Cellulose-Based Materials for Neural Tissue Engineering: From Scaffolds to Interfaces - A Review

  • Mohamed Hasaan Hussain School of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor
  • Muhammad Huzaimi Haron Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000 Sungai Buloh, Selangor
  • Norazah Abd Rahman Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor
  • Huey Ling Tan Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor
  • Lay Kek Teh Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
  • Norbert Radacsi School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, United Kingdom
  • Greg M. Harris Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
  • Noor Fitrah Abu Bakar Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor
Keywords: Cellulose-based Biomaterials, Drug Delivery Conductive Scaffolds, Nerve Conduits, Neural Tissue Engineering, Neuronal Interfaces

Abstract

Cellulose and its derivatives have emerged as versatile natural polymer platforms for neural tissue engineering due to their intrinsic biocompatibility, low cytotoxicity, and tunable biodegradability. Recent advances demonstrate that cellulose-based materials can be engineered to reproduce key structural and physicochemical features of the neural extracellular matrix, including polysaccharide-rich architectures and fibrillar topographies that support neuronal adhesion, alignment, and network formation. Bacterial cellulose, nanocrystalline cellulose, methylcellulose, ethyl cellulose, and their composite systems exhibit hydrogel-forming capability and abundant chemically active functional groups, enabling chemical modification, injectability, and controlled delivery of bioactive agents. Importantly, the incorporation of conductive fillers or chemical modification strategies has enabled electrically active cellulose-based scaffolds with conductivities spanning approximately 7.8 × 10⁻⁷ to 0.49 S cm⁻¹, while largely preserving cytocompatibility, positioning these materials as promising candidates for electrically responsive scaffolds and long-term neuronal interfaces. Despite these advances, challenges remain in achieving precise control over mechanical properties, degradation kinetics, and long-term electrical stability under physiological conditions. This review critically examines the progress in cellulose-derived materials for neural tissue engineering and neuronal interface fabrication, with an emphasis on material composition, fabrication methodologies, structure-property-function relationships, and current limitations, and outlines future directions for the rational design of multifunctional cellulose-based neural biomaterials.

References

Adcock, K.S., Hulsey, D.R., Danaphongse, T., Haider, Z., Morrison, R.A., Kilgard, M.P., and Hays, S.A., 2021. “Radial nerve injury causes long-lasting forelimb sensory impairment and motor dysfunction in rats.” PAIN Reports 6, e957. https://doi.org/10.1097/PR9.0000000000000957

Amini, S., Salehi, H., Setayeshmehr, M., and Ghorbani, M., 2021. “Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages.” Polym. Adv. Technol. 32, 2267–2289. https://doi.org/10.1002/pat.5263

Andersen, R.A., Hwang, E.J., and Mulliken, G.H., 2010. “Cognitive neural prosthetics.” Annu. Rev. Psychol. 61, 169–190. https://doi.org/10.1146/annurev.psych.093008.100503

Anghel, N., Dinu, V.M., Verestiuc, L., and Spiridon, I.A., 2021. “Transcutaneous drug delivery systems based on collagen/polyurethane composites reinforced with cellulose.” Polymers 13, 1845. https://doi.org/10.3390/polym13111845

Arzaghi, H., Adel, B., Jafari, H., Askarian-Amiri, S., Shiralizadeh Dezfuli, A., Akbarzadeh, A., and Pazoki-Toroudi, H., 2020. “Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review.” Rev. Neurosci. 31, 843–872. https://doi.org/10.1515/revneuro-2020-0008

BaoLin, G., and Ma, P.X., 2014. “Synthetic biodegradable functional polymers for tissue engineering: a brief review.” Sci. China. Chem. 57, 490–500. https://doi.org/10.1007/s11426-014-5086-y

Bettinger, C.J., Ecker, M., Yoshida Kozai, T.D., Malliaras, G.G., Meng, E., and Voit, W., 2020. “Recent advances in neural interfaces—Materials chemistry to clinical translation.” MRS Bull. 45, 655–668. https://doi.org/10.1557/mrs.2020.195

Bhattarai, D., Aguilar, L., Park, C., and Kim, C., 2018. “A Review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering.” Membranes 8, 62. https://doi.org/10.3390/membranes8030062

Binnetoglu, A., Demir, B., Akakin, D., Kervancioglu Demirci, E., and Batman, C., 2020. “Bacterial cellulose tubes as a nerve conduit for repairing complete facial nerve transection in a rat model.” Eur. Arch. Oto-Rhino-Laryngology 277, 277–283. https://doi.org/10.1007/s00405-019-05637-9

Birbeck, G.L., Meyer, A.-C., and Ogunniyi, A., 2015. “Nervous system disorders across the life course in resource-limited settings.” Nature 527, S167–S171. https://doi.org/10.1038/nature16031

Blennow, K., Brody, D.L., Kochanek, P.M., Levin, H., McKee, A., Ribbers, G.M., Yaffe, K., and Zetterberg, H., 2016. “Traumatic brain injuries.” Nat. Rev. Dis. Prim. 2, 16084. https://doi.org/10.1038/nrdp.2016.84

