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Abstract. The success rate of matrix acidizing in hydraulic fractured sandstone formation is less 

than 55%, much lower compared to the more than 91% success rate in carbonate formation. The 

need for alternative approaches to help the success ratio in matrix acidizing is crucial. This paper 

demonstrates a modeling technique to improve the success ratio of matrix acidizing in a hydraulic 

fractured sandstone formation. Supervised machine learning with 4 models of a neural network, 

logistic regression, tree, and random forest was selected to predict the successfulness of matrix 

acidizing in hydraulic fracturing. In parallel, multivariate analysis of principal component regression 

and partial least square regression approach were utilized to predict the oil gain of the job. For 

qualitative prediction, the results showed that the random forest was the best model to predict the 

successfulness of the job with the area under the curve (AUC) of 0.68 and precision of 0.73 in the 

training model with 70% of the data. Subsequently, the validation test with the rest of the data 

(30% data) gave 0.51 AUC and 61% precision. For quantitative prediction, the net oil gain was 

evaluated by using principal component regression (PCR) and partial least square regression (PLS-

R). The PCR and PLS-R model gave a coefficient of determination (R square) of 0.22 and 0.35, 

respectively. The p-value of PLS-R was 0.047 (95% confidence interval) which indicates that the 

model is significant. The results of this work demonstrate the potential application of supervised 

machine learning, principal component regression, and partial least square regression to improve 

candidate selection of oil wells for matrix acidizing especially in hydraulic fractured wells with 

limited design data. 
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INTRODUCTION 

 

Sandstone formation is commonly 

found in South Sumatra, Indonesia. In 

general, sandstone formation in South 

Sumatera or commonly known as KS field is 

shaly, has a very fine grain, has a thickness 

between 30 to 80 feet with an average of 54 

feet, the permeability of 0.64 to 35 millidarcy 

(md) and average porosity of 20%. The 
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porosity is considered high and low 

permeability according to the database from 

all petroleum-producing countries except 

Canada with a total of 30,122 reservoirs with 

average porosity ranging from 6.8% to 13% 

and permeability of 0.3 md to 120 md 

(Ehrenberg and Nadeau, 2005). Meanwhile 

other data from Columbia from 4,117 

measurements, the porosity is higher with 

13% to 25% (Ramón and Cross, 1997). The 

production contribution of this formation is 

about 20 % of the field production or the 

second largest after the limestone formation. 

Common challenges in sandstone 

formation are low permeability and tight 

reservoir. As a consequence of those 

conditions, hydraulic fracturing as a tool to 

enhance production or stimulation becomes 

a key factor to produce the well. After some 

time, production naturally declined below the 

economic limit. As a result, re-fracturing is 

often conducted to resume oil production 

(Zhang and Chen, 2010). Unfortunately, the 

cost of hydraulic fracturing is considered high 

for the mature or late-life fields which are 

characterized by relatively low production 

and high operating cost. Therefore, there is a 

need to find an alternative option to extend 

production and improve field economics. 

Matrix acidizing over hydraulic 

fractured wells is conducted in the KS field as 

an alternative to re-fracturing because of the 

lower cost and the opportunity to resume the 

production performance of the damaged 

formation. However, after a certain 

production time, the hydraulic fractured wells 

can undergo severe fines migration and 

promote formation damage. Although the 

common practice to resume a hydraulic 

fractured well is re-fracturing, it is worth 

noting that matrix acidizing implementation 

is also technically possible (Kalfayan, 2008). 

Hence, matrix acidizing can be a potential 

solution to encounter this case.  

Fig. 1 shows the common practice of 

matrix acidizing for non-hydraulic fracturing 

wells and the common practice of re-

hydraulic fracturing for the previously 

hydraulic fractured wells. In this study, we 

conducted an uncommon approach to 

conducting matrix acidizing in hydraulic 

fractured sandstone formation wells. Thus, 

suspected as the source of the success ratio 

is less than 55%. 

 

 

 

Fig. 1: The uncommon practice of matrix acidizing resulting in less than 55% success ratio and 

the alternative approaches to making improvements. 
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In general, sandstone acidizing uses a 

combination of HCl and HF or commonly 

known as mud acid. Sandstone acidizing is 

performed for two primary purposes: (1) to 

minimize perforation breakdown, and (2) to 

facilitate formation damage removal in the 

near-wellbore formation. Hydrofluoric acid 

(HF) is the only common acid that dissolves 

siliceous material which constitutes the main 

component in a sandstone formation. 

