Synergetic Effect of TiO2–PCC/Zeolite Nanocomposite on the Photodegradation of Phenolic Compound in Wastewater

  • Dessy Ariyanti Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia
  • Dio Fachry Rezky Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia
  • Stephanus Dwipa Puja Rosariastoko Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia
  • Dina Lesdantina Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia
  • Erwan Adi Saputro Department of Chemical Engineering, University of Pembangunan Nasional Veteran Jawa Timur, Indonesia
  • Fazlena Hamzah School of Chemical Engineering, Universiti Teknologi MARA (UiTM), Malaysia
Keywords: Advanced Oxidation Processes, Photocatalysis, Phenol, Zeolite, PCC

Abstract

Phenol is an organic compound commonly found in the water bodies contained polluted wastewater from industrial, agricultural, and domestic activities. This compound exhibits carcinogenic properties and can impact human health at certain concentrations. Therefore, excessive phenol must be degraded. Various techniques dealing with phenol waste have been developed, including the adsorption method. However, secondary pollutants might form after the adsorption process. One potential alternative for handling phenolic compounds in wastewater without generating secondary waste is the photocatalytic process. It has been proven that, when combined with adsorption, the degradation activity can be enhanced. In this paper, phenol degradation was investigated by carrying out degradation using a semiconductor catalyst, such as TiO2, that synergizes with adsorbents like precipitated calcium carbonate (PCC) and zeolite. The highest phenol degradation was achieved with the variables 80% TiO2 - 20% PCC and 80% TiO2 - 20% zeolite, resulting in 74.3% and 69.22% of phenol degradation, respectively. In comparison, the TiO₂–PCC nanocomposite exhibits superior performance to the TiO₂–zeolite nanocomposite. The observation of the functional groups revealed that PCC has a larger functional group area, supporting the synergy of the adsorption-photocatalysis process compared to the TiO2–zeolite nanocomposite.

References

Alalm, M. G., Tawfik, A., & Chemicals, A., 2014. “Solar photocatalytic degradation of phenol in aqueous solutions using titanium dioxide.” Int. J. Environt. Ecol. Eng. 8(2), 136–139.

Ariyanti, D., Maillot, M., & Gao, W., 2018. “Photo-assisted degradation of dyes in a binary system using TiO2 under simulated solar radiation.” J. Environt. Chem. Eng. 6(1), 539–548. https://doi.org/10.1016/j.jece.2017.12.031

Bibi, A., Bibi, S., Abu-Dieyeh, M., & Al-Ghouti, M. A., 2023. “Towards sustainable physiochemical and biological techniques for the remediation of phenol from wastewater: A review on current applications and removal mechanisms.” J. Clean Prod. 417, 137810. https://doi.org/10.1016/j.jclepro.2023.137810

Bizerea Spiridon, O., Preda, E., Botez, A., & Pitulice, L., 2013. “Phenol removal from wastewater by adsorption on zeolitic composite.” Environt. Sci. Pollut. Res. Int. 20(9), 6367–6381. https://doi.org/10.1007/s11356-013-1625-x

Chong, M. N., Tneu, Z. Y., Poh, P. E., Jin, B., & Aryal, R., 2015a. “Synthesis, characterization and application of TiO2-zeolite nanocomposites for the advanced treatment of industrial dye wastewater.” J. Taiwan Inst. Chem. Eng. 50, 288–296. https://doi.org/10.1016/j.jtice.2014.12.013

Copland, E., Webster, N., Tsuda, T., Hussey, C. L., Gapontsev, V. V, Gazizova, D. D., & Streltsov, S. V., 2018. “Characteristics of TiO2 particles prepared by simple solution method using TiCl3 precursor.” J. Phys.: Conf. Ser. 1080, 012042. https://doi.org/10.1088/1742-6596/1080/1/012042

Cui, Y., Kang, W., & Hu, J., 2023. “Effectiveness and mechanisms of the adsorption of phenol from wastewater onto N-doped graphene oxide aerogel.” J. Water Process Eng. 53, 103665. https://doi.org/10.1016/j.jwpe.2023.103665

Fatimah, N. F. and B. U., 2017. “Sintesis dan analisis spektra IR, difraktogram XRD, SEM pada material katalis berbahan Ni/zeolit alam teraktivasi dengan metode impregnasi.” J. Cis-Trans 1(1), 35-39.

Jati, B. N., Naimah, S., Aviandharie, S. A., & Ermawati, R., 2012. “Komposit nano TiO2 dengan PCC, zeolit atau karbon aktif untuk menurunkan total krom dan zat organik pada air limbah industri penyamakan kulit.” J. Kim. Kemasan 34(1), 231-236.

Tanjung, R. H. R., Yonas, M. N., Suwito, S., Maury, H. K., Sarungu, Y., Hamuna, B., 2022. “Analysis of surface water quality of four rivers in Jayapura Regency, Indonesia: CCME-WQI approach.” J. Ecol. Eng. 23(1), 73-82. https://doi.org/10.12911/22998993/143998.

