Effect of Some Mineralizers and Organic Acids on the Structural and Luminescence Properties of Zn2SiO4 : Mn Phosphor Synthesized at Low Temperature by Impregnation – Coprecipitation Method
Abstract
Suitable mineralizers promote the formation of the desired phases upon sintering, and organic acids have reducing properties that make the Mn2+ ions more stable during synthesis. The purpose of this work is to study the effect of some mineralizers and organic acids as well as sintering temperature on the structural and luminescence properties of manganese-doped zinc orthosilicate phosphor, synthesized at low temperature by impregnation-coprecipitation method. Photoluminescence spectroscopy, XRD, SEM and EDS were used to investigate the samples. The results show that the most suitable mole ratio of the constituents in the precursor is: 1.97 Zn : 0.03 Mn : 1.0 SiO2 : 0.03 H3BO3 : 0.03 CH3COOH. During 45 minutes, the sample calcined at 700 oC is a bi-phase mixture of β-Zn2SiO4 and α-Zn2SiO4, emitting yellow light at 575 nm wavelength when excited by 254 nm UV radiation. Boric acid is the mineralizer for α-Zn2SiO4. At 800 oC, there is a phase transition from the orthorhombic β-Zn2SiO4 to the rhombo H. axes α-Zn2SiO4. The sample calcined at 900 oC is a single-phase zinc manganese borosilicate solid solution with rhombo H. axes structure of α-Zn2SiO4, consisting of fairly uniform spherical particles with size from 0.3-0.5 µm and emitting 525 nm green light with a luminescence intensity of 46% higher than that of the control sample. The resulting luminescent pigment has the potential for security applications.
References
Bengisu, M. (Ed.), 2001. Engineering Ceramics. Springer-Verlag Berlin Heidelberg GmbH , New York. 395.
Bertail, C., Maron, S., Buissette, V., Mercier, T. L., Gacoin, T., and Boilot, J.-P., 2011. “Structural and photoluminescent properties of Zn2SiO4:Mn2+ nanoparticles prepared by a protected annealing process.” Chem. Mater. 23, 2961–2967.
Bharti, D. K., Verma, R., Rani, S., Agarwal, D., Mehra, S., Gangwar, A. K., Gupta, B. K., Singh, N., and Srivastava., A. K., 2023. “Synthesis and characterization of highly crystalline bi-functional Mn-doped Zn2SiO4 nanostructures by low-cost sol–gel process.” Nanomater. 13, 538.
Buxbaum, G. and Pfaff, G., 2005. Industrial Inorganic Pigments. Buxbaum, G. and Pfaff, G., ed., Willey-VCH, Germany, 262.
Cavourasa, D., Kandarakisa, I., Nomicosb, C.D., Panayiotakisc, G.S., Fezoulidisd, I., 2000. “Assessing the information content of phosphor produced medical images: application to Zn2SiO4:Mn phosphor.” Appl. Radiat. Isot. 52, 119–126.
Cho, T.H., Chang, H.J., 2003. “Preparation and characterizations of Zn2SiO4:Mn green phosphors.” Ceram. Int. 29, 611–618.
Cich, M., Kim, K., Choi, H., Hwang, S.T., 1998. “Deposition of (Zn,Mn)2SiO4 for plasma display panels using charged liquid cluster beam.” Appl. Phys. Lett. 73, 2116–2118.
Dai, R; Cheng, R; Wang, J; Zhang, C; Li, C; Wang, H; Wang, X; 2022. "Tunnel-structured willemite Zn2SiO4: Electronic structure, elastic, and thermal properties Article.” J. Adv. Ceram. 11(8), 1249–1262
Eppler, R. A., 2005. Ceramic Colorants, in: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Germany, 10.
Ghoul, J. E., All, N. A., 2020. “Synthesis and characterization of Mn+2-doped zinc silicate as potential green nanophosphor materials.” Indian J. Phys. 94, 1343–1350.
Haha, M. B., Bullerjahn, F., Schmitt, D., Spencer, N., Tebbe, M., 2015. Patent. AU2014317427B2.
