Hydrothermal ZnO Photocatalysis for Efficient Removal of Tetracycline from Wastewater

  • Wan Nuraishah Wan Ishak School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor https://orcid.org/0009-0009-3038-4299
  • Huey Ling Tan School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor, Malaysia https://orcid.org/0000-0001-8580-8858
  • Noor Fitrah Abu Bakar School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor, Malaysia https://orcid.org/0000-0003-0270-424X
  • Ying Pei Lim School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor, Malaysia https://orcid.org/0000-0003-0620-5018
  • Law Yong Ng Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia;Centre for Advanced and Sustainable Materials Research (CASMR), Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia https://orcid.org/0000-0002-6868-4977
  • Yang Yin Chun Newcastle University in Singapore, 537 Clementi Road #06-01, SIT Building @ Ngee Ann Polytechnic, Singapore 599493, Singapore https://orcid.org/0000-0003-4114-3385
Keywords: Advanced oxidation, Hydrothermal reaction, Photocatalysis, Tetracycline, ZnO

Abstract

Tetracycline (TC), a widely used antibiotic, is increasingly detected in wastewater, posing a significant environmental and health risk. Zinc oxide nanoparticles are emerging as a promising photocatalyst for TC photodegradation due to their low cost and superior light absorption capabilities at room temperature compared to the widely used titanium dioxide (TiO2). This study explores the efficacy of hydrothermally synthesized ZnO nanoparticles in degrading TC. The photocatalytic degradation efficiency of ZnO was examined under controlled batch conditions by varying parameters like ZnO dosage (0.5-2.5 g/L), TC concentration (5-25 ppm), and light source (solar, visible, and UV). The result showed that the highest TC removal efficiency (70.17%) was achieved under UV light with 1 g/L ZnO for a 5 ppm TC solution. The synthesized ZnO nanoparticles showed excellent reusability, highlighting their potential as a cost-effective and sustainable approach for TC degradation in wastewater treatment applications.

References

Abejon, R., Cazes, M. De., Belleville, M. P., Sanchez-Marcano, J., 2015. “Large-scale enzymatic membrane reactors for tetracycline degradation in WWTP effluents.” Water Res. 15(73), 118–131. https://doi.org/10.1016/j.watres.2015.01.012.

Aljaafari, A., Ahmed, F., Awada, C., and. Shaalan, N. M., 2020. “Flower-like ZnO nanorods synthesized by microwave-assisted one-pot method for detecting reducing gases: Structural properties and sensing reversibility.” Front. Chem. 8, 456. https://doi.org/10.3389/fchem.2020.00456

Ankamwar, B. G.,. Kamble, V. B., Annsi, J. I., Sarma, L. S., and. Mahajan, C. M., 2017. “Solar photocatalytic degradation of methylene blue by ZnO nanoparticles.” J. Nanosci. Nanotechnol. 17(2), 1185–1192. https://doi.org/10.1166/jnn.2017.12579

Atchudan, R., Edison, T. N. J. I., Mani, S., Perumal, S., Vinodh, R., Thirunavukkarasu, S. and Lee, Y. R., 2020. “Facile synthesis of a novel nitrogen-doped carbon dot adorned zinc oxide composite for photodegradation of methylene blue.” Dalton Trans. 49(48), 17725–17736. https://doi.org/10.1039/d0dt02756a

Ayu, D. G., Gea, S., Andriayani, N., Telaumbanua, D. J., Piliang, A. F. R., Harahap, M., Yen, Z., Goei, R., and Yoong Tok, A. I., 2023. “Photocatalytic degradation of methylene blue using N-doped ZnO/carbon dot (N-ZnO/CD) nanocomposites derived from organic soybean.” ACS Omega 8(17), 14965–14984. https://doi.org/10.1021/acsomega.2c07546

Aziztyana, A. P., Wardhani, S., Prananto, Y. P., Purwonugroho, D., and Darjito, 2019. “Optimisation of Methyl Orange Photodegradation Using TiO2 -Zeolite Photocatalyst and H2O2 in acid condition.” IOP Conf. Ser. Mater. Sci. Eng. 546(4), 042047. https://doi.org/10.1088/1757-899X/546/4/042047

Bai, X., Chen, W., Wang, B., Sun, T., Wu, B., and Wang, Y., 2022. “Photocatalytic degradation of some typical antibiotics: Recent advances and future outlooks.” Int. J. Mol. Sci. 23(15), 8130. https://doi.org/10.3390/ijms23158130

Baruah, S., and Dutta, J., 2009. “Hydrothermal growth of ZnO nanostructures.” Sci. Technol. Adv. Mater. 10(1). https://doi.org/10.1088/1468-6996/10/1/013001

