Balancing Relief Gas and Assist Gas Flows for Efficient Flare Gas Combustion in Onshore Gas Facility

  • Marcelinus Christwardana Master Program of Energy, School of Postgraduate Studies, Diponegoro University, Semarang. 50241, Indonesia https://orcid.org/0000-0003-4084-1763
  • Heru Sugiarto Master Program of Energy, School of Postgraduate Studies, Diponegoro University, Semarang. 50241, Indonesia
  • W. Widayat Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang. 50275, Indonesia https://orcid.org/0000-0003-1906-2378
Keywords: Calorific Value, Carbon Dioxide, Environmental Compliance, Hydrogen Sulfide, Mixture Gas Ratio

Abstract

This study investigates the interplay between relief gas and assists gas flows in onshore gas facilities, focusing on their impact on flare gas combustion efficiency. The primary objectives of this study are to analyze how relief gas flow rate, CO₂ and H₂S compositions, and the mixed-gas flow ratio influence the assist gas requirement, the mixed-gas calorific value, the flare gas composition, and the overall gas mix ratio. Additionally, the study evaluates flare gas monitoring to ensure compliance with environmental regulations. The comprehensive analysis aims to enhance the understanding of these variables’ interactions and their effects on gas systems, contributing to improved industrial sustainability and efficiency. Increasing relief gas flow reduces assist gas demand, raises the mixed-gas calorific value and SO₂ concentration, and lowers CO₂ levels. Higher CO₂ content in the relief gas decreases the calorific value and increases CO₂ concentration without significantly affecting relief gas flow. Increasing H₂S content raises the calorific value and SO₂ concentration while reducing CO₂. A higher gas-mix flow ratio also lowers CO₂ and increases SO₂, with the minimum LHV of 300 BTU/SCF occurring at a ratio of 10.69. Monitoring results confirm that all flare emissions remain within government regulatory limits.

References

Abdollahi, F., Craig, I. G., & Neisiani, M., 2017. “CO2 capture from sulphur recovery unit tail gas by Shell Cansolv technology.” Energy Procedia 114, 6266-6271. https://doi.org/10.1016/j.egypro.2017.03.1765

Bai, Y. Z., Wang, P., & Jiang, J. C., 2014. “Determination of the minimum safe purge gas flow rate in flare systems with a velocity seal.” Chem. Technol. Fuel Oil 49, 474-481. https://doi.org/10.1007/s10553-014-0472-x

Beychok, M. R., 2005. Fundamentals of stack gas dispersion. MR Beychok.

Blackwood, T. R., 2000. “An evaluation of flare combustion efficiency using open-path Fourier transform infrared technology.” J. Air Waste Manage. Assoc. 50(10), 1714-1722. https://doi.org/10.1080/10473289.2000.10464206

Bonneuil, C., Choquet, P. L., & Franta, B., 2021. “Early warnings and emerging accountability: Total’s responses to global warming, 1971–2021.” Glob. Environ. Chang. 71, 102386. https://doi.org/10.1016/j.gloenvcha.2021.102386

Bunker, B., Dvorak, B., & Aly Hassan, A., 2023. “Thermal regeneration of activated carbon used as an adsorbent for hydrogen sulfide (H2S).” Sustainability 15(8), 6435. https://doi.org/10.3390/su15086435

Burtt, D. C., Corbin, D. J., Armitage, J. R., Crosland, B. M., Jefferson, A. M., Kopp, G. A., Johnson, M. R. 2022. “A methodology for quantifying combustion efficiencies and species emission rates of flares subjected to crosswind.” J. Energy Inst. 104, 124-132. https://doi.org/10.1016/j.joei.2022.07.005

Castineira, D., & Edgar, T. F., 2006. “CFD for simulation of steam-assisted and air-assisted flare combustion systems.” Energy Fuels 20(3), 1044-1056. https://doi.org/10.1021/ef050332v

Daun, K. J., & Spinti, J. P., 2025. “Techniques for measuring flare combustion efficiency and destruction removal efficiency: A review.” Prog. Energy Combust. Sci. 110, 101235. https://doi.org/10.1016/j.pecs.2025.101235

Denham, P., & Donnelly, A. 2015. Managing the Hazards of Flare Disposal Systems. Loss Prevention Bulletin, IChemE, p 28.

