Hydrothermal ZnO Photocatalysis for Efficient Removal of Tetracycline from Wastewater
Abstract
Tetracycline (TC), a widely used antibiotic, is increasingly detected in wastewater, posing a significant environmental and health risk. Zinc oxide nanoparticles are emerging as a promising photocatalyst for TC photodegradation due to their low cost and superior light absorption capabilities at room temperature compared to the widely used titanium dioxide (TiO2). This study explores the efficacy of hydrothermally synthesized ZnO nanoparticles in degrading TC. The photocatalytic degradation efficiency of ZnO was examined under controlled batch conditions by varying parameters like ZnO dosage (0.5-2.5 g/L), TC concentration (5-25 ppm), and light source (solar, visible, and UV). The result showed that the highest TC removal efficiency (70.17%) was achieved under UV light with 1 g/L ZnO for a 5 ppm TC solution. The synthesized ZnO nanoparticles showed excellent reusability, highlighting their potential as a cost-effective and sustainable approach for TC degradation in wastewater treatment applications.
References
Abejon, R., Cazes, M. De., Belleville, M. P., Sanchez-Marcano, J., 2015. “Large-scale enzymatic membrane reactors for tetracycline degradation in WWTP effluents.” Water Res. 15(73), 118–131. https://doi.org/10.1016/j.watres.2015.01.012.
Aljaafari, A., Ahmed, F., Awada, C., and. Shaalan, N. M., 2020. “Flower-like ZnO nanorods synthesized by microwave-assisted one-pot method for detecting reducing gases: Structural properties and sensing reversibility.” Front. Chem. 8, 456. https://doi.org/10.3389/fchem.2020.00456
Ankamwar, B. G.,. Kamble, V. B., Annsi, J. I., Sarma, L. S., and. Mahajan, C. M., 2017. “Solar photocatalytic degradation of methylene blue by ZnO nanoparticles.” J. Nanosci. Nanotechnol. 17(2), 1185–1192. https://doi.org/10.1166/jnn.2017.12579
Atchudan, R., Edison, T. N. J. I., Mani, S., Perumal, S., Vinodh, R., Thirunavukkarasu, S. and Lee, Y. R., 2020. “Facile synthesis of a novel nitrogen-doped carbon dot adorned zinc oxide composite for photodegradation of methylene blue.” Dalton Trans. 49(48), 17725–17736. https://doi.org/10.1039/d0dt02756a
Ayu, D. G., Gea, S., Andriayani, N., Telaumbanua, D. J., Piliang, A. F. R., Harahap, M., Yen, Z., Goei, R., and Yoong Tok, A. I., 2023. “Photocatalytic degradation of methylene blue using N-doped ZnO/carbon dot (N-ZnO/CD) nanocomposites derived from organic soybean.” ACS Omega 8(17), 14965–14984. https://doi.org/10.1021/acsomega.2c07546
Aziztyana, A. P., Wardhani, S., Prananto, Y. P., Purwonugroho, D., and Darjito, 2019. “Optimisation of Methyl Orange Photodegradation Using TiO2 -Zeolite Photocatalyst and H2O2 in acid condition.” IOP Conf. Ser. Mater. Sci. Eng. 546(4), 042047. https://doi.org/10.1088/1757-899X/546/4/042047
Bai, X., Chen, W., Wang, B., Sun, T., Wu, B., and Wang, Y., 2022. “Photocatalytic degradation of some typical antibiotics: Recent advances and future outlooks.” Int. J. Mol. Sci. 23(15), 8130. https://doi.org/10.3390/ijms23158130
Baruah, S., and Dutta, J., 2009. “Hydrothermal growth of ZnO nanostructures.” Sci. Technol. Adv. Mater. 10(1). https://doi.org/10.1088/1468-6996/10/1/013001
Bashir, S., Awan, M. S., Farrukh, M. A., Naidu, R., Khan, S. A., Rafique, N., Ali, S., Hayat, I., Hussain, I., and Khan, M. Z., 2022. “In-vivo (albino mice) and in-vitro assimilation and toxicity of zinc oxide nanoparticles in food materials.” Int. J. Nanomedicine 17, 4073-4085. https://doi.org/10.2147/IJN.S372343
Durán, A., Monteagudo, J. M., and Martín, I. S., 2018. “Operation costs of the solar photo-catalytic degradation of pharmaceuticals in water: A mini-review.” Chemosphere 211, 482–488. https://doi.org/10.1016/j.chemosphere.2018.07.170
Ejsmont, A., and Goscianska. J., 2023. “Morphology controlled nitrogen-doped mesoporous carbon vehicles for sustained release of paracetamol.” Micropor. Mesopor. Mater. 350, 112449. https://doi.org/10.1016/j.micromeso.2023.112449
Fiaz, A., Zhu, D., and Sun, J., 2021. “Environmental fate of tetracycline antibiotics: Degradation pathway mechanisms, challenges, and perspectives.” Environ. Sci. Eur. 33(1), 64.