Boni, R., Ali, A., Shavandi, A., and Clarkson, A.N., 2018. “Current and novel polymeric biomaterials for neural tissue engineering.” J. Biomed. Sci. 25, 90. https://doi.org/10.1186/s12929-018-0491-8

Calori, I.R., Braga, G., de Jesus, P. da C.C., Bi, H., and Tedesco, A.C., 2020. “Polymer scaffolds as drug delivery systems.” Eur. Polym. J. 129, 109621. https://doi.org/10.1016/j.eurpolymj.2020.109621

Chan, B.P., and Leong, K.W., 2008. “Scaffolding in tissue engineering: general approaches and tissue-specific considerations.” Eur. Spine J. 17, 467–479. https://doi.org/10.1007/s00586-008-0745-3

Chang, W., Shah, M.B., Zhou, G., Walsh, K., Rudraiah, S., Kumbar, S.G., and Yu, X., 2020. “Polymeric nanofibrous nerve conduits coupled with laminin for peripheral nerve regeneration.” Biomed. Mater. 15, 035003. https://doi.org/10.1088/1748-605X/ab6994

Chen, C., Bai, X., Ding, Y., and Lee, I.-S., 2019. “Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering.” Biomater. Res. 23, 25. https://doi.org/10.1186/s40824-019-0176-8

Chen, C., Zhang, T., Zhang, Q., Feng, Z., Zhu, C., Yu, Y., Li, K., Zhao, M., Yang, J., Liu, J., and Sun, D., 2015. “Three-Dimensional BC/PEDOT Composite Nanofibers with High Performance for Electrode–Cell Interface.” ACS Appl. Mater. Interfaces 7, 28244–28253. https://doi.org/10.1021/acsami.5b07273

Ciolacu, D.E., Nicu, R., and Ciolacu, F., 2020. “Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems.” Materials 13, 5270. https://doi.org/10.3390/ma13225270

Couvrette, L.J., Walker, K.L.A., Bui, T. V., and Pelling, A.E., 2023. “Plant cellulose as a substrate for 3D neural stem cell culture.” Bioengineering 10, 1309. https://doi.org/10.3390/bioengineering10111309

de la Oliva, N., Navarro, X., and del Valle, J., 2018. “Time course study of long-term biocompatibility and foreign body reaction to intraneural polyimide-based implants.” J. Biomed. Mater. Res. Part A 106, 746–757. https://doi.org/10.1002/jbm.a.36274

Dong, C., and Lv, Y., 2016. “Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives.” Polymers 8, 42. https://doi.org/10.3390/polym8020042

Du, J., Chen, H., Qing, L., Yang, X., and Jia, X., 2018. “Biomimetic neural scaffolds: a crucial step towards optimal peripheral nerve regeneration.” Biomater. Sci. 6, 1299–1311. https://doi.org/10.1039/C8BM00260F

Du, J., Tan, E., Kim, H.J., Zhang, A., Bhattacharya, R., and Yarema, K.J., 2014. “Comparative evaluation of chitosan, cellulose acetate, and polyethersulfone nanofiber scaffolds for neural differentiation.” Carbohydr. Polym. 99, 483–490. https://doi.org/10.1016/j.carbpol.2013.08.050

Dutta, S.D., Patel, D.K., and Lim, K.-T., 2019. “Functional cellulose-based hydrogels as extracellular matrices for tissue engineering.” J. Biol. Eng. 13, 55. https://doi.org/10.1186/s13036-019-0177-0

Echeverria Molina, M.I., Malollari, K.G., and Komvopoulos, K., 2021. “Design challenges in polymeric scaffolds for tissue engineering.” Front. Bioeng. Biotechnol, 9, 1–29. https://doi.org/10.3389/fbioe.2021.617141

Eskens, O., Villani, G., and Amin, S., 2020. “Rheological investigation of thermoresponsive alginate-methylcellulose gels for epidermal growth factor formulation.” Cosmetics 8, 3. https://doi.org/10.3390/cosmetics8010003

Farahani, H., Barati, A., Arjomandzadegan, M., and Vatankhah, E., 2020. “Nanofibrous cellulose acetate/gelatin wound dressing endowed with antibacterial and healing efficacy using nanoemulsion of Zataria multiflora.” Int. J. Biol. Macromol. 162, 762–773. https://doi.org/10.1016/j.ijbiomac.2020.06.175

Fattahi, P., Yang, G., Kim, G., and Abidian, M.R., 2014. “A Review of Organic and inorganic biomaterials for neural interfaces.” Adv. Mater. 26, 1846–1885. https://doi.org/10.1002/adma.201304496

Fu, L.-H., Qi, C., Ma, M.-G., and Wan, P., 2019. “Multifunctional cellulose-based hydrogels for biomedical applications.” J. Mater. Chem. B 7, 1541–1562. https://doi.org/10.1039/C8TB02331J

