Municipal Solid Waste Potential for Indonesian Electrical Energy Sharing: Process Simulation Study

  • Maulana Gilar Nugraha Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 555281, Indonesia
  • Teguh Ariyanto Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 555281, Indonesia
  • Adhiyaksa Rahmat Pratama Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 555281, Indonesia
  • Nectarastra Cesar Naratama Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 555281, Indonesia
  • Anggun Tati Rahmada Wardhani Waste Refinery Center, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 555281, Indonesia
  • Visang Fardha Sukma Insani Engineering and Technology Division, Perusahaan Listrik Negara (PLN), Jakarta, Indonesia
  • Dani Irianto Engineering and Technology Division, Perusahaan Listrik Negara (PLN), Jakarta, Indonesia
  • Wiwid Ari Hendarto Engineering and Technology Division, Perusahaan Listrik Negara (PLN), Jakarta, Indonesia
  • Zuhwan Asbah Engineering and Technology Division, Perusahaan Listrik Negara (PLN), Jakarta, Indonesia
  • Rohmat Prianto Engineering and Technology Division, Perusahaan Listrik Negara (PLN), Jakarta, Indonesia
Keywords: Gasification, Incineration, Municipal Solid Waste, Process Simulation, Waste-to-Energy

Abstract

Indonesia’s growing energy demand and increasing municipal solid waste (MSW), projected to reach 48.19 million tons by 2027, present significant challenges and opportunities for sustainable energy solutions. This study investigates the conversion of MSW to electricity using validated Aspen Plus® simulations calibrated against real-world operations with one MSW based power plant located in Indonesia. The study evaluated four technologies—air gasification, steam gasification, plasma gasification, and incineration—to assess their electricity generation potential and pollutant emissions. Gasification technologies outperformed incineration, generating 15–27 MW of electricity, with gas engines demonstrating superior efficiency compared to steam turbines due to fewer energy conversion stages. Air gasification increased electricity production with reduced air input but resulted in elevated pollutant emissions, including NH₃ (up to 8 ppm), H₂S (up to 210 ppm), and HCl (up to 1052 ppm). Steam gasification enhanced hydrogen production at optimal steam levels; however, excessive steam inputs reduced efficiency and increased pollutant concentrations, such as NH₃ (14 ppm), H₂S (369 ppm), and HCl (1846 ppm). Plasma gasification maintained stable CO₂ concentrations (~14% vol) but experienced diminishing electricity returns with higher heat inputs. This study also highlights the inefficiency of incineration technology since it produced lower NH₃ and H₂S emissions but notable levels of NOₓ, SOₓ, and HCl, emphasizing the importance of advanced emission control systems. This study provides valuable insights for optimizing waste-to-energy processes, supporting industrial adoption, and informing sustainable waste management strategies to enhance Indonesia’s energy security and environmental sustainability.

References

Abdoulmoumine, N., Adhikari, S., Kulkarni, A., and Chattanathan, S., 2015. “A review on biomass gasification syngas cleanup.” Appl. Energy 155, 294–307. https://doi.org/10.1016/J.APENERGY.2015.05.095

Aghaalikhani, A., Schmid, J.C., Borello, D., Fuchs, J., Benedikt, F., Hofbauer, H., Rispoli, F., Henriksen, U.B., Sárossy, Z., and Cedola, L., 2019. “Detailed modelling of biomass steam gasification in a dual fluidized bed gasifier with temperature variation.” Renew. Energy 143, 703–718. https://doi.org/10.1016/j.renene.2019.05.022

Amulen, J., Kasedde, H., Serugunda, J., and Lwanyaga, J.D., 2022. “The potential of energy recovery from municipal solid waste in Kampala City, Uganda by incineration.” Energy Convers. Manag. X, 14. https://doi.org/10.1016/j.ecmx.2022.100204

Anshar, M., Nasir Ani, F., and Saman Kader, A., 2014. “The energy potential of municipal solid waste for power generation in Indonesia.” Jurnal Mekanikal 37, 42-54.

Astrup, T.F., Tonini, D., Turconi, R., and Boldrin, A., 2015. “Life cycle assessment of thermal Waste-to-Energy technologies: Review and recommendations.” Waste Manag. 37, 104–115. https://doi.org/10.1016/J.WASMAN.2014.06.011

Azis, M.M., Kristanto, J., and Purnomo, C.W., 2021. “A techno‐economic evaluation of municipal solid waste (MSW) conversion to energy in indonesia.” Sustainability 13, 7232. https://doi.org/10.3390/su13137232

Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., and Ni, M., 2018. “Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants.” Sci. Total Environ. 626, 744–753. https://doi.org/10.1016/J.SCITOTENV.2018.01.151

Habibi, M.Y., Nugraha, M.G., Hidayat, M., and Saptoadi, H., 2024. “Simulation of coconut shell combustion in a grate-fired furnace using distributed pyrolysis products model.” AIP Conf. Proc. 2836, 060001. https://doi.org/10.1063/5.0207275

Indonesia - Energy [WWW Document], 2024. URL https://www.trade.gov/country-commercial-guides/indonesia-energy (accessed 4.12.24).

Indonesia: Energy Country Profile - Our World in Data [WWW Document], 2021. URL https://ourworldindata.org/energy/country/indonesia (accessed 4.6.24).

Indonesia’s Energy Transformation to Zero Emission - IESR [WWW Document], 2023. URL https://iesr.or.id/en/indonesias-energy-transformation-to-zero-emission (accessed 4.6.24).