Therefore, sandstone acidizing formulation 

includes HF which is commonly combined 

with Hydrochloric acid (HCl) to attack the 

carbonate component and HCl soluble 

damage minerals in the formation. However, 

if the carbonate mineral content in the 

sandstone formation is more than 15-20%, 

HF should be avoided to prevent 

precipitation due to the excess reaction of HF 

and carbonate, and instead, HCl alone should 

be used (Kalfayan, 2008). Other alternative 

chemical recommendations are a chelating 

agent, organic acid, and organic acid-HF 

mixtures (Alhamad et al., 2020), (Shafiq, 

2018), (Al-Harbi, 2012), (Mahmoud et al., 

2011). 

The success criteria for matrix 

acidizing are an increase of liquid and oil 

which exceeds the economic break-even 

point (BEP). The success ratio of matrix 

acidizing in hydraulic fractured sandstone in 

the KS field conducted from 2003 to 2020 is 

about 55%, with a total of 72 jobs. In 

comparison, the matrix acidizing success ratio 

in Baturaja formation (carbonate formation) 

is more than 90%. The low success ratio in 

sandstone matrix acidizing is a problem but 

at the same time offers an opportunity for 

scientific exploration.  

The use of statistics and machine 

learning to predict the success rate of 

acidizing has been widely reported in the 

present literature. For instance, Tague (2000) 

used multivariate statistical analysis to 

improve formation damage remediation. 

Here, they reported the use of multiple 

regression to improve the success ratio of the 

acidizing process by developing selection 

criteria for wells. In another study, Sidaoui et 

al., (2018) used machine learning to predict 

the optimum injection rate for carbonate 

acidizing. The study used supervised machine 

learning to predict the pore volume to 

breakthrough (PVbt) by combining multiple 

variables such as fluid properties, rock 

properties, and operating conditions 

(pressure, temperature, and injection rate). 

The selected supervised machine learning 

model is a feed-forward neural network 

(FFNN), generate fuzzy inference system 

(GENFIS2), and a support vector machine 

(SVM). The best model was SVM which gave 

the highest R square of 0.88. In addition to 

qualitative judgment, a quantitative approach 

may also be used such as the use of partial 

least square regression (PLS-R). Liu et al. 

(2018) showed that PLS-R is a promising 

technique to predict the permeability of the 

formation.  

In theory, the acidizing practice should be 

supported by the availability of solubility and 

mineralogy (XRD) data of rock formation 

(Kalfayan, 2008). Unfortunately, in reality, 

these data are only available in limited wells, 

and even worse this data is often 

extrapolated to the majority of candidates as 

the design basis. Hence, the use of machine 

learning and multivariate analysis is an 

attractive alternative to correlate common 

parameters in wells to the solubility and 

mineralogy data which later can be used to 

appropriately select wells with a high 

probability of success.  

The first objective of this work was to 

provide a qualitative prediction on the 

successfulness of matrix acidizing in hydraulic 
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fractured sandstone formation using 

supervised machine learning. The second was 

to offer a quantitative prediction of oil gain 

using statistical principal component 

regression (PCR) and partial least square 

regression (PLS-R). For that purpose, we have 

conducted data mining to process data 

related to well properties, acidizing 

parameters, and hydraulic fracturing 

properties. This work is expected to increase 

our understanding to predict the success 

ratio of matrix acidizing in hydraulic fractured 

sandstone formation, especially in the KS 

field in Indonesia. 

 

METHODOLOGY 

 

Data mining 

This study was initiated by collecting 

data from various sources as illustrated in Fig. 

2. Some portion of the data is already 

available in centralized digital data. However, 

most of the data were available in a manual 

folder in excel format and pdf format. These 

data were then picked and collected manually 

in a scatter location to construct a matrix 

acidizing data set. Matrix acidizing data were 

collected from jobs conducted in sandstone 

formations from 2013 to 2019 with a total of 

72 oil producer wells. The most probable 

variables have been selected which include 

wells properties, job execution parameters, 

and hydraulic fracturing properties. Jobs are 

categorized as successful if it meets three 

criteria: net positive liquid gain, positive oil 

gain, and the oil gain is higher than the 

economic limit. 