Gatou, M. A., Fiorentis, E., Lagopati, N., andPavlatou, E. A., 2023. “Photodegradation of rhodamine b and phenol using TiO2/SiO2 composite nanoparticles: a comparative study.” Water 15(15), 2773. https://doi.org/10.3390/w15152773
Gopal, G., Alex, S. A., Chandrasekaran, N., and Mukherjee, A., 2020. “A Review on tetracycline removal from aqueous systems by advanced treatment techniques.” RSC Adv. 10(45), 27081–27095.
Indeed. 2024. “Operators Salary in Malaysia.” Retrieved July 14, 2024 (https://malaysia.indeed.com/career/operator/salaries).
Khan, M. H., Bae, H., and Jung, J. Y., 2010. “Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway.” J. Hazard., Mater. 181(1–3), 659–665. https://doi.org/10.1016/j.jhazmat.2010.05.063
Kouhail, M., Elberouhi, K., Elahmadi, Z., Benayada, A., and Gmouh, S., 2020. “A comparative study between TiO2 and ZnO photocatalysis: Photocatalytic degradation of textile dye.” IOP Conf. Ser. Mater. Sci. Eng. 827. https://doi.org/10.1088/1757-899X/827/1/012009
Kraemer, S. A., Ramachandran A., and Perron, G. G., 2019. “Antibiotic pollution in the environment: From microbial ecology to public policy.” Microorganisms 7(6), 180. https://doi.org/10.3390/microorganisms7060180
Li, Y., Zhang, B. P., Zhao J. X., Ge Z. H., Zhao, X. K., and Zou, L., 2013. “ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties.” Appl. Surf. Sci. 279, 367–373. https://doi.org/10.1016/j.apsusc.2013.04.114
Liang, H., Tai, X., Du, Z., and Yin, Y., 2020. “Enhanced photocatalytic activity of ZnO Sensitized by carbon quantum dots and application in phenol wastewater.” Opti. Mater. 100(26), 109674. https://doi.org/10.1016/j.optmat.2020.109674
Lv, T., Pan, L., Liu, X., Lu, T., Zhu, G., and Sun, Z., 2011. “Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction.” J. Alloys Compd. 509(41), 10086–10091. https://doi.org/10.1016/j.jallcom.2011.08.045
Malakootian, M., Asadzadeh, S. N., Mehdipoor, M., and Kalantar-Neyestanaki, D., 2021. “A new approach in photocatalytic degradation of tetracycline using biogenic zinc oxide nanoparticles and peroxymonosulfate under UVC irradiation.” Desal. Water Treat. 222, 302–312. https://doi.org/10.5004/dwt.2021.27077
McGraw-Hill. 1984. Perry’s Chemical Engineers’ Handbook.
Merck. 2024. “Sigma.” Retrieved July 14, 2024 (https://www.sigmaaldrich.com/MY/en).