Kumar, A., and Samadder, S.R., 2017. “A review on technological options of waste to energy for effective management of municipal solid waste.” Waste Manag. 69, 407-422. https://doi.org/10.1016/j.wasman.2017.08.046

Listrik untuk Kehidupan yang Lebih Baik - PT PLN (Persero) [WWW Document], 2021. URL https://web.pln.co.id/stakeholder/ RUPTL (accessed 4.12.24).

Lolla, A., Yang, M., and Phoumin, H., 2021. Global Electricity Review 2021 G20 Profile Indonesia: Indonesia defies global trend with more coal in the generation-mix. https://ember-energy.org/

Ma, W., Wenga, T., Frandsen, F.J., Yan, B., and Chen, G., 2020. “The fate of chlorine during MSW incineration: Vaporization, transformation, deposition, corrosion and remedies.” Prog. Energy Combust. Sci. 76, 100789. https://doi.org/10.1016/J.PECS.2019.100789

Mehdi, M., Ammar Taqvi, S.A., Shaikh, A.A., Khan, S., Naqvi, S.R., Shahbaz, M., and Juchelková, D., 2023. “Aspen Plus simulation model of municipal solid waste gasification of metropolitan city for syngas production.” Fuel 344. https://doi.org/10.1016/j.fuel.2023.128128

Murphy, J.D., and McKeogh, E., 2004. “Technical, economic and environmental analysis of energy production from municipal solid waste.” Renew. Energy 29, 1043–1057. https://doi.org/10.1016/j.renene.2003.12.002

Mustafa, A.B., Dong, H., Zhang, C., and Fujii, M., 2022. “Life cycle environmental benefit and waste-to-energy potential of municipal solid waste management scenarios in Indonesia.” J. Mater. Cycles Waste. Manag. 24, 1859–1877. https://doi.org/10.1007/s10163-022-01441-6

Nugraha, M.G., Saptoadi, H., Hidayat, M., Andersson, B., and Andersson, R., 2021. “Particulate matter reduction in residual biomass combustion.” Energies 14, 3341. https://doi.org/10.3390/en14113341

Nugraha, M.G., Sharfan, A., Prakoso, V.S.Y., Hidayat, M., and Saptoadi, H., 2020. “Particulate matter emission in agricultural biomass residue combustion.” Global J. Environ. Sci. Manag. 10, 39. https://doi.org/10.22035/gjesm.2024.03

Ogunjuyigbe, A.S.O., Ayodele, T.R., and Alao, M.A., 2017. “Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies.” Renew. Sustain. Energy Rev. 80, 149-162. https://doi.org/10.1016/j.rser.2017.05.177

Qonitan, F.D., Wayan Koko Suryawan, I., and Rahman, A., 2021. “Overview of municipal solid waste generation and energy utilization potential in major cities of Indonesia.” J. Phys.: Conf. Ser. 1858, 012064. https://doi.org/10.1088/1742-6596/1858/1/012064

Rajaeifar, M.A., Ghanavati, H., Dashti, B.B., Heijungs, R., Aghbashlo, M., and Tabatabaei, M., 2017. “Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review.” Renew. Sustain. Energy Rev. 79, 414-439 https://doi.org/10.1016/j.rser.2017.04.109

SIPSN - Sistem Informasi Pengelolaan Sampah Nasional [WWW Document], 2024. URL https://sipsn.menlhk.go.id/sipsn/ (accessed 4.6.24).

Sudibyo, H., Majid, A.I., Pradana, Y.S., Budhijanto, W., Deendarlianto, and Budiman, A., 2017a. “Technological evaluation of municipal solid waste management system in Indonesia.” Energy Procedia 105, 263–269. https://doi.org/10.1016/j.egypro.2017.03.312

Sudibyo, H., Pradana, Y.S., Budiman, A., and Budhijanto, W., 2017b. “Municipal solid waste management in Indonesia - A study about selection of proper solid waste reduction method in D.I. Yogyakarta Province.” Energy Procedia 143, 494–499. https://doi.org/10.1016/j.egypro.2017.12.716

Sukarni, S., 2016. “Exploring the potential of municipal solid waste (MSW) as solid fuel for energy generation: Case study in the Malang City, Indonesia.” AIP Conf. Proc. 1778, 020003. https://doi.org/10.1063/1.4965733

Varjani, S., Shahbeig, H., Popat, K., Patel, Z., Vyas, S., Shah, A. V., Barceló, D., Hao Ngo, H., Sonne, C., Shiung Lam, S., Aghbashlo, M., and Tabatabaei, M., 2022. “Sustainable management of municipal solid waste through waste-to-energy technologies.” Bioresour. Technol. 355, 127247. https://doi.org/10.1016/j.biortech.2022.127247

Waste-to-energy (MSW) in depth - U.S. Energy Information Administration (EIA) [WWW Document], 2024. URL https://www.eia.gov/energyexplained/biomass/waste-to-energy-in-depth.php (accessed 4.6.24).

Published
2025-04-29
How to Cite
Nugraha, M. G., Ariyanto, T., Pratama, A. R., Naratama , N. C., Wardhani, A. T. R., Insani, V. F. S., Irianto, D., Hendarto, W. A., Asbah, Z., & Prianto, R. (2025). Municipal Solid Waste Potential for Indonesian Electrical Energy Sharing: Process Simulation Study. ASEAN Journal of Chemical Engineering, 25(1), 97-114. https://doi.org/10.22146/ajche.16716
Section
Articles