Kang, T., Kang. H., Park, S., Deressa, G., Park, J., Kim, J., 2021. “Critical synthesis parameters of β-phase Zn2SiO4:Mn2+ phosphor and its metastability.” Mater. Today Commun. 26, 101798
Kim, Y.-Il, Im, W. B., Ryu, K.-S., Kim, K.-B., Lee, Y.-H., Lee, J. S., 2010. “Combined Rietveld refinement of Zn2SiO4:Mn2+ using X-ray and neutron powder diffraction data.” NIMPB 268, 346–351.
Krasnenko, T. I., Zaitseva, N. A., Ivanova, I. V., Baklanova, I. V., Samigullina, R. F., and Rotermel, M. V., 2020a. “The effect of Mg introduction on structural and luminescence properties of Zn2SiO4:Mn phosphor.” J. Alloys Compd. 845, 156296.
Krasnenko, T. I., Enyashin, A. N., Zaitseva, N. A., Samigullina, R. F., Tyutyunnik, A. P., Baklanova, I. V., Rotermel, M. V., Onufrieva, T. A., 2020b. “Structural and chemical mechanism underlying formation of Zn2SiO4:Mn crystalline phosphor properties.” J. Alloys Compd. 820, 153129.
Liao, Y., 2007. Practical Electron Microscopy and Database. GlobalSino, 1381.
Lukic´,S.R., Petrovic´, D.M., Dramic´anin, M.D., Mitric´, M. and Ðacˇanin, Lj., 2008 “Optical and structural properties of Zn2SiO4:Mn2+ green phosphor nanoparticles obtained by a polymer-assisted sol–gel method.” Scr. Mater. 58, 655–658
Mir, L. E., Omri, K., Ghou, J. E., 2015. “Effect of crystallographic phase on green and yellow emissions in Mn-doped zinc silicate nanoparticles incorporated in silica host matrix.” Superlattices Microstruct. 85, 180–184.
Morell, A., El Khiati, N., 1993. “Green phosphors for large plasma TV screens.” J. Electrochem. Soc. 140, 2019–2022.
Nguyen, T. P., Dang, H. P. Nguyen, L. G., Le, C. D., 2024 “Synthesis of ZnO nanoparticles-based fluorescent ink for information encryption and security applications”. Opt. Mater. 157 116296
Parmar, M. C., Zhuang, W. D., Murthy, K.V.R., Huang, X. W., Hu, Y. S., Natarajan, V., 2009. “Role of SiO2 in Zn2SiO4:Mn2+ phosphor used in optoelectronic material.” Indian J. Eng. Maters. 16, 185-187.
Plessen, H. v., Aktiengesellschaft, H., Frankfurt/Main, 2005. Sodium Sulfates, in: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Germany, 2.
Rakova, N., Matiasa, F., Xingb, Y., Macielb, G. S., 2024. “Mn2+doped Zn2SiO4 phosphors: A threefold-mode sensing approach for optical thermometry in the visible region at 525 nm.” Opt. Mater. X 24, 100359
Rivera-Enríquez, C.E., Fernández-Osorio, A., Chávez-Fernández, J., 2016. “Luminescence properties of α- and β-Zn2SiO4:Mn nanoparticles prepared by a co-precipitation method.” J. Alloys Compd. 688 Part B, 775–782.
Samigullina, R. F., Krasnenko, T. I., 2020. “Thermal analysis and mechanism of formation of Zn2SiO4:Mn phosphor under heating of synthetic hemimorphite.” Mater Res Bull. 129, 110890.
Samigullina, R. F., Ivanova, I. V., Zaitseva, N. A., Krasnenko, T. I., 2022. ”Solid-state synthesis of the Zn2SiO4:Mn phosphor: Sequence of phase formation, localization and charge state of Mn ions in the intermediate and final reaction products.” Opt. Mater.132,112788.
Schaffer, J. P.,Saxena A., Antolovich, S. D., Sanders, Jr. T. H., Warner, S. E., 1999. The science and design of engineering materials. McGraw–Hill International, Singapore, pp.82-84, 95-96.
Sivakumar, V., Lakshmanan, A., Kalpana, S., Rani, R. S., Kumar, R. S., and Jose, M. T., 2012. “Low-temperature synthesis of Zn2SiO4:Mn green photoluminescence phosphor.” J. Lumin. 132, 1917–1920.
Sivakumar, V., Lakshmanan, A., 2014. “Pyrolysis synthesis of Zn2SiO4:Mn2+ phosphors - effect of fuel, flux and co-dopants.” J. Lumin. 145, 420–424.