The data set is illustrated in Table.1 

after all data were collected from the data 

mining process as described in Fig. 2. 

Approximately, 72 completed matrixes were 

acidizing in hydraulic fractured sandstone 

formation wells. The variables are formation 

properties, hydraulic fracturing, and 

acidizing. Table 1 shows the result of data 

mining as an input to the model which covers 

well properties, job parameters, and hydraulic 

fracturing aspects. For well properties, the 

selected parameters are permeability, 

porosity, net formation, carbonate fraction, 

shale fraction, reservoir pressure, current 

reservoir pressure, and reservoir pressure 

threshold. For hydraulic fracturing, features 

include fracturing length, fracturing width, 

fracturing height, fracturing volume, closure 

pressure, closure gradient, downhole 

injection pressure, current closure pressure, 

current closure gradient, acid volume, and 

gallon per foot acid. Eventually, for the job 

parameter, it includes the maximum injection 

pressure and acid pumping rate. These data 

were then used as the basis for machine 

learning and multivariate analysis to predict 

the success and oil gain. The orange software 

also uses to visualize cluster analysis as well 

as identification of significant features to 

determine the successfulness of matrix 

acidizing in hydraulic fractured well using the 

Free Viz feature. 

 

 

Fig. 2: Data mining process to study the 

success ratio of matrix acidizing in a 

hydraulic fractured sandstone formation. 

 

Supervised machine learning simulation 

After data mining was completed, 

modeling work was conducted to predict the 
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successfulness of the matrix acidizing in 

hydraulic fracturing wells. All the data were 

set as input variables in the orange data 

mining software (freely available from 

https://orangedatamining.com/) to perform 

model screening. The output of this part was 

to provide the best model which predicts a 

successful or unsuccessful job. 

 

 

Fig. 3: Order of the data processing in the 

orange software. 

 

Fig. 3 shows the diagram of data 

processing using orange software using 

supervised machine learning. The orange 

software version of 3.30 was utilized to screen 

various models such as logistic regression, 

neural network, tree analysis, and random 

forest (Uddin et al., 2019) to describe our 

data. In this study, 70% of the data were used 

to run the model and 30% of the data were 

used as a test. The outputs of this simulation 

include test accuracy for each model, 

confusion matrix, and prediction results. 

 

Principal component regression using 

SPSS 

Other than qualitative analysis, one 

can also propose a regression model to 

predict the net oil gain quantitatively. 

Regression is a common experiment analysis 

tool to describe experimental data by using a 

certain empirical model (Montgomery, 2013). 

As a result, this method may serve as a 

complementary criterion to evaluate the 

successfulness of the matrix acidizing. For this 

purpose, statistical modeling was conducted 

using SPSS IBM software. Because all 

variables were multicollinear, which means 

one independent variable was correlated with 

another independent variable, then the 

principal component regression was selected 

instead of multiple regression. 

The first step in conducting principal 

component regression was to run the Kaiser-

Meyer-Olkin measure of sampling adequacy, 

and bartlett’s test. Iteration of variables 

selection was conducted to achieve 

communalities above 0.5 which means each 

variable accounted for the components. 

 

Table 1. Data mining set for matrix acidizing in hydraulic fractured sandstone formation from 

2013 to 2019. (k) Permeability, P (porosity), AV (acid volume), and GPF (gallon per foot). 

 

No Well  Success Remark k P . . AV GPF 

1 0235 Un-successful 7.3 0.2   1900 95 

2 0095 Un-successful 26.9 0.27   2000 100 

.         

.         

71 0244 Successful 2.15 0.17   747 40 

72 0221 Successful 12.34 0.23   1244 60 

 

  

https://orangedatamining.com/
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The principal component analysis was 

then conducted to evaluate the cumulative 

variance explained by the principal 

components. The minimum target of 

explained variance was 60% with an 

Eigenvalue of more than 1. The principal 

component regression was then carried out. 

The model was then evaluated by calculating 

the coefficient of determination (R square 

value) and analysis of variance (ANOVA). 

