rajasekar, A., 2018. “Characterization of hydrocarbon degrading bacteria isolated from Indian crude oil reservoir and their influence on biocorrosion of carbon steel API 5LX.” Int. Biodeterior. Biodegrad. 129, 67–80. https://doi.org/10.1016/j.ibiod.2018.01.006

Permana, D., and Djaenudin, 2019. “Performance of single chamber microbial fuel cell (SCMFC) for biological treatment of tofu wastewater.” IOP Conf. Ser. Earth Environ. Sci. 277. https://doi.org/10.1088/1755-1315/277/1/012008

Prabowo, A.K., Tiarasukma, A.P., Christwardana, M., and Ariyanti, D., 2016. “Microbial fuel cells for simultaneous electricity generation and organic degradation from slaughterhouse wastewater.” Int. J. Renew. Energy Dev. 5, 107–112. https://doi.org/10.14710/ijred.5.2.107-112

Pusparizkita, Y.M., Aslan, C., Schmahl, W.W., Devianto, H., Harimawan, A., Setiadi, T., Ng, Y.J., Bayuseno, A.P., and Show, P.L., 2023. “Microbiologically influenced corrosion of the ST-37 carbon steel tank by Bacillus licheniformis present in biodiesel blends.” Biomass Bioenergy 168, 106653. https://doi.org/10.1016/j.biombioe.2022.106653

Quilès, F., Humbert, F., and Delille, A., 2010. “Analysis of changes in attenuated total reflection FTIR fingerprints of Pseudomonas fluorescens from planktonic state to nascent biofilm state.” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 75, 610–616. https://doi.org/10.1016/j.saa.2009.11.026

Rabaey, K., and Verstraete, W., 2005. “Microbial fuel cells: Novel biotechnology for energy generation.” Trends Biotechnol. 23, 291–298. https://doi.org/10.1016/j.tibtech.2005.04.008

Ramli, Y., Steven, S., Restiawaty, E., and Bindar, Y., 2022. “Simulation study of bamboo leaves valorization to small-scale electricity and bio-silica using ASPEN Plus.” Bioenergy Res. 15, 1918–1926. https://doi.org/10.1007/s12155-022-10403-7

Reda, S., Safwat, S.M., Elawwad, A., and Abdel-Halim, H., 2025. “Dual-chamber microbial fuel cells for enhanced bioelectricity generation and chemical oxygen demand removal from sludges: A comparative study of different real sludge generated from a wastewater treatment plant.” Biomass Bioenergy 201, 108063. https://doi.org/10.1016/j.biombioe.2025.108063

Rinaldi, W., Abubakar, A., Rahmi, R.F., and Silmina, S., 2018. “Tofu wastewater treatment by sediment microbial fuel cells.” IOP Conf. Ser. Mater. Sci. Eng. 334. https://doi.org/10.1088/1757-899X/334/1/012068

Rizqi, H.D., Jaafar, J., Purnomo, A.S., Khan, Z., Yoshida, N., Aziz, F., Salleh, W.N.W., Latif, A.A., Saidin, A.N., Mokhter, M.A., Othman, M.H.D., Rahman, M.A., and Saidin, M.A.R., 2025. “A review of the microbial fuel cell for simultaneous effluent treatment and energy generation from POME by systematically manipulating the publication metrics from a highly trusted database platform.” J. Water Process Eng. 77, 108370. https://doi.org/10.1016/j.jwpe.2025.108370

Rossi, R., Cavina, M., and Setti, L., 2016. “Characterization of electron transfer mechanism in mediated microbial fuel cell by entrapped electron mediator in saccharomyces cerevisiae.” Chem. Eng. Trans. 49, 559–564. https://doi.org/10.3303/CET1649094

Schmitt, J., and Flemming, H.C., 1998. “FTIR-spectroscopy in microbial and material analysis.” Int. Biodeterior. Biodegrad. 41, 1–11. https://doi.org/10.1016/S0964-8305(98)80002-4

Soetaert, W., and Vandamme, E.J., 2010. Industrial biotechnology: sustainable growth and economic success. Wiley-VCH, Weinheim.