Bashir, S., Awan, M. S., Farrukh, M. A., Naidu, R., Khan, S. A., Rafique, N., Ali, S., Hayat, I., Hussain, I., and Khan, M. Z., 2022. “In-vivo (albino mice) and in-vitro assimilation and toxicity of zinc oxide nanoparticles in food materials.” Int. J. Nanomedicine 17, 4073-4085. https://doi.org/10.2147/IJN.S372343

Durán, A., Monteagudo, J. M., and Martín, I. S., 2018. “Operation costs of the solar photo-catalytic degradation of pharmaceuticals in water: A mini-review.” Chemosphere 211, 482–488. https://doi.org/10.1016/j.chemosphere.2018.07.170

Ejsmont, A., and Goscianska. J., 2023. “Morphology controlled nitrogen-doped mesoporous carbon vehicles for sustained release of paracetamol.” Micropor. Mesopor. Mater. 350, 112449. https://doi.org/10.1016/j.micromeso.2023.112449

Fiaz, A., Zhu, D., and Sun, J., 2021. “Environmental fate of tetracycline antibiotics: Degradation pathway mechanisms, challenges, and perspectives.” Environ. Sci. Eur. 33(1), 64.

Gatou, M. A., Fiorentis, E., Lagopati, N., andPavlatou, E. A., 2023. “Photodegradation of rhodamine b and phenol using TiO2/SiO2 composite nanoparticles: a comparative study.” Water 15(15), 2773. https://doi.org/10.3390/w15152773

Gopal, G., Alex, S. A., Chandrasekaran, N., and Mukherjee, A., 2020. “A Review on tetracycline removal from aqueous systems by advanced treatment techniques.” RSC Adv. 10(45), 27081–27095.

Indeed. 2024. “Operators Salary in Malaysia.” Retrieved July 14, 2024 (https://malaysia.indeed.com/career/operator/salaries).

Khan, M. H., Bae, H., and Jung, J. Y., 2010. “Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway.” J. Hazard., Mater. 181(1–3), 659–665. https://doi.org/10.1016/j.jhazmat.2010.05.063

Kouhail, M., Elberouhi, K., Elahmadi, Z., Benayada, A., and Gmouh, S., 2020. “A comparative study between TiO2 and ZnO photocatalysis: Photocatalytic degradation of textile dye.” IOP Conf. Ser. Mater. Sci. Eng. 827. https://doi.org/10.1088/1757-899X/827/1/012009

Kraemer, S. A., Ramachandran A., and Perron, G. G., 2019. “Antibiotic pollution in the environment: From microbial ecology to public policy.” Microorganisms 7(6), 180. https://doi.org/10.3390/microorganisms7060180

Li, Y., Zhang, B. P., Zhao J. X., Ge Z. H., Zhao, X. K., and Zou, L., 2013. “ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties.” Appl. Surf. Sci. 279, 367–373. https://doi.org/10.1016/j.apsusc.2013.04.114

Liang, H., Tai, X., Du, Z., and Yin, Y., 2020. “Enhanced photocatalytic activity of ZnO Sensitized by carbon quantum dots and application in phenol wastewater.” Opti. Mater. 100(26), 109674. https://doi.org/10.1016/j.optmat.2020.109674

Lv, T., Pan, L., Liu, X., Lu, T., Zhu, G., and Sun, Z., 2011. “Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction.” J. Alloys Compd. 509(41), 10086–10091. https://doi.org/10.1016/j.jallcom.2011.08.045

Malakootian, M., Asadzadeh, S. N., Mehdipoor, M., and Kalantar-Neyestanaki, D., 2021. “A new approach in photocatalytic degradation of tetracycline using biogenic zinc oxide nanoparticles and peroxymonosulfate under UVC irradiation.” Desal. Water Treat. 222, 302–312. https://doi.org/10.5004/dwt.2021.27077

McGraw-Hill. 1984. Perry’s Chemical Engineers’ Handbook.

Merck. 2024. “Sigma.” Retrieved July 14, 2024 (https://www.sigmaaldrich.com/MY/en).