Regression coefficients were also generated 

to provide the equation to predict the oil 

gain. 

 

Partial least square regression 

As a comparison to the principal 

component regression, this study also 

proposed the use of partial least square 

regression (PLS-R). In this study, the PLS-R 

was used to predict the oil gain from the 

matrix acidizing using variables from well 

properties and hydraulic fracturing. PLS-R 

was also selected because some of the 

variables are correlated, and this approach is 

widely used to solve the issue. ANOVA test 

was used to evaluate the significance of the 

proposed model using Minitab software.  

 

Combining supervised machine learning 

and multiple regression 

By combining the successfulness 

prediction using orange software and oil gain 

prediction using SPSS software, this study 

attempted to develop a systematic chart to 

predict the success of future matrix acidizing 

in the hydraulic fractured well. The method 

that was demonstrated here is expected to 

increase the net oil gain as well as minimize 

the cost of matrix acidizing in a hydraulic 

fractured well. Fig. 4 shows the flow process 

of the research which consists of data mining, 

successfulness criteria, input variables, 

supervised machine learning prediction of 

successfulness, and the oil gain prediction 

stage.

 

 

Fig. 4: Process flow diagram of the research combining machine learning (Qualitative analysis) 

and multiple regression (Quantitative analysis) for success/un-success oil gain prediction. 
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Fig. 5. Free Viz tool in orange software to visualize the variables that greatly affect the 

successfulness of the matrix acidizing in hydraulic fractured wells. 

 

RESULTS AND DISCUSSION 

Simulation with the Free Viz tool was 

carried out to analyze major variables that 

greatly affect the success of matrix acidizing. 

The results are shown in Fig. 5. The blue and 

red dots show successful and unsuccessful 

jobs, respectively. The variables are indicated 

by the arrow, the longer the arrow the higher 

the impact. The Blue area (successful job) can 

be separated from the red area (un-successful 

job) and the variables that greatly affected 

the success of the job are permeability (k), 

porosity (P), reservoir pressure (RP), closure 

pressure (CP), closure gradient (CG), shale 

fraction (V), perforation length (PL), 

maximum pumping rate (MPR), acid volume 

(AV), fracturing width (FW), fracturing length 

(FL), reservoir pressure threshold (T), 

maximum injection pressure (MIP), and 

fracturing volume (FV). 

 

Successful and unsuccessful prediction 

using supervised machine learning 

Model evaluation for matrix acidizing in 

hydraulic fractured wells was investigated 

using supervised machine learning with four 

models of logistic regression, neural network, 

tree, and random forest resulting. Table 2 

presents the result from model training using 

70% of the data. The values of area under the 

curve (AUC) for the random forest, tree, 

neural network, and logistic regression with 

of 0.68, 0.59, 0.50, and 0.51, respectively. The 

minimum acceptable AUC value was set to 0.5 

which is the following literature (Mandrekar, 

2010). A value of AUC below 0.5 is considered 

to deliver a failure model. Therefore, the 

acceptable models are random forest, tree, 

and logistic regression. 

 

Table 2. Model evaluation for matrix 

acidizing in hydraulic fractured wells with 

random forest, tree, neural network, and 

logistic regression. 

Model AUC Precision 

Random forest 0.68 0.73 

Tree 0.59 0.60 

Neural network 0.50 0.56 

Logistic regression 0.51 0.54 

 

Table 3 shows the test result for the 

remaining 30% of data where the software 
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did not have prior “knowledge” of the 

acidizing results. Logistic regression and 

random forest exhibited a value of AUC and 

precision above 0.5. Therefore, the two 

models can predict the successfulness of the 

matrix acidizing. 

 

Table 1. The value of AUC and precision of 

machine learning models using 30% of 

remaining data of matrix acidizing. 