Garg, T., Singh, O., Arora, S., and Murthy, R.S.R., 2012. “Scaffold: A Novel carrier for cell and drug delivery.” Crit. Rev. Ther. Drug Carr. Syst. 29, 1–63. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v29.i1.10

Geisel, N., Clasohm, J., Shi, X., Lamboni, L., Yang, J., Mattern, K., Yang, G., Schäfer, K.-H., and Saumer, M., 2016. “Microstructured multilevel bacterial cellulose allows the guided growth of neural stem cells.” Small 12, 5407–5413. https://doi.org/10.1002/smll.201601679

Geuna, S., Tos, P., and Battiston, B., 2012. “Emerging issues in peripheral nerve repair.” Neural Regen. Res. 7, 2267–2272. https://doi.org/10.3969/j.issn.1673-5374.2012.29.004

Giza, C.C., and Hovda, D.A., 2001. “The neurometabolic cascade of concussion.” J. Athl. Train. 36, 228–235.

Gorgieva, S., and Trček, J., 2019. “Bacterial cellulose: Production, modification and perspectives in biomedical applications.” Nanomaterials 9, 1352. https://doi.org/10.3390/nano9101352

Gorman, A.M., 2008. “Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling.” J. Cell. Mol. Med. 12, 2263–2280. https://doi.org/10.1111/j.1582-4934.2008.00402.x

Gunasekera, B., Saxena, T., Bellamkonda, R., and Karumbaiah, L., 2015. “Intracortical recording interfaces: Current Challenges to chronic recording function.” ACS Chem. Neurosci. 6, 68–83. https://doi.org/10.1021/cn5002864

Guo, B., and Ma, P.X., 2018. “Conducting Polymers for tissue engineering.” Biomacromolecules 19, 1764–1782. https://doi.org/10.1021/acs.biomac.8b00276

Guo, R., Li, J., Chen, C., Xiao, M., Liao, M., Hu, Y., Liu, Y., Li, D., Zou, J., Sun, D., Torre, V., Zhang, Q., Chai, R., and Tang, M., 2021. “Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation.” Colloids Surf. B Biointerfaces 200, 111590. https://doi.org/10.1016/j.colsurfb.2021.111590

Gupta, D., Tator, C.H., and Shoichet, M.S., 2006. “Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord.” Biomater. 27, 2370–2379. https://doi.org/10.1016/j.biomaterials.2005.11.015

Hatsopoulos, N.G., and Donoghue, J.P., 2009. “The science of neural interface systems.” Annu. Rev. Neurosci. 32, 249–266. https://doi.org/10.1146/annurev.neuro.051508.135241

Hickey, R.J., and Pelling, A.E., 2019. “Cellulose biomaterials for tissue engineering.” Front. Bioeng. Biotechnol. 7, 1–15. https://doi.org/10.3389/fbioe.2019.00045

Hidayatulloh, I., Abdulloh, S.H., and Lidya Elizabeth, 2025. “A one-pot method for the synthesis of nanocellulose from palm oil empty bunches using Fe-Cr combination catalyst.” ASEAN J. Chem. Eng. 25, 11–22. https://doi.org/10.22146/ajche.12037

Ho, M.T., Teal, C.J., and Shoichet, M.S., 2019. “A hyaluronan/methylcellulose-based hydrogel for local cell and biomolecule delivery to the central nervous system.” Brain Res. Bull. 148, 46–54. https://doi.org/10.1016/j.brainresbull.2019.03.005

Homma, I., Isogai, T., Saito, T., and Isogai, A., 2013. “Degradation of TEMPO-oxidized cellulose fibers and nanofibrils by crude cellulase.” Cellulose 20, 795–805. https://doi.org/10.1007/s10570-013-9872-z

Hou, Y., Wang, X., Yang, J., Zhu, R., Zhang, Z., and Li, Y., 2018. “Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold.” J. Biomed. Mater. Res. Part A 106, 1288–1298. https://doi.org/10.1002/jbm.a.36330

Hsu, H.H., and Zhong, W., 2019. “Nanocellulose-based conductive membranes for free-standing supercapacitors: A review.” Membranes 9, 74. https://doi.org/10.3390/membranes9060074

Huang, Z., Kankowski, S., Ertekin, E., Almog, M., Nevo, Z., Rochkind, S., and Haastert-Talini, K., 2021. “Modified hyaluronic acid-laminin-hydrogel as luminal filler for clinically approved hollow nerve guides in a rat critical defect size model.” Int. J. Mol. Sci. 22, 6554. https://doi.org/10.3390/ijms22126554

Innala, M., Riebe, I., Kuzmenko, V., Sundberg, J., Gatenholm, P., Hanse, E., and Johannesson, S., 2014. “3D Culturing and differentiation of SH-SY5Y neuroblastoma cells on bacterial nanocellulose scaffolds.” Artif. Cells, Nanomedicine, Biotechnol. 42, 302–308. https://doi.org/10.3109/21691401.2013.821410

