Production of Hydrogen with Electrolysis-Photovoltaic from Seawater Using Ni-Mo Electrodes Deposited at Cu (Ni-Mo/Cu)
Abstract
The energy crisis and environmental impacts of fossil fuels encourage the development of environmentally friendly alternative energy sources. Hydrogen is a promising candidate as a future energy carrier. This research aims to optimize hydrogen production through seawater electrolysis using Ni–Mo/Cu electrodes with a photovoltaic energy source. Ni–Mo/Cu electrodes were prepared via electrodeposition at a varied durations of 2, 4, and 6 minutes. Electrode characterization was conducted using X-Ray Diffraction (XRD) and Scanning Electron Microscope-Energy Dispersive X-Ray (SEM–EDX). Photovoltaic systems were designed using fuzzy logic to optimize solar energy absorption. The electrolysis process was carried out at voltages of 10–30 V. The results showed that a 4-minute electrodeposition produced the most significant Ni–Mo layer. The highest hydrogen production rate of 0.7417 cm³/s was obtained at 25 V using a Ni–Mo/Cu electrode. These findings demonstrate the feasibility of producing hydrogen from seawater using renewable energy sources under the studied conditions.
References
Arachman, F. D., Antony, F., and Rachmansyah, 2023. “Sistem kendali penggerak sel fotovoltaik menggunakan logika fuzzy dengan sensor lux berbasis internet of things.” J. Intell. Netw. IoT Global, 1(1), 33-38.
Avci, A. C. dan Toklu, E., 2022. “A new analysis of two phase flow on hydrogen production from water electrolysis.” Int. J. Hydrog. Energy, 47(11), 6986-6995. https://doi.org/10.1016/j.ijhydene.2021.03.180
Badea, Lestari, A.,Kurniasih, Y., Indah, D.R., and Ahmadi. 2022. “Pengaruh variasi jumlah elektroda dan jenis katalis terhadap produksi gas hidrogen pada elektrolisis air laut.” JPIn 5(2), 562-572.
Chi, J., & Yu, H., 2018. “Water electrolysis based on renewable energy for hydrogen production.” Chin. J. Catal. 39(3), 390–394. https://doi.org/10.1016/S1872-2067(17)62949-8
Cho, H. H., Strezov, V., Evans, T. J., 2022. “Environmental impact assessment of hydrogen production via steam methane reforming based on emissions data.” Energy Rep. 8, 13585-13595. https://doi.org/10.1016/j.egyr.2022.10.053
Finke, C.E., Leandri, H.F., Karumb, E.T., Zheng, D., Hoffmann, M.R., Fromer, N.A., 2021. ”Economically advantageous pathways for reducing greenhouse gas emissions from industrial hydrogen under common, current economic conditions.” Energy Environ. Sci. 14(3), 1517–1529. https://doi.org/10.1039/D0EE03768K
Gielen, D., Taibi, E., dan Miranda, R., 2019. A Renewable Energy Perspective. 2nd Ed. International Renewable Energy Agency. Abu Dhabi.
Herlambang, Y. D., Kurnianingsih, Anis R., and Fatahul A., 2020. “Model Experimental of Photovoltaic-Electrolyzer Fuel Cells as a Small-Scale Power.” J. Phys.: Conf. Ser. 1700 012100. https://doi.org/10.1088/1742-6596/1700/1/012100
House, J. E., & House, K. A. 2016. Hydrogen. In Descriptive Inorganic Chemistry, 3rd ed. Elsevier. pp. 111–121.
Huang X, Xu X, Luan X, and Cheng D., 2020. “CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction.” Nano. Energy 68, 104332. https://doi.org/10.1016/j.nanoen.2019.104332
Kim, Y. dan Lee, W. 2022. Seawater and Its Resources. Seawater Batteries. Green Energy and Technology. Springer, Singapore. 1-35.