Desrina, R., Supriyadi, S., Lubad, A. M., & Mulyono, M., 2007. “Study on flaring system for sour gases in oil fields in Indonesia.” Scientific Contributions Oil and Gas 30(2), 18-23. https://doi.org/10.29017/SCOG.30.2.981

Du, F., & Nojabaei, B. 2019. “A review of gas injection in shale reservoirs: enhanced oil/gas recovery approaches and greenhouse gas control.” Energies 12(12), 2355.https://doi.org/10.3390/en12122355

Flagan, R. C., & Seinfeld, J. H., 2012. Fundamentals of air pollution engineering. Courier Corporation.

Frolicher, T. L., Winton, M., & Sarmiento, J. L., 2014. “Continued global warming after CO2 emissions stoppage.” Nat. Clim. Chang. 4(1), 40-44. https://doi.org/10.1038/nclimate2060

Gas Processors Association, 1986. Calculation of Gross Heating Value, Relative Density and Compressibility Factor for Natural Gas Mixtures from Compositional Analysis. GPA.

Halim, L., & Naa, C. F., 2019. “Desain Sistem Pendayaan Energi Listrik pada Rumah Kaca Pintar dengan Menggunakan Pembangkit Listrik Tenaga Surya.” RESISTOR 2(1), 43-50.

International, P. B. E., 2021. Operating Procedure for Unit 430 – Fuel Gas System. 1–138.

International, P. B. E., 2021. Operating Procedure for Unit 475 – LP Flare System. 1– 199.

Ismail, O. S., & Umukoro, G. E., 2016. “Modelling combustion reactions for gas flaring and its resulting emissions.” J. King Saud Univ. Eng. Sci. 28(2), 130-140. https://doi.org/10.1016/j.jksues.2014.02.003

Jasim, D., Mohammed, T., & Abid, M. F., 2022. “A review of the natural gas purification from acid gases by membrane.” ETJ. 40(03), 441-450. https://doi.org/10.30684/etj.v40i3.1983

Jokar, S. M., Wood, D. A., Sinehbaghizadeh, S., Parvasi, P., & Javanmardi, J., 2021. “Transformation of associated natural gas into valuable products to avoid gas wastage in the form of flaring.” J. Nat. Gas Sci. Eng. 94, 104078. https://doi.org/10.1016/j.jngse.2021.104078

Khalili Garakani, A., Iravaninia, M., & Nezhadfard, M, 2021. “A review on the potentials of flare gas recovery applications in Iran.” J. Clean. Prod. 279, 123345. https://doi.org/10.1016/j.jclepro.2020.123345

Liu, X., Han, G., Zeng, J., Liu, J., Li, X., & Boeckx, P., 2021. “The effects of clean energy production and urbanization on sources and transformation processes of nitrate in a subtropical river system: Insights from the dual isotopes of nitrate and Bayesian model.” J. Clean. Prod. 325, 129317. https://doi.org/10.1016/j.jclepro.2021.129317

Lou, H. H., Fang, J., Gai, H., Xu, R., & Lin, S., 2022. “A novel zone-based machine learning approach for the prediction of the performance of industrial flares.” Comput. Chem. Eng. 162, 107795. https://doi.org/10.1016/j.compchemeng.2022.107795

Martin, J., Lumbreras, J., & Rodríguez, M. E., 2003. Testing flare emission factors for flaring in refineries. In 12th Annual Emission Inventory Conference. p. 28.

Meo, M. S., & Abd Karim, M. Z., 2022. “The role of green finance in reducing CO2 emissions: An empirical analysis.” Borsa Istanb. Rev. 22(1), 169-178. https://doi.org/10.1016/j.bir.2021.03.002

Mirrezaei, M. A., 2019. “Impact of meteorological parameters on dispersion modeling of sulfur dioxide from gas flares (Case study: Sirri Island).” Iran. J. Energy Environ. 10(4), 288-295.

Motte, J., Alvarenga, R. A., Thybaut, J. W., & Dewulf, J., 2021. “Quantification of the global and regional impacts of gas flaring on human health via spatial differentiation.” Environ. Pollut. 291, 118213. https://doi.org/10.1016/j.envpol.2021.118213

Mousavi, S. S., Goudarzi, G., Sabzalipour, S., Rouzbahani, M. M., & Mobarak Hassan, E., 2021. “An evaluation of CO, CO2, and SO2 emissions during continuous and non-continuous operation in a gas refinery using the AERMOD.” Environ. Sci. Pollut. Res. 28(40), 56996-57008. https://doi.org/10.1007/s10661-025-14265-2