Jarkov, V., Califano, D., Tsikriteas, Z.M., Bowen, C.R., Adams, C., and Khanbareh, H., 2025. “3D piezoelectric cellulose composites as advanced multifunctional implants for neural stem cell transplantation.” Cell Reports Phys. Sci. 6, 102368. https://doi.org/10.1016/j.xcrp.2024.102368

Jonsson, M., Brackmann, C., Puchades, M., Brattås, K., Ewing, A., Gatenholm, P., and Enejder, A., 2015. “Neuronal networks on nanocellulose scaffolds.” Tissue Eng. Part C Methods 21, 1162–1170. https://doi.org/10.1089/ten.tec.2014.0602

Kamel, S., and A. Khattab, T., 2020. “Recent advances in cellulose-based biosensors for medical diagnosis.” Biosensors 10, 67. https://doi.org/10.3390/bios10060067

Kim, D., Park, S., Jo, I., Kim, S.-M., Kang, D.H., Cho, S.-P., Park, J.B., Hong, B.H., and Yoon, M.-H., 2017. “Multiscale modulation of nanocrystalline cellulose hydrogel via nanocarbon hybridization for 3D neuronal bilayer formation.” Small 13, 1700331. https://doi.org/10.1002/smll.201700331

Kim, H., Yi, J.-Y., Kim, B.-G., Song, J.E., Jeong, H.-J., and Kim, H.R., 2020. “Development of cellulose-based conductive fabrics with electrical conductivity and flexibility.” PLoS One 15, e0233952. https://doi.org/10.1371/journal.pone.0233952

Ko, C.-H., Shie, M.-Y., Lin, J.-H., Chen, Y.-W., Yao, C.-H., and Chen, Y.-S., 2017. “Biodegradable bisvinyl sulfonemethyl-crosslinked gelatin conduit promotes regeneration after peripheral nerve injury in adult rats.” Sci. Rep. 7, 17489. https://doi.org/10.1038/s41598-017-17792-2

Koffler, J., Zhu, W., Qu, X., Platoshyn, O., Dulin, J.N., Brock, J., Graham, L., Lu, P., Sakamoto, J., Marsala, M., Chen, S., and Tuszynski, M.H., 2019. “Biomimetic 3D-printed scaffolds for spinal cord injury repair.” Nat. Med. 25, 263–269. https://doi.org/10.1038/s41591-018-0296-z

Kornfeld, T., Vogt, P.M., and Radtke, C., 2019. “Nerve grafting for peripheral nerve injuries with extended defect sizes.” Wiener Medizinische Wochenschrift 169, 240–251. https://doi.org/10.1007/s10354-018-0675-6

Kuzmenko, V., Kalogeropoulos, T., Thunberg, J., Johannesson, S., Hägg, D., Enoksson, P., and Gatenholm, P., 2016. “Enhanced growth of neural networks on conductive cellulose-derived nanofibrous scaffolds.” Mater. Sci. Eng. C 58, 14–23. https://doi.org/10.1016/j.msec.2015.08.012

Langert, K.A., and Brey, E.M., 2018. “Strategies for Targeted Delivery to the Peripheral Nerve.” Front. Neurosci. 12, 1–10. https://doi.org/10.3389/fnins.2018.00887

Levy, I., and Shoseyov, O., 2002. “Cellulose-binding domains.” Biotechnol. Adv. 20, 191–213. https://doi.org/10.1016/S0734-9750(02)00006-X

Li, S.-T., Archibald, S.J., Krarup, C., and Madison, R.D., 1992. “Peripheral nerve repair with collagen conduits.” Clin. Mater. 9, 195–200. https://doi.org/10.1016/0267-6605(92)90100-8

Li, S., 2022. “Advances in CNS repair, regeneration, and neuroplasticity: From basic mechanisms to therapeutic strategies.” Front. Cell. Neurosci. 16, 1–5. https://doi.org/10.3389/fncel.2022.898546

Liu, W., Du, H., Zhang, M., Liu, K., Liu, H., Xie, H., Zhang, X., and Si, C., 2020. “Bacterial cellulose-based composite scaffolds for biomedical applications: A review.” ACS Sustain. Chem. Eng. 8, 7536–7562. https://doi.org/10.1021/acssuschemeng.0c00125

Liyanage, S., Acharya, S., Parajuli, P., Shamshina, J.L., and Abidi, N., 2021. “Production and surface modification of cellulose bioproducts.” Polymers 13, 3433. https://doi.org/10.3390/polym13193433

Lotti, F., Ranieri, F., Vadalà, G., Zollo, L., and Di Pino, G., 2017. “Invasive intraneural interfaces: Foreign body reaction issues.” Front. Neurosci. 11, 1–14. https://doi.org/10.3389/fnins.2017.00497

Luo, B., Huang, J., Lu, L., Hu, X., Luo, Z., and Li, M., 2014. “Electrically induced brain-derived neurotrophic factor release from schwann cells.” J. Neurosci. Res. 92, 893–903. https://doi.org/10.1002/jnr.23365