Model AUC Precision 

Logistic regression 0.58 0.62 

Random forest 0.51 0.61 

Neural network 0.47 0.51 

Tree 0.50 0.51 

 

After screening 4 models, as presented in 

Table. 2 and Table. 3, to predict the 

successfulness of matrix acidizing in a 

hydraulic fractured well, it appears that the 

best model was the random forest. Table 4 

shows the confusion matrix from the random 

forest model validation test by comparing the 

actual and predicted data. It is worth noting 

that model validation was conducted by 

using 30% of the data set. It shows that the 

random forest model shows good 

performance in predicting the successfulness 

of the matrix acidizing job, where the desired 

results were shown in the diagonal elements 

of the table. It shows that 13 out of 21 data 

were correctly predicted by the model. Based 

on Table 4, there were only 8 out of 21 jobs 

that miss classified. In detail, this model 

misclassified the successful job as un-

successful only in one well, and 7 jobs of un-

successful jobs miss classified as successful. 

With these results, the random forest model 

shows a promising result as a tool to predict 

the success of a matrix acidizing treatment 

before the operation. The model is expected 

to increase the success ratio as well as 

minimize the unsuccessful operation. 

Principal component regression (PCR) 

using SPSS 

The model prediction provides 

quantitative analysis by predicting the oil 

gain results of the successful jobs using 

principal component regression (PCR) 

assisted by SPSS. Table 4 is the result of the 

Kaiser-Meyer-Olkin test (KMO) and bartlett’s 

test. KMO value for the data is 0.516 and 

Bartlett’s test results in a significant value (p-

value < 0.001). KMO value is between 0 to 1, 

and the minimum value that the data can be 

analyzed using PCA is above 0.5 (Joshi and 

Patil, 2020), (Begdache et al., 2019). 

 

Table 2. Confusion matrix for random forest 

model 

 

Table 3. Kaiser-Meyer-Olkin and Bartlett's 

test 

Kaiser-Meyer-Olkin 

Measure of Sampling 

Adequacy. 

Bartlett's Test of Sphericity 

Approx. Chi-

Square 
df Sig. 

0.516 642 36 0.000 

 

Table 6 shows the communalities of the 

independent variables with a value of above 

0.5. Communalities value is between 0 to 1, 

the higher the value indicating that the 

variable is excellence captured by the factor 

model (Ghozali, 2018), (Eaton et al., 2019). 

Eaton explained communalities value 

between 0.25 to 0.4 is acceptable as a cut-off, 

and above 0.7 is ideal. The results of 

communalities in this data analysis are all 

higher than 0.7. These variables are 

permeability (k), porosity (P), shale fraction 

(V), reservoir pressure (RP), current reservoir 

 PREDICTED 

  Success-

ful 

Unsuccess-

ful 

Total 

ACTUAL Successful 11 1 12 

 Unsuccessful 7 2 9 

 Total 18 3 21 
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pressure (CRP), closure pressure (CP), closure 

gradient (CG), current closure pressure (CCP) 

and current closure gradient (CCG) 

 

Table 4. Independent variables 

communalities after extraction using 

principal component analysis with a value 

higher than 0.5. 

Communalities 

 Initial Extraction 

k 1.000 .871 

P 1.000 .854 

V 1.000 .849 

RP 1.000 .757 

CRP 1.000 .996 

CP 1.000 .957 

CG 1.000 .960 

CCP 1.000 .868 

CCG 1.000 .990 

Extraction Method: Principal 

Component Analysis. 

 

The PCA results are presented in Table 7 

and Fig. 6, these two analyses explain the 

component with an eigenvalue higher than 

one. The first factor can explain about 35% of 

the variance, the second factor explains about 

30%, and the third factor was about 25%, and 

altogether these three components can 

explain more than 90% of the variance. 

 

 

Fig. 6. Eigenvalue from 9 variables. Three 

variables with an Eigenvalue greater than 

one explain a total of about 90% of the 

variance. 

 

The component matrix of the three-

component is presented in Table 8. Each 

component can be constructed from the 

original variables permeability (k), porosity 

(P), shale fraction (V), reservoir pressure (RP), 

 

Table 5. The total variance was explained after PCA was conducted. with three components the 

PCA can explain about 90% of the variance. 