Obi, N., Akuirene, A., Bwititi, P., Adjene, J., & Nwose, E. U., 2021. “Community health perspective of gas flaring on communities in Delta region of Nigeria: narrative review.” Int. J. Sci. Rep. 7(3), 180-185. https://doi.org/10.18203/issn.2454-2156.IntJSciRep20210547

Olabi, A. G., & Abdelkareem, M. A., 2022. “Renewable energy and climate change.” Renew. Sustain. Energy Rev. 158, 112111. https://doi.org/10.1016/j.rser.2022.112111

Papailias, G., & Mavroidis, I., 2018. “Atmospheric emissions from oil and gas extraction and production in Greece.” Atmosphere 9(4), 152. https://doi.org/10.3390/atmos9040152

Parivazh, M. M., Mousavi, M., Naderi, M., Rostami, A., Dibaj, M., & Akrami, M., 2022. “The feasibility study, exergy, and exergoeconomic analyses of a novel flare gas recovery system.” Sustainability 14(15), 9612. https://doi.org/10.3390/su14159612

Peraturan ESDM, 2021. Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 30 Tahun 2021 tentang Tata Cara Penetapan Alokasi, Pemanfaatan, dan Harga Suar Gas.

Peraturan Pemerintah, 2021. Peraturan Pemerintah (PP) Republik Indonesia Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup.

Perry, J. H., 1950. Chemical Engineers' Handbook. McGraw-Hill, New York.

Pohl, J. H., Tichenor, B. A., Lee, J., & Payne, R., 1986. “Combustion efficiency of flares.” Combust. Sci. Tech. 50(4-6), 217-231.

Putriastuti, M. A. C., Yusgiantoro, F. C., & Margenta, I. D. R., 2021. “A feasibility study of flare gas utilization through a small-scale LNG development in South Sumatra, Indonesia.” IOP Conference Series: Earth and Environmental Science 753 (1), 012029. https://doi.org/10.1088/1755-1315/753/1/012029

Raymond, J., Yarkoni, S., & Andriyash, E. 2016. Global warming: Temperature estimation in annealers. Frontiers in ICT 3, 23. https://doi.org/10.3389/fict.2016.00023

Sarkari, M., Jamshidi, B., Khoshooei, M. A., & Fazlollahi, F., 2022. “Flare gas reduction: A case study of integrating regeneration gas in flash gas compression network.” Fuel 318, 123661. https://doi.org/10.1016/j.fuel.2022.123661

Shahab-Deljoo, M., Medi, B., Kazi, M. K., & Jafari, M., 2023. “A techno-economic review of gas flaring in Iran and its human and environmental impacts.” Process Saf. Environ. Prot. 173, 642-665. https://doi.org/10.1016/j.psep.2023.03.051

Soltanieh, M., Zohrabian, A., Gholipour, M. J., & Kalnay, E., 2016. “A review of global gas flaring and venting and impact on the environment: Case study of Iran.” Int. J. Greenh. Gas Con. 49, 488-509. https://doi.org/10.1016/j.ijggc.2016.02.010

Song, F., Zhang, G. J., Ramanathan, V., & Leung, L. R., 2022. “Trends in surface equivalent potential temperature: A more comprehensive metric for global warming and weather extremes.” Proc. Natl. Acad. Sci. U.S.A. 119(6), e2117832119. https://doi.org/10.1073/pnas.2117832119

Tao, H., Gang, W., Xiaojin, D., & Gengxin, Z., 2024. “Joint altitude and beamwidth optimization for LEO satellite‐based IoT constellation.” Int. J. Satell. Commun. Netw. 42(5), 354-373. https://doi.org/10.1002/sat.1518

Van Asselt, H., 2021. “Governing fossil fuel production in the age of climate disruption: Towards an international law of ‘leaving it in the ground’.” Earth Syst. Gov. 9, 100118. https://doi.org/10.1016/j.esg.2021.100118

Zoeir, A., Tabatabaei Nejad, A., & Khodapanah, E., 2019. “Impact of H2S content and excess air on pollutant emission in sour gas flares.” Iran J. Oil Gas Sci. Technol. 8(1), 1-10. https://doi.org/10.22050/ijogst.2018.127937.1450

Published
2025-12-31
How to Cite
Christwardana, M., Sugiarto, H., & Widayat, W. (2025). Balancing Relief Gas and Assist Gas Flows for Efficient Flare Gas Combustion in Onshore Gas Facility. ASEAN Journal of Chemical Engineering, 25(3), 440-457. https://doi.org/10.22146/ajche.16757
Section
Articles