Nairan A, Zou P, Liang C, Liu J, Wu D, Liu P, Yang C., 2019. “NiMo solid solution nanowire array electrodes for highly efficient hydrogen evolution reaction.” Adv. Funct. Mater. 29, 1903747. https://doi.org/10.1002/adfm.201903747
Nascimento, S. F., Antônio J. N. D., Guilherme MM. S., Hugo S. D., Luís H. L. L., Wilma A. G., 2023. “Characterization of niobia-alumina deposited by the sol-gel process on carbon steel.” Mater. Res. 21(3), e20170525. http://dx.doi.org/10.1590/1980-5373-MR-2017-0525
Nikolaidis, P. dan Poullikkas, A., 2017. “A comparative overview of hydrogen production processes.” Renew. Sustain. Energy Rev. 67, 597-611. https://doi.org/10.1016/j.rser.2016.09.044
Oraby, M. dan Shawqi A., 2024. “Green hydrogen production directly from seawater with no corrosion using a nonmetallic electrode: A novel solution and a proof of concept.” Int. J. Energy Res. 2, 1-11. https://doi.org/10.1155/2024/5576626
Prastuti, O., 2017. “Pengaruh komposisi air laut dan pasir laut sebagai sumber energi listrik.” J. Tek. Kim. Lingk. 1, 35-41.
Rahwanda, R., Putra, Y. S., dan Adriat, R., 2022. “Pemetaan dan estimasi potensi energi matahari di kota pontianak.” Prisma Fisika 10(3), 285 - 290.
Sangian, M. C., Mangindaan, G. M. C., dan Sangian, H. F., 2023. “Produksi hidrogen menggunakan teknik elektrolisis air dengan variabel kuat arus.“ JTEK. 12(1), 61-66.
Saputra, J., Toifur, M., Ishafit, dan Okimustaf., 2020. Pengaruh Waktu Deposisi pada Electroplating Cu/Ni Berbantuan Medan Magnet Sejajar. Universitas Ahmad Dahlan, Indonesia
Siddiqui, O., Dincer, I., 2019. “A well to pump life cycle environmental impact assessment of some hydrogen production routes.” Int. J. Hydrogen Energy 44, 5773–5786. https://doi.org/10.1016/j.ijhydene.2019.01.118
Srour, T., Kumar, K., Martin, V., Dubau, L., Mailard, F., Gilles, B., Dillet, J., Didierjean, S., Amoury, B., dan Le, T.D., 2024. “On the contact resistance between the anode and the porous transport layer in a proton exchange membrane water electrolyzer.” Int. J. Hydrogen Energy 58, 351-361. https://doi.org/10.1016/j.ijhydene.2024.01.134
Suliman MH, Adam A, Siddiqui MN, Yamani ZH, Qamar M., 2019. “Facile synthesis of ultrathin interconnected carbon nanosheets as a robust support for small and uniformly dispersed iron phosphide for the hydrogen evolution reaction.” Carbon 144, 764-71. https://doi.org/10.1016/j.carbon.2018.12.106
Yang, H., Hu, Y., Huang, D., Xiong, T., Li, M., Balogun, M-S., and Tong, Y., 2019. “Efficient hydrogen and oxygen evolution electrocatalysis by cobalt and phosphorus dual-doped vanadium nitridenanowires.” Mater. Today Chem. 11, 1-7. https://doi.org/10.1016/j.mtchem.2018.10.004
Yowanda, V.T., dan Lestari, A. D., 2021. “Studi potensi garam di utara khatulistiwa Kalimantan Barat.” JeLAST 8(2), 1-7.
Zhang, D. dan Ashraf, M. A., 2020. “Electrochemical fabrication of Ni–Mo nanostars with Pt-like catalytic activity for both electrochemical hydrogen and oxygen evolution reactions.” Int. J. Hydrogen Energy, 45(55), 30533-30546. https://doi.org/10.1016/j.ijhydene.2020.08.093
Copyright (c) 2025 ASEAN Journal of Chemical Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright holder for articles is ASEAN Journal of Chemical Engineering. Articles published in ASEAN J. Chem. Eng. are distributed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
Authors agree to transfer all copyright rights in and to the above work to the ASEAN Journal of Chemical Engineering Editorial Board so that the Editorial Board shall have the right to publish the work for non-profit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors’ personal use or for company use if the source and the journal copyright notice is indicated, and if the reproduction is not made for the purpose of sale.