Luo, L., Gan, L., Liu, Y., Tian, W., Tong, Z., Wang, X., Huselstein, C., and Chen, Y., 2015. “Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect.” Biochem. Biophys. Res. Commun. 457, 507–513. https://doi.org/10.1016/j.bbrc.2014.12.121

Luttikhuizen, D.T., van Amerongen, M.J., de Feijter, P.C., Petersen, A.H., Harmsen, M.C., and van Luyn, M.J.A., 2006. “The correlation between difference in foreign body reaction between implant locations and cytokine and MMP expression.” Biomater. 27, 5763–5770. https://doi.org/10.1016/j.biomaterials.2006.07.004

Madhusudanan, P., Raju, G., and Shankarappa, S., 2020. “Hydrogel systems and their role in neural tissue engineering.” J. R. Soc. Interface 17, 20190505. https://doi.org/10.1098/rsif.2019.0505

Manoukian, O.S., Rudraiah, S., Arul, M.R., Bartley, J.M., Baker, J.T., Yu, X., and Kumbar, S.G., 2021. “Biopolymer-nanotube nerve guidance conduit drug delivery for peripheral nerve regeneration: In vivo structural and functional assessment.” Bioact. Mater. 6, 2881–2893. https://doi.org/10.1016/j.bioactmat.2021.02.016

Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O., Pham, H.M., and Tran, S.D., 2019. “Smart hydrogels in tissue engineering and regenerative medicine.” Materials 12, 3323. https://doi.org/10.3390/ma12203323

Marino, A., Baronio, M., Buratti, U., Mele, E., and Ciofani, G., 2021. “Porous optically transparent cellulose acetate scaffolds for biomimetic blood-brain barrierin vitro models.” Front. Bioeng. Biotechnol. 9, 1–12. https://doi.org/10.3389/fbioe.2021.630063

Martin, B.C., Minner, E.J., Wiseman, S.L., Klank, R.L., and Gilbert, R.J., 2008. “Agarose and methylcellulose hydrogel blends for nerve regeneration applications.” J. Neural Eng. 5, 221–231. https://doi.org/10.1088/1741-2560/5/2/013

Menorca, R.M.G., Fussell, T.S., and Elfar, J.C., 2013. “Nerve physiology.” Hand Clin. 29, 317–330. https://doi.org/10.1016/j.hcl.2013.04.002

Modulevsky, D.J., Lefebvre, C., Haase, K., Al-Rekabi, Z., and Pelling, A.E., 2014. “Apple derived cellulose scaffolds for 3D mammalian cell culture.” PLoS One 9, e97835. https://doi.org/10.1371/journal.pone.0097835

Moore, A., Wagner, I., and Fox, I., 2015. “Principles of nerve repair in complex wounds of the upper extremity.” Semin. Plast. Surg. 29, 040–047. https://doi.org/10.1055/s-0035-1544169

Moujalled, D., Strasser, A., and Liddell, J.R., 2021. “Molecular mechanisms of cell death in neurological diseases.” Cell Death Differ. 28, 2029–2044. https://doi.org/10.1038/s41418-021-00814-y

Mu, H., Wang, Y., Wei, H., Lu, H., Feng, Z., Yu, H., Xing, Y., and Wang, H., 2018. “Collagen peptide modified carboxymethyl cellulose as both antioxidant drug and carrier for drug delivery against retinal ischaemia/reperfusion injury.” J. Cell. Mol. Med. 22, 5008–5019. https://doi.org/10.1111/jcmm.13768

Nagappan, P.G., Chen, H., and Wang, D.-Y., 2020. “Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury.” Mil. Med. Res. 7, 30. https://doi.org/10.1186/s40779-020-00259-3

Nair, A., Chauhan, P., Saha, B., and Kubatzky, K.F., 2019. “Conceptual evolution of cell signaling.” Int. J. Mol. Sci. 20, 3292. https://doi.org/10.3390/ijms20133292

Nazarpak, M.H., Entekhabi, E., Najafi, F., Rahmani, M., and Solati Hashjin, M., 2019. “Synthesis and characterization of conductive neural tissue engineering scaffolds based on urethane-polycaprolactone.” Int. J. Polym. Mater. Polym. Biomater. 68, 827–835. https://doi.org/10.1080/00914037.2018.1513933

Orelma, H., Hokkanen, A., Leppänen, I., Kammiovirta, K., Kapulainen, M., and Harlin, A., 2020. “Optical cellulose fiber made from regenerated cellulose and cellulose acetate for water sensor applications.” Cellulose 27, 1543–1553. https://doi.org/10.1007/s10570-019-02882-3

Ostrakhovitch, E.A., Byers, J.C., O’Neil, K.D., and Semenikhin, O.A., 2012. “Directed differentiation of embryonic P19 cells and neural stem cells into neural lineage on conducting PEDOT–PEG and ITO glass substrates.” Arch. Biochem. Biophys. 528, 21–31. https://doi.org/10.1016/j.abb.2012.08.006