Smith, R. A., 2005. Boric Oxide, Boric Acid, and Borates, in: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Germany, pp. 3-4.
Sohn, K.-S., Cho, B., Chang, H., and Park, H. D., 1999. “Effect of co-doping on the Photoluminescence Behavior of Zn2SiO4:Mn Phosphors.” J. Electrochem. Soc. 146, 2353–2356.
Sohn, K.-S., Cho, B., Park, H. D., Choi, Y. G., Kim, K. H., 2000. “Effect of heat treatment on photoluminescence behavior of Zn2SiO4:Mn phosphors.” J. Eur. Ceram. Soc. 20, 1043–1051.
Takesue, M., Hayashi, H., Smith Jr., R. L., 2009. “Thermal and chemical methods for producing zinc silicate (willemite): A review.” Prog. Cryst. Growth Charact. Mater. 55, 98–124.
Taylor, H.F.W., 1962. “The dehydration of hemimorphite.” Am. Mineral. 47, 932–944.
Thanh, N. T., Ha, P. T., Quang, N. V., Thanh, L. X., 2021. “A novel approach to the preparation of manganese - doped zinc silicate luminescent material according to the precipitation method.” Vietnam J. Catal. Adsorpt. 3, 40-46.
Thieme, C., 2005. Sodium Carbonates, in: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Germany, p.3,16.
Tripathi N. and Akai T., 2021. “Structural designing of Zn2SiO4:Mn nanocrystals by co-doping of alkali metal ions in mesoporous silica channels for enhanced emission efficiency with short decay time. RSC Adv. 11, 36348
Vien, L. T. T., Tu, N., Phuong, T. T., Tuan, N. T., Quang, N. V., Bui, H. V., Duong, A.-T., Trung, D. Q., Huy, P. T., 2019. “Facile synthesis of single phase α-Zn2SiO4:Mn2+ phosphor via high-energy planetary ball milling and post-annealing method.” J. Lumin. 215, 116612.
Viswanathan, V. N. and Ghosh, S. N., 1983. Mineralizers and Fluxes in Clinkerization, in: Advances in Cement Technology, Ghosh, S. N., ed., Elsevier Ltd, pp.177-202.
Völz, H. G., Kischkewitz, J. et al., 2006. Pigments, Inorganic, in: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Germany, pp.29,38.
Wang, C., Wang J., Jiang J., Xin S., Zhu G., 2020. “Redesign and manually control the commercial plasma green Zn2SiO4:Mn2+ phosphor with high quantum efficiency for white light emitting diodes.” J. Alloys Compd. 814, 152340.
Westphal, G., Kristen G., Wegener, W., Ambatiello, P., Geyer, H., Epron, B., Bonal, C., Steinhauser, G., 2005. Sodium Chloride, in: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Germany
Ye, R., Ma, H., Zhang, C., Gao, Y., Hua, Y., Deng, D., Liu, P., Xu, S., 2013. “Luminescence properties and energy transfer mechanism of Ce3+/Mn2+ co-doped transparent glass - ceramics containing β-Zn2SiO4 nano - crystals for white light emission.” J. Alloys Compd. 566, 73–77.
Yen, W. M., Shionoya, S., Yamamoto, H., 2006. Practical Applications of Phosphors. Yen, W. M., Shionoya, S., Yamamoto, H., ed., CRC Press, New York, pp.131-133, 257–258.
Yoshizawa, K., Katoa, H. and Kakihana, M., 2012. “Synthesis of Zn2SiO4:Mn2+ by homogeneous precipitation using propylene glycol-modified silane.” J. Mater. Chem. 22, 17272–17277.
Yu, X., Zhang, H., Yu, J., 2021. “Luminescence anti-counterfeiting: From elementary to advanced.” Agg. 2, 20–34.
Copyright (c) 2024 ASEAN Journal of Chemical Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright holder for articles is ASEAN Journal of Chemical Engineering. Articles published in ASEAN J. Chem. Eng. are distributed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
Authors agree to transfer all copyright rights in and to the above work to the ASEAN Journal of Chemical Engineering Editorial Board so that the Editorial Board shall have the right to publish the work for non-profit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors’ personal use or for company use if the source and the journal copyright notice is indicated, and if the reproduction is not made for the purpose of sale.