Kusumawardani, L. J., Syahputri, Y., & Fathurrahman, M., 2025. “TiO2/zeolite coal fly ash nanocomposite for photodegradation of naphthol blue black dye: Optimization and mechanism under visible light.” J. Kim. Valensi 11(1), 92–104. https://doi.org/10.15408/jkv.v11i1.45036

Liu, Y., & Lu, H., 2020. “Synthesis of ZSM-5 zeolite from fly ash and its adsorption of phenol, quinoline and indole in aqueous solution.” Mater. Res. Express 7(5), 055506. https://doi.org/10.1088/2053-1591/ab8fec

Motamedi, M., Mollahosseini, A., & Negarestani, M., 2022. “Ultrasonic-assisted batch operation for the adsorption of rifampin and reactive orange 5 onto engineered zeolite–polypyrrole/TiO2 nanocomposite.” Int. J. Environ. Sci. Tech. 19(8), 7547–7564. https://doi.org/10.1007/s13762-022-03951-0

Panuh, D., Aldio, R. Z., & Hidayah, A. S., 2019. “Degradation of phenol by photocatalysis using C-doped TiO2 catalyst.” J. Litbang Industri 9(1), 51–57. https://doi.org/http://dx.doi.org/10.24960/jli.v8i2.4675.51-57

Permata, D. G., Diantariani, N. P., & Widihati, I. A. G., 2016. “Degradasi fotokatalitik fenol menggunakan fotokatalis ZnO dan sinar UV.” J. Kimia 10 (2), 263–269. https://doi.org/10.24843/jchem.2016.v10.i02.p13

Rani, M., & Shanker, U., 2023. Removal of Organic Dyes by Functionalized Nanomaterials. In Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications: Volume 1-4 (Vol. 2, pp. 1267–1298). Spinger, Cham, Switzerland.

Saravy, H. I., Safari M., Darbam A. K., Rezaei, A., 2014. “Synthesis of titanium dioxide nanoparticles for photocatalytic degradation of cyanide in wastewater.” Anal. Lett. 47(10), 1772–1782. https://doi.org/10.1080/00032719.2014.880170

Sharafinia, S., Rashidi, A., Babaei, B., & Orooji, Y., 2023. “Nanoporous carbons based on coordinate organic polymers as an efficient and eco-friendly nano-sorbent for adsorption of phenol from wastewater.” Sci. Rep. 13(1), 13127. https://doi.org/10.1038/s41598-023-40243-0

Slamet, Yuliusman, Dwijayanti, A., & Kartika, S., 2020. “Characteristics of activated carbon from melinjo shells composed of TiO2 nanoparticles.” J. Phys.: Conf. Ser. 1477, 052012. https://doi.org/10.1088/1742-6596/1477/5/052012

Somarathna, Y. R., Mantilaka, M. M. M. G. P. G., Karunaratne, D. G. G. P., Rajapakse, R. M. G., Pitawala, H. M. T. G. A., & Wijayantha, K. G. U., 2016. “Synthesis of high purity calcium carbonate micro- and nano-structures on polyethylene glycol templates using dolomite.” Cryst. Res. Technol. 51(3), 207–214. https://doi.org/10.1002/crat.201500190

Syafii, I. & Nugraha, I., 2019. “Sintesis komposit montmorillonit-TiO2 dengan variasi suhu kalsinasi dan aplikasinya untuk pengolahan zat warna remazol red.” Indones. J. Mater. Chem. 2(1), 10-15

Tsymbalyuk, O. V, Naumenko, A. M., & Davydovska, T. L., 2019. “Influence of nano-TiO2 on functioning of gastric smooth muscles: In vitro and in silico studies.” Biol. Stud. 13(1), 3–26. https://doi.org/10.30970/sbi.1301.592

Viet, N. M., Mai Huong, N. T., & Thu Hoai, P. T., 2023. “Enhanced photocatalytic decomposition of phenol in wastewater by using La–TiO2 nanocomposite.” Chemosphere 313, 137605. https://doi.org/10.1016/j.chemosphere.2022.137605

Wardhani, E., & Dirgawati, M., 2011. “Penentuan jenis dan dosis koagulan dalam mengolah air limbah industri penyamakan kulit.” J. Tek. Lingk. 15, 1-15.

Yousef, R. I., El-Eswed, B., & Al-Muhtaseb, A. H., 2011. “Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies.” Chem. Eng. J. 171(3), 1143–1149. https://doi.org/https://doi.org/10.1016/j.cej.2011.05.012

Yu, J. G., Yu, H. G., Cheng, B., Zhao, X. J., Yu, J. C., & Ho, W. K., 2003. “The Effect of Calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition.” J. Phys. Chem. B 107(50), 13871–13879. https://doi.org/10.1021/jp036158y

Zainal Abidin, A., Abu Bakar, N. H. H., Ng, E. P., & Tan, W. L., 2017. “Rapid degradation of methyl orange by ag doped zeolite x in the presence of borohydride.” J. Taibah Univ. Sci. 11(6), 1070–1079. https://doi.org/10.1016/j.jtusci.2017.06.004

Published
2025-08-30
How to Cite
Ariyanti, D., Rezky, D. F., Rosariastoko, S. D. P., Lesdantina, D., Saputro, E. A., & Hamzah, F. (2025). Synergetic Effect of TiO2–PCC/Zeolite Nanocomposite on the Photodegradation of Phenolic Compound in Wastewater. ASEAN Journal of Chemical Engineering, 25(2), 241-252. https://doi.org/10.22146/ajche.15022
Section
Articles