Palanisamy, S., Ramaraj, S.K., Chen, S.-M., Yang, T.C.K., Yi-Fan, P., Chen, T.-W., Velusamy, V., and Selvam, S., 2017. “A novel laccase biosensor based on laccase immobilized graphene-cellulose microfiber composite modified screen-printed carbon electrode for sensitive determination of catechol.” Sci. Rep. 7, 41214. https://doi.org/10.1038/srep41214

Pandey, J.K., Takagi, H., Nakagaito, A.N., Saini, D.R., and Ahn, S.-H., 2012. “An overview on the cellulose based conducting composites.” Compos. Part B Eng. 43, 2822–2826. https://doi.org/10.1016/j.compositesb.2012.04.045

Peng, S., Zheng, Y., Wu, J., Wu, Y., Ma, Y., Song, W., and Xi, T., 2012. “Preparation and characterization of degradable oxidized bacterial cellulose reacted with nitrogen dioxide.” Polym. Bull. 68, 415–423. https://doi.org/10.1007/s00289-011-0550-8

Phillips, C., Blakey, G., and Essick, G.K., 2011. “Sensory retraining: A cognitive behavioral therapy for altered sensation.” Atlas Oral Maxillofac. Surg. Clin. 19, 109–118. https://doi.org/10.1016/j.cxom.2010.11.006

Pooshidani, Y., Zoghi, N., Rajabi, M., Haghbin Nazarpak, M., and Hassannejad, Z., 2021. “Fabrication and evaluation of porous and conductive nanofibrous scaffolds for nerve tissue engineering.” J. Mater. Sci. Mater. Med. 32, 46. https://doi.org/10.1007/s10856-021-06519-5

Porzionato, A., Barbon, S., Stocco, E., Dalzoppo, D., Contran, M., De Rose, E., Parnigotto, P.P., Macchi, V., Grandi, C., and De Caro, R., 2019. “Development of oxidized polyvinyl alcohol-based nerve conduits coupled with the ciliary neurotrophic factor.” Materials 12, 1996. https://doi.org/10.3390/ma12121996

Pranolo, S.H., Waluyo, J., Ikbar, R., Damayanthy, R.A., Lestary, S., and Qadarusman, M.L., 2023. “Application of nanocrystal cellulose based on empty palm oil fruit bunch as glucose biosensing.” ASEAN J. Chem. Eng. 23, 360. https://doi.org/10.22146/ajche.83422

Qian, Y., Zhao, X., Han, Q., Chen, W., Li, H., and Yuan, W., 2018. “An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration.” Nat. Commun. 9, 323. https://doi.org/10.1038/s41467-017-02598-7

Qu, J., Ouyang, L., Kuo, C., and Martin, D.C., 2016. “Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films.” Acta Biomater. 31, 114–121. https://doi.org/10.1016/j.actbio.2015.11.018

Raghavendran, V., Asare, E., and Roy, I., 2020. Bacterial cellulose: Biosynthesis, production, and applications. in: Advances in Microbial Physiology. Elsevier Ltd., pp. 89–138. https://doi.org/10.1016/bs.ampbs.2020.07.002

Rasoulzadeh, M., and Namazi, H., 2017. “Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent.” Carbohydr. Polym. 168, 320–326. https://doi.org/10.1016/j.carbpol.2017.03.014

Redolfi Riva, E., and Micera, S., 2021. “Progress and challenges of implantable neural interfaces based on nature-derived materials.” Bioelectron. Med. 7, 6. https://doi.org/10.1186/s42234-021-00067-7

Redondo-Gómez, C., Leandro-Mora, R., Blanch-Bermúdez, D., Espinoza-Araya, C., Hidalgo-Barrantes, D., and Vega-Baudrit, J., 2020. “Recent advances in carbon nanotubes for nervous tissue regeneration.” Adv. Polym. Technol. 2020, 1–16. https://doi.org/10.1155/2020/6861205

Rezaei, A., Nasirpour, A., and Fathi, M., 2015. “Application of cellulosic nanofibers in food science using electrospinning and its potential risk.” Compr. Rev. Food Sci. Food Saf. 14, 269–284. https://doi.org/10.1111/1541-4337.12128

Saberi, A., Jabbari, F., Zarrintaj, P., Saeb, M.R., and Mozafari, M., 2019. “Electrically conductive materials: opportunities and challenges in tissue engineering.” Biomol. 9, 448. https://doi.org/10.3390/biom9090448

Sacco, R.L., Kasner, S.E., Broderick, J.P., Caplan, L.R., Connors, J.J. (Buddy), Culebras, A., Elkind, M.S.V., George, M.G., Hamdan, A.D., Higashida, R.T., Hoh, B.L., Janis, L.S., Kase, C.S., Kleindorfer, D.O., Lee, J.-M., Moseley, M.E., Peterson, E.D., Turan, T.N., Valderrama, A.L., and Vinters, H. V., 2013. “An Updated definition of stroke for the 21st century.” Stroke 44, 2064–2089. https://doi.org/10.1161/STR.0b013e318296aeca