Total Variance Explained 

C
o

m
p

o
n

e
n

t Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 
Rotation Sums of Squared Loadings 

Total 
% of 

Variance 

Cumulative 

% 
Total 

% of 

Variance 

Cumulative 

% 
Total 

% of 

Variance 

Cumulative 

% 

1 4.103 45.585 45.585 4.103 45.585 45.585 3.142 34.908 34.908 

2 2.734 30.381 75.965 2.734 30.381 75.965 2.740 30.450 65.358 

3 1.266 14.065 90.030 1.266 14.065 90.030 2.221 24.672 90.030 

4 .538 5.981 96.011       

5 .243 2.705 98.716       

6 .100 1.107 99.823       

7 .015 .170 99.992       

8 .001 .006 99.998       

9 .000 .002 100.000       

Extraction Method: Principal Component Analysis. 
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current reservoir pressure (CRP), closure 

pressure (CP), closure gradient (CG), current 

closure pressure (CCP) and current closure 

gradient (CCG). 

 

Table 6. Value of three-component matrix 

from the original variables. 

Component Matrix 

 

Component 

1 2 3 

k -.099 .806 .459 

P -.155 .754 .512 

V -.396 -.832 .007 

RP .844 -.070 -.202 

CRP .788 -.418 .448 

CP .761 .486 -.377 

CG .865 .321 -.331 

CCP .908 -.035 .205 

CCG .654 -.551 .508 

Extraction Method: Principal Component 

Analysis. 

a. 3 components extracted. 

 

After the PCA parameter fulfilled the 

criteria, then regression analysis can be 

conducted. The resulting R square is about 

0.22 as shown in table 9. At first, it seems like 

the resulting R square regression is low. 

However, for multiple regression, this value 

appears to be acceptable (Hatcher, 2013). 

According to Hatcher (2013), R square for 

multiple regression can be classified as 0.02 

(small), 0.13 (medium), and 0.26 (large). With 

this reference, the principal component 

regression in this research can be classified as 

significant. 

 

Table 7. R square value for the principal 

component regression 

Model Summaryb 

Model R R Square 
Adjusted  

R Square 

Std. Error of 

the Estimate 

1 .466a .217 .138 9.150 

a. Predictors: (Constant), REGR factor score 3 

for analysis 8, REGR factor score 2 for 

analysis 8, REGR factor score 1 for analysis 8 

b. Dependent Variable: GBO 

 

The regression coefficient of the principal 

component regression is represented in Table 

10 of the dependent variable of Oil gain 

(GBO) with a constant of 20.9, coefficient 2.1 

of regression factor one, -4.1 of regression 

factor two, and -0.52 of regression factor 

three. The equation then can be constructed 

as Oil gain (GBO) is equal to 20.9 + 2.1 

regression factor one -4.1 regression factor 

two – 0.52 regression factor three. 

 

 

Table 8. The principal component regression coefficient of the dependent variable of Oil gain 

(GBO) with a constant of 20.9, coefficient 2.1 of regression factor one, -4.1 of regression factor 

two, and -0.52 of regression factor three. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coefficients 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 

Collinearity 

Statistics 

B Std. Error Beta   Tolerance VIF 

 (Constant) 20.902 1.569  13.31 .000   

REGR factor 1  2.102 1.593 .213 1.32 .197 1.000 1.000 

REGR factor 2  -4.048 1.593 -.411 -2.54 .016 1.000 1.000 

REGR factor 3  -.518 1.593 -.053 -.325 .747 1.000 1.000 

a. Dependent Variable: GBO 
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Fig. 7 shows that the actual residual 

distribution is in line with the normal 

distribution line, and validates the normality 

(Joshi and Patil, 2020). 

  

 

Fig. 7. The plot of the residual expected and 

observed. The dot value is consistently close 

to the line, indicating the residual is normally 

distributed. 

 

Partial least square regression (PLS-R) 

The ANOVA of PLS-R is shown in Table 11. 

An approach using Minitab to predict the oil 

gain of the job resulting significant value (p-

value) of 0.047 using alfa of 5% (0.05) which 

means the regression is significant. 

 

Table 9. Analysis of variance of partial least 

square regression to predict oil gain with 10 

variables. 

Source DF SS MS F P 

Regression 10 24684 2468 2.11 0.047 

Residual Error 39 45570 1168   

Total 49 70254    

 

DF (degree of freedom), SS (sum of 

squares), MS (mean square), F (critical value), 

and P (significant level). The p-value is 0.047 

is less than the alfa of 0.05 indicating the 

regression is significant. 