Mohamed, R. M., Ismail, A. A., Kadi, M. W., and Bahnemann. D. W., 2018. “A comparative study on mesoporous and commercial TiO2 photocatalysts for photodegradation of organic pollutants.” J. Photochem. Photobiol. A: Chemistry 367, 66–73. https://doi.org/10.1016/j.jphotochem.2018.08.019

Mousavi, S. B., and Heris, S. Z., 2020. “Experimental investigation of ZnO nanoparticles effects on thermophysical and tribological properties of diesel oil.” Int. J. Hydrogen Energy 45(43), 23603–23614. https://doi.org/10.1016/j.ijhydene.2020.05.259

Mukherjee, I., Cilamkoti, V., and Dutta, R. K., 2021. “Sunlight-driven photocatalytic degradation of ciprofloxacin by carbon dots embedded in ZnO nanostructures.” ACS Appl. Nano Mater. 4(8), 7686–7697. https://doi.org/10.1021/acsanm.1c00883

Perry, R. H., & Green, D. W., 2008. Perry’s Chemical Engineers’ Handbook. McGraw-Hill Education

Rana, A. K., Kumar, Y., Rajput, P., Jha, S. N., Bhattacharyya, D., and Shirage, P. M., 2017. “Search for origin of room temperature ferromagnetism properties in Ni-doped ZnO nanostructure.” ACS Appl. Mater. &Interfaces 9(8), 7691–7700. https://doi.org/10.1021/acsami.6b12616

Rezaei, S. S., Kakavandi, B., Noorisepehr, M., Isari, A. A., Zabih, S., and Bashardoust, P., 2021. “Photocatalytic oxidation of tetracycline by magnetic carbon-supported TiO2 nanoparticles catalyzed peroxydisulfate: Performance, synergy and reaction mechanism studies.” Sep. Purif. Technol. 258, 117936. https://doi.org/10.1016/j.seppur.2020.117936

Ribeiro, J. P., Marques, C. C., Portugal, I., and Nunes, M. I., 2020. “Fenton processes for AOX removal from a kraft pulp bleaching industrial wastewater: optimisation of operating conditions and cost assessment.” J. Environ. Chem. Eng. 8(4), 104032. https://doi.org/10.1016/j.jece.2020.104032

Saadati, F., Keramati, N., and Ghazi, M. M., 2016. “Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review.” Crit. Rev. Environ. Sci. Technol. 46(8), 1-26. https://doi.org/10.1080/10643389.2016.1159093

Sharkawy, H. M., Shawky, A. M., Elshypany, R., and Selim H., 2023. “Efficient photocatalytic degradation of organic pollutants over TiO2 nanoparticles modified with nitrogen and MoS2 under visible light irradiation.” Sci. Rep. 13(1), 8845. https://doi.org/10.1038/s41598-023-35265-7

Tenaga Nasional, Industrial Tariffs. 2024. “Tenaga Nasional, Industrial Tariffs.” Retrieved July 14, 2024 (https://www.tnb.com.my/commercial-industrial/pricing-tariffs1).

Thiang, E. L., Lee, C. W., Takada, H., Seki, K., Takei, A., Suzuki, S., Wang, A., and Bong C. W., 2021. “Antibiotic residues from aquaculture farms and their ecological risks in Southeast Asia: A case study from Malaysia.” Ecosyst. Health Sustain. 7(1), 1926337. https://doi.org/10.1080/20964129.2021.1926337

Wu, S., Hu, H., Lin, Y., Zhang, J., and Hu, Y. H., 2020. “Visible light photocatalytic degradation of tetracycline over TiO2.” Chem. Eng. J. 382, 122842. https://doi.org/10.1016/j.cej.2019.122842

Wu, S., Li, X., Tian, Y., Lin, Y., and Hu, Y. H., 2021. “Excellent photocatalytic degradation of tetracycline over black anatase-TiO2 under visible light.” Chem. Eng. J. 406, 126747. https://doi.org/10.1016/j.cej.2020.126747

Xu, J. J., Lu, Y. N., Tao, F. F., Liang, P. F., and Zhang, P. A., 2023. “ZnO nanoparticles modified by carbon quantum dots for the photocatalytic removal of synthetic pigment pollutants.” ACS Omega 8(8), 7845–7857. https://doi.org/10.1021/acsomega.2c07591

Zuo, R., Du, G., Zhang, W., Liu, L., Liu, Y., Mei, L., and Li, Z., 2014. “Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite.” Adv. Mater. Sci. Eng. 2014(1), 170148. https://doi.org/10.1155/2014/170148

Published
2025-04-29
How to Cite
Wan Ishak, W. N., Tan, H. L., Abu Bakar, N. F., Lim, Y. P., Ng, L. Y., & Chun, Y. Y. (2025). Hydrothermal ZnO Photocatalysis for Efficient Removal of Tetracycline from Wastewater. ASEAN Journal of Chemical Engineering, 25(1), 184-197. https://doi.org/10.22146/ajche.16598
Section
Articles