Seddiqi, H., Oliaei, E., Honarkar, H., Jin, J., Geonzon, L.C., Bacabac, R.G., and Klein-Nulend, J., 2021. “Cellulose and its derivatives: towards biomedical applications.” Cellulose 28, 1893–1931. https://doi.org/10.1007/s10570-020-03674-w

Selyanchyn, O., Selyanchyn, R., and Lyth, S.M., 2020. “A review of proton conductivity in cellulosic materials.” Front. Energy Res. 8, 1–17. https://doi.org/10.3389/fenrg.2020.596164

Simsek, I., Unal, S., Cekic, E., Dogan, E., Kirazli, O., and Harman, F., 2025. “Mesenchymal stem cell‐engrafted bacterial cellulose and graphene oxide scaffolds enhance peripheral nerve repair in a rat model.” Macromol. Mater. Eng. 310, 1–13. https://doi.org/10.1002/mame.202500165

Singh, M., Ray, A.R., and Vasudevan, P., 1982. “Biodegradation studies on periodate oxidized cellulose.” Biomater. 3, 16–20. https://doi.org/10.1016/0142-9612(82)90055-2

Sood, A., Gupta, A., and Agrawal, G., 2021. “Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications.” Carbohydr. Polym. Technol. Appl. 2, 100067. https://doi.org/10.1016/j.carpta.2021.100067

Stratton, S., Shelke, N.B., Hoshino, K., Rudraiah, S., and Kumbar, S.G., 2016. “Bioactive polymeric scaffolds for tissue engineering.” Bioact. Mater. 1, 93–108. https://doi.org/10.1016/j.bioactmat.2016.11.001

Subramanian, A., Krishnan, U.M., and Sethuraman, S., 2009. “Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration.” J. Biomed. Sci. 16, 108. https://doi.org/10.1186/1423-0127-16-108

Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M., and Gatenholm, P., 2005. “Bacterial cellulose as a potential scaffold for tissue engineering of cartilage.” Biomater. 26, 419–431. https://doi.org/10.1016/j.biomaterials.2004.02.049

Szostak, K.M., Grand, L., and Constandinou, T.G., 2017. “Neural Interfaces for intracortical recording: Requirements, fabrication methods, and characteristics.” Front. Neurosci. 11. https://doi.org/10.3389/fnins.2017.00665

Szynkaruk, M., Kemp, S.W.P., Wood, M.D., Gordon, T., and Borschel, G.H., 2013. “Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction.” Tissue Eng. Part B Rev. 19, 83–96. https://doi.org/10.1089/ten.teb.2012.0275

Tate, M., 2001. “Biocompatibility of methylcellulose-based constructs designed for intracerebral gelation following experimental traumatic brain injury.” Biomater. 22, 1113–1123. https://doi.org/10.1016/S0142-9612(00)00348-3

Thabet, A.M., Kottapally, M., and Hemphill, J.C., 2017. Management of intracerebral hemorrhage. in: Handbook of Clinical Neurology. Elsevier. pp. 177–194. https://doi.org/10.1016/B978-0-444-63600-3.00011-8

Tsai, E.C., Dalton, P.D., Shoichet, M.S., and Tator, C.H., 2006. “Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.” Biomater. 27, 519–533. https://doi.org/10.1016/j.biomaterials.2005.07.025

Tsiapla, A.-R., Karagkiozaki, V., Bakola, V., Pappa, F., Gkertsiou, P., Pavlidou, E., and Logothetidis, S., 2018. “Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants.” Beilstein J. Nanotechnol. 9, 1986–1994. https://doi.org/10.3762/bjnano.9.189

Unal, S., Arslan, S., Yilmaz, B.K., Oktar, F.N., Sengil, A.Z., and Gunduz, O., 2021. “Production and characterization of bacterial cellulose scaffold and its modification with hyaluronic acid and gelatin for glioblastoma cell culture.” Cellulose 28, 117–132. https://doi.org/10.1007/s10570-020-03528-5

Vázquez-Rivas, E., Desales-Guzmán, L.A., Pacheco-Sánchez, J.H., and Burillo-Amezcua, S.G., 2025. “Cellulose-based hybrid hydrogels for tissue engineering applications: A sustainable approach.” Gels 11, 438. https://doi.org/10.3390/gels11060438

Vijayavenkataraman, S., Kannan, S., Cao, T., Fuh, J.Y.H., Sriram, G., and Lu, W.F., 2019. “3D-printed PCL/PPy conductive scaffolds as three-dimensional porous nerve guide conduits (NGCs) for peripheral nerve injury repair.” Front. Bioeng. Biotechnol. 7, 1–14. https://doi.org/10.3389/fbioe.2019.00266

Wang, S., Guan, S., Xu, J., Li, W., Ge, D., Sun, C., Liu, T., and Ma, X., 2017. “Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/Gel scaffold for neural tissue engineering.” Biomater. Sci. 5, 2024–2034. https://doi.org/10.1039/C7BM00633K