Then, Fig. 8 illustrates the optimal R 

square of the regression was 0.35 which 

means the equation can explain about 35% of 

the variance and indicates other variables will 

explain the rest of 65%. This needs further 

study to evaluate another variance, which 

currently is not identified. According to 

(Kalfayan, 2008), solubility and mineralogy 

are the critical data to conduct matrix 

acidizing in sandstone formation, probably 

most of them are part of the 65% variables. 

 

 

Fig. 8. Optimal R square 0.35 of partial least 

square using 10 principal components with 

the dependent variable of GBO (Oil gain). 

 

Fig. 9 is the PLS residual normal plot with 

a 95% confidence level. The outer solid line is 

the plot of the confidence level of the 

individual percentiles. The residual is good if 

the point falls close to the center straight line. 

In this plot, most of the residuals fall closer to 

the straight line, and some of them are away 

and consider outliers. Moreover, zero 

standardized residual is more than 50% which 

means most of the points are fitted. 

The final result for partial least square 

regression is the Equation (1). Table 12 is the 

equation coefficient to predict oil gain (GBO) 

using the selected variables. This equation 

can be utilized to predict the oil gain and 

screening of the future candidate. With this 

approach, the success ratio is expected to be 

increasing. The oil gain equation will be as 

follow: 
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𝐺𝐵𝑂 =  −410.53 − 1.26 𝑘 + 327.83 𝑃 +

0.17 ℎ − 95.22 𝐶 + 80.66 𝑉 − 0.08 𝑅𝑃 +

0.09 𝑀𝐼𝑃 + 12.97 𝑀𝑃𝑅 + 0.08 𝑃𝐿 + 0.10 𝐹𝐿 +

36.19 𝐹𝑊 + 0.17 𝐹𝐻 − 0.36 𝐹𝑉 + 006 𝐶𝑃 +

381.71 𝐶𝐺 − 0.0 𝐷𝐼𝑃 − 0.01 𝐴𝑉 + 0.94 𝐺𝑃𝐹

     (1)

  

Table 10. The oil gain (GBO) regression 

equation coefficient for the selected 

variables. 

 GBO 

GBO 

standardized 

Constant -410.53 0.00 

k -1.26 -0.15 

P 327.83 0.23 

h 0.17 0.06 

C -95.22 -0.08 

V 80.66 0.16 

RP -0.08 -0.51 

MIP 0.09 0.33 

MPR 12.97 0.41 

PL 0.80 0.12 

FL 0.10 0.23 

FW 36.19 0.18 

FH 0.17 0.06 

FV -0.36 -0.21 

CP 0.06 0.36 

CG 381.71 0.56 

DIP -0.05 -0.35 

AV -0.01 -0.07 

GPF 0.94 0.20 

Predictors: permeability (k), porosity (P), net 

pay (h), carbonate fraction (C), shale fraction 

(V), reservoir pressure (RP), maximum 

injection pressure (MIP), maximum pumping 

rate (MPR), perforation length (PL), Fracturing 

length (FL), Fracturing width (FW), Fracturing 

height (FH), Fracturing volume (FV), closure 

pressure (CP), closure gradient (CG), 

downhole injection pressure (DIP), acid 

volume (AV). 

 

 

Fig. 9. Partial least square (PLS) residual 

normal plot. The straight line in the middle is 

the fitted line. If the residual is close to the 

straight line this is a good fit. Outer solid 

lines are confidence intervals for the 

individual percentiles. 

 

Combination of qualitative and 

quantitative approach 

The success of the job is greatly affected 

by the variables in Table 12. The approach of 

supervised machine learning can be utilized 

to predict the successfulness of the matrix 

acidizing in hydraulic fracturing wells as a 

qualitative analysis. Random forest is the best 

model with an area under the curve (AUC) of 

0.68, and a precision of 0.61 in the data test.  

To validate the model, the new data from 

the latest jobs were introduced to the model 

and resulting in 67% accuracy. Referring to 

the minimum validity requirement of 60%, the 

validity value is good. 

Principal component regression is greatly 

supporting the quantitative analysis by 

predicting the oil gain from the successful 

matrix acidizing in hydraulic fracturing jobs. 

Statistical analysis can be accepted from KMO 

of 0.516 and significant bartlett’s test with a 

p-value below 0.001. Principal component 

analysis results in 3 components that can 

explain more than 90% variance from 9 

original variables. 