Mohamed, R. M., Ismail, A. A., Kadi, M. W., and Bahnemann. D. W., 2018. “A comparative study on mesoporous and commercial TiO2 photocatalysts for photodegradation of organic pollutants.” J. Photochem. Photobiol. A: Chemistry 367, 66–73. https://doi.org/10.1016/j.jphotochem.2018.08.019
Mousavi, S. B., and Heris, S. Z., 2020. “Experimental investigation of ZnO nanoparticles effects on thermophysical and tribological properties of diesel oil.” Int. J. Hydrogen Energy 45(43), 23603–23614. https://doi.org/10.1016/j.ijhydene.2020.05.259
Mukherjee, I., Cilamkoti, V., and Dutta, R. K., 2021. “Sunlight-driven photocatalytic degradation of ciprofloxacin by carbon dots embedded in ZnO nanostructures.” ACS Appl. Nano Mater. 4(8), 7686–7697. https://doi.org/10.1021/acsanm.1c00883
Perry, R. H., & Green, D. W., 2008. Perry’s Chemical Engineers’ Handbook. McGraw-Hill Education
Rana, A. K., Kumar, Y., Rajput, P., Jha, S. N., Bhattacharyya, D., and Shirage, P. M., 2017. “Search for origin of room temperature ferromagnetism properties in Ni-doped ZnO nanostructure.” ACS Appl. Mater. &Interfaces 9(8), 7691–7700. https://doi.org/10.1021/acsami.6b12616
Rezaei, S. S., Kakavandi, B., Noorisepehr, M., Isari, A. A., Zabih, S., and Bashardoust, P., 2021. “Photocatalytic oxidation of tetracycline by magnetic carbon-supported TiO2 nanoparticles catalyzed peroxydisulfate: Performance, synergy and reaction mechanism studies.” Sep. Purif. Technol. 258, 117936. https://doi.org/10.1016/j.seppur.2020.117936
Ribeiro, J. P., Marques, C. C., Portugal, I., and Nunes, M. I., 2020. “Fenton processes for AOX removal from a kraft pulp bleaching industrial wastewater: optimisation of operating conditions and cost assessment.” J. Environ. Chem. Eng. 8(4), 104032. https://doi.org/10.1016/j.jece.2020.104032
Saadati, F., Keramati, N., and Ghazi, M. M., 2016. “Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review.” Crit. Rev. Environ. Sci. Technol. 46(8), 1-26. https://doi.org/10.1080/10643389.2016.1159093
Sharkawy, H. M., Shawky, A. M., Elshypany, R., and Selim H., 2023. “Efficient photocatalytic degradation of organic pollutants over TiO2 nanoparticles modified with nitrogen and MoS2 under visible light irradiation.” Sci. Rep. 13(1), 8845. https://doi.org/10.1038/s41598-023-35265-7
Tenaga Nasional, Industrial Tariffs. 2024. “Tenaga Nasional, Industrial Tariffs.” Retrieved July 14, 2024 (https://www.tnb.com.my/commercial-industrial/pricing-tariffs1).
Thiang, E. L., Lee, C. W., Takada, H., Seki, K., Takei, A., Suzuki, S., Wang, A., and Bong C. W., 2021. “Antibiotic residues from aquaculture farms and their ecological risks in Southeast Asia: A case study from Malaysia.” Ecosyst. Health Sustain. 7(1), 1926337. https://doi.org/10.1080/20964129.2021.1926337
Wu, S., Hu, H., Lin, Y., Zhang, J., and Hu, Y. H., 2020. “Visible light photocatalytic degradation of tetracycline over TiO2.” Chem. Eng. J. 382, 122842. https://doi.org/10.1016/j.cej.2019.122842
Wu, S., Li, X., Tian, Y., Lin, Y., and Hu, Y. H., 2021. “Excellent photocatalytic degradation of tetracycline over black anatase-TiO2 under visible light.” Chem. Eng. J. 406, 126747. https://doi.org/10.1016/j.cej.2020.126747
Xu, J. J., Lu, Y. N., Tao, F. F., Liang, P. F., and Zhang, P. A., 2023. “ZnO nanoparticles modified by carbon quantum dots for the photocatalytic removal of synthetic pigment pollutants.” ACS Omega 8(8), 7845–7857. https://doi.org/10.1021/acsomega.2c07591
Zuo, R., Du, G., Zhang, W., Liu, L., Liu, Y., Mei, L., and Li, Z., 2014. “Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite.” Adv. Mater. Sci. Eng. 2014(1), 170148. https://doi.org/10.1155/2014/170148
Copyright (c) 2025 ASEAN Journal of Chemical Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright holder for articles is ASEAN Journal of Chemical Engineering. Articles published in ASEAN J. Chem. Eng. are distributed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
Authors agree to transfer all copyright rights in and to the above work to the ASEAN Journal of Chemical Engineering Editorial Board so that the Editorial Board shall have the right to publish the work for non-profit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors’ personal use or for company use if the source and the journal copyright notice is indicated, and if the reproduction is not made for the purpose of sale.