Wang, X., Gu, X., Yuan, C., Chen, S., Zhang, P., Zhang, T., Yao, J., Chen, F., and Chen, G., 2004. “Evaluation of biocompatibility of polypyrrolein vitro andin vivo.” J. Biomed. Mater. Res. 68A, 411–422. https://doi.org/10.1002/jbm.a.20065

Wellman, S.M., Eles, J.R., Ludwig, K.A., Seymour, J.P., Michelson, N.J., McFadden, W.E., Vazquez, A.L., and Kozai, T.D.Y., 2018. “A materials roadmap to functional neural interface design.” Adv. Funct. Mater. 28, 1701269. https://doi.org/10.1002/adfm.201701269

Wells, M.R., Kraus, K., Batter, D.K., Blunt, D.G., Weremowitz, J., Lynch, S.E., Antoniades, H.N., and Hansson, H.-A., 1997. “Gel Matrix vehicles for growth factor application in nerve gap injuries repaired with tubes: A comparison of biomatrix, collagen, and methylcellulose.” Exp. Neurol. 146, 395–402. https://doi.org/10.1006/exnr.1997.6543

Wu, P., Zhao, Y., Chen, F., Xiao, A., Du, Q., Dong, Q., Ke, M., Liang, X., Zhou, Q., and Chen, Y., 2020. “Conductive hydroxyethyl cellulose/soy protein isolate/polyaniline conduits for enhancing peripheral nerve regeneration via electrical stimulation.” Front. Bioeng. Biotechnol. 8, 1–13. https://doi.org/10.3389/fbioe.2020.00709

Xu, D., Fan, L., Gao, L., Xiong, Y., Wang, Y., Ye, Q., Yu, A., Dai, H., Yin, Y., Cai, J., and Zhang, L., 2016. “Micro-nanostructured polyaniline assembled in cellulose matrix via interfacial polymerization for applications in nerve regeneration.” ACS Appl. Mater. Interfaces 8, 17090–17097. https://doi.org/10.1021/acsami.6b03555

Yang, J., Du, M., Wang, L., Li, S., Wang, G., Yang, X., Zhang, L., Fang, Y., Zheng, W., Yang, G., and Jiang, X., 2018. “Bacterial cellulose as a supersoft neural interfacing substrate.” ACS Appl. Mater. Interfaces 10, 33049–33059. https://doi.org/10.1021/acsami.8b12083

Yang, Z.-Y., Wang, W.-J., Shao, Z.-Q., Zhu, H.-D., Li, Y.-H., and Wang, F.-J., 2013. “The transparency and mechanical properties of cellulose acetate nanocomposites using cellulose nanowhiskers as fillers.” Cellulose 20, 159–168. https://doi.org/10.1007/s10570-012-9796-z

Ydens, E., Cauwels, A., Asselbergh, B., Goethals, S., Peeraer, L., Lornet, G., Almeida-Souza, L., Van Ginderachter, J.A., Timmerman, V., and Janssens, S., 2012. “Acute injury in the peripheral nervous system triggers an alternative macrophage response.” J. Neuroinflammation 9, 176. https://doi.org/10.1186/1742-2094-9-176

Ye, Q., Harmsen, M.C., van Luyn, M.J.A., and Bank, R.A., 2010. “The relationship between collagen scaffold cross-linking agents and neutrophils in the foreign body reaction.” Biomater. 31, 9192–9201. https://doi.org/10.1016/j.biomaterials.2010.08.049

Zamproni, L.N., Mundim, M.T.V. V., and Porcionatto, M.A., 2021. “Neurorepair and regeneration of the brain: A decade of bioscaffolds and engineered microtissue.” Front. Cell Dev. Biol. 9, 1–16. https://doi.org/10.3389/fcell.2021.649891

Zhang, Y., Wang, S., and Yang, P., 2020. “Effects of graphene-based materials on the behavior of neural stem cells.” J. Nanomater. 2020, 1–16. https://doi.org/10.1155/2020/2519105

Zhang, Y., Zhou, M., Dou, C., Ma, G., Wang, Y., Feng, N., Wang, W., and Fang, L., 2019. “Synthesis and biocompatibility assessment of polyaniline nanomaterials.” J. Bioact. Compat. Polym. 34, 16–24. https://doi.org/10.1177/0883911518809110

Zheng, L., Li, S., Luo, J., and Wang, X., 2020. “Latest advances on bacterial cellulose-based antibacterial materials as wound dressings.” Front. Bioeng. Biotechnol. 8, 1–15. https://doi.org/10.3389/fbioe.2020.593768

Published
2025-12-31
How to Cite
Hussain, M. H., Haron, M. H., Abd Rahman, N., Tan, H. L., Teh, L. K., Radacsi, N., M. Harris, G., & Abu Bakar, N. F. (2025). Cellulose-Based Materials for Neural Tissue Engineering: From Scaffolds to Interfaces - A Review. ASEAN Journal of Chemical Engineering, 25(3), 550-585. https://doi.org/10.22146/ajche.21477
Section
Articles