The R square of the principal component 

regression is about 0.22 and is categorized as 

large from the reference. The resulting 
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equation of Oil gain (GBO) is equal to 20.9 + 

2.1 regression factor one -4.1 regression 

factor two – 0.52 regression factor three. 

As a comparison partial least square 

regression (PLS-R) resulting R square of 0.35 

with a p-value (significant value) of 0.047 and 

alfa 5% (0.05) indicate that the regressions 

were significant.  

 

 

 

Fig. 10. Lower: Hydraulic fracturing. Upper: 

Matrix acidizing. 

 

In general regression, this value is 

considerably low. Otherwise, in multiple 

regression, the R square for multiple 

regression are 0.02 (small), 0.13 (medium), 

and 0.26 (large) (Hatcher, 2013). With this 

reference, the regression in this research is 

categorized as a large effect (significant). This 

explanation is also supported by 

Montgomery (2013), which stated that the 

data which are not prepared for experiments 

will most likely produce a lower R square. 

These results are in line with this research 

data type. 

Based on all models’ predictions the 

physical phenomenon of matrix acidizing in 

hydraulic fractured sandstone formation can 

be explained from the diagram. Fig. 9 shows 

the illustration of the matrix acidizing and 

hydraulic fracturing. The upper figure is 

hydraulic fracturing, and the lower figure is 

matrix acidizing. Some variables still cannot 

be identified that probably impacting to the 

matrix acidizing performance. Future 

research should examine the remaining 

variables which highly suspected will be 

considered to improve the prediction 

accuracy. 

These results imply the opportunity for 

supervised machine learning, principal 

component regression, and partial least 

square regression to improve the candidate 

selection for matrix acidizing in hydraulic 

fractured wells with limited design data. 

 

 CONCLUSIONS 

 

The use of machine learning and multiple 

regression has been demonstrated to predict 

the successfulness and net oil gain in matrix 

acidizing of hydraulic fractured sandstone 

wells. Supervised machine learning with 4 

models of the neural network, logistic 

regression, tree, and random forest has been 

screened to predict the successfulness of 

matrix acidizing in hydraulic fracturing. The 

results showed that logistic regression and 

random forest model exhibited a value of 

AUC and precision above 0.5. Therefore, the 

two models can predict the successfulness of 

the matrix acidizing. 

In addition, for the quantitative 

prediction of oil net gain, the principal 

component regression gave an R square of 
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0.22. In addition, partial least square models 

gave an R square of 0.35 with a p-value 

(significant value) of 0.047 and an alfa of 5% 

(0.05).  

The present work is expected to show an 

alternative method to predict the success rate 

of matrix acidizing in hydraulic fractured 

wells. The current approach overcomes the 

limited availability of solubility and 

mineralogy data in the field. The current 

methodology is expected to increase the 

success ratio for the future acidizing job by 

eliminating the non-suitable candidates.  
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NOMENCLATURE 

 

AUC : The area under the curve 

𝑃CR  : Principal component regression 

PLS − R  : Partial least square regression 

R square  : Coefficient of determination 

PVbt  : Pore volume to breakthrough 

XRD : X-Ray diffraction 

k : Permeability [milli Darcy] 

𝑃  : Porosity [%] 

𝑅𝑃  : Reservoir pressure [psig] 

𝐶𝑃  : Closure pressure [psig] 

𝐶𝐺  : Closure gradient [psi/ft] 

𝑉  : Shale fraction [%] 

𝑃𝐿  : Perforation length [m] 

𝑀𝑃𝑅  : Maximum pumping rate [gpm] 

𝐴𝑉  : Acid volume [bbl] 

𝐹𝑊  : Fracturing width [inch] 

𝐹𝐿            : Fracturing length [ft] 

T :  Reservoir pressure threshold 

[psig] 

MIP : Maximum injection pressure 

[psig] 

FV : Fracturing volume [ft3] 

KMO : Kaiser-Meyer-Olkin test 

PCA : Principal component analysis 

CCP : Current closure pressure [psig] 

CCG : Current closure gradient [psi/ft] 

GBO : Oil gain [bopd] 

df : Degree of freedom 

SS : Sum of square 

MS : Mean square 

F