Sun, F., Chen, J., Sun, Z., Zheng, X., Tang, M., and Yang, Y., 2024. “Promoting bioremediation of brewery wastewater, production of bioelectricity and microbial community shift by sludge microbial fuel cells using biochar as anode.” Sci. Total Environ. 929, 172418. https://doi.org/10.1016/j.scitotenv.2024.172418

Taha, M.R., and Ibrahim, A.H., 2014. “COD removal from anaerobically treated palm oil mill effluent (AT-POME) via aerated heterogeneous Fenton process: Optimization study.” J. Water Process Eng. 1, 8–16. https://doi.org/10.1016/j.jwpe.2014.02.002

Tan, W., Ye, J., Wang, Y., Zhou, Y., Xia, Y., Feng, Q., and Xu, L., 2025. “Nickel phosphide modified nickel cobaltate as microbial fuel cell anode to facilitate the treatment of shale gas flowback wastewater: Electricity generation performance and mechanism.” Sustain. Energy Technol. Assessments 73, 104127. https://doi.org/10.1016/j.seta.2024.104127

Tiwari, A., Yadav, N., Jadhav, D.A., Sandhwar, V.K., Saxena, S., Anghan, K., and Suransh, J., 2024. “Low-cost earthen membrane: Inclusion of wood ash to improve performance of microbial fuel cell.” Environ. Eng. Res. 30, 240298–0. https://doi.org/10.4491/eer.2024.298

Ullah, Z., and Zeshan, S., 2020. “Effect of substrate type and concentration on the performance of a double chamber microbial fuel cell.” Water Sci. Technol. 81, 1336–1344. https://doi.org/10.2166/wst.2019.387

Uria, N., Ferrera, I., and Mas, J., 2017. “Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms.” BMC Microbiol. 17, 1–12. https://doi.org/10.1186/s12866-017-1115-2

Wu, T.Y., Mohammad, A.W., Md. Jahim, J., and Anuar, N., 2007. “Palm oil mill effluent (POME) treatment and bioresources recovery using ultrafiltration membrane: Effect of pressure on membrane fouling.” Biochem. Eng. J. 35, 309–317. https://doi.org/10.1016/j.bej.2007.01.029

You, S., Zhao, Q., Zhang, J., Jiang, J., and Zhao, S., 2006. “A microbial fuel cell using permanganate as the cathodic electron acceptor.” J. Power Sources, 162, 1409–1415. https://doi.org/10.1016/j.jpowsour.2006.07.063

Yusnitati, Anindita, H.N., Adha, A., Septriana, D., Priambodo, T.B., Hastuti, Z.D., Santoso, E., Wulandari, W., Zuldian, P., Primeia, S., Baruji, T., Yurismono, H., Prasetyo, D.H., Murti, S.D.S., Senda, S.P., and Saputra, H., 2024. “Biohydrogen production from palm oil mill effluent (POME) in Indonesia: Potential, challenges, and prospects.” Int. J. Hydrogen Energy 138, 1315-1335. https://doi.org/10.1016/j.ijhydene.2024.11.277

Zhang, W., Xu, D., Zhao, Y., Gao, D., Xie, Z., Zhang, X., Wu, B., Huang, T., and Peng, L., 2025. “Enhancing electricity generation and pollutant degradation in microbial fuel cells using cyanobacteria-derived biochar electrodes.” Bioresour. Technol. 418, 132000. https://doi.org/10.1016/j.biortech.2024.132000

Zuli Pratiwi, W., Hadiyanto, H., Purwanto, P., and Nur Fadlilah, M., 2020. “Bioelectricity production from tofu wastewater using microbial fuel cells with microalgae Spirulina sp as catholyte.” E3S Web Conf. 202. https://doi.org/10.1051/e3sconf/202020208007

Published
2025-12-31
How to Cite
Harimawan, A., Suryaga, K. Z., Saing, P. E., Baihaqi, B., Aslan, C., Devianto, H., & Shofinita, D. (2025). Renewable Electricity Production from Tofu Wastewater and Palm Oil Mill Effluent (POME) via Microbial Fuel Cell. ASEAN Journal of Chemical Engineering, 25(3), 586-602. https://doi.org/10.22146/ajche.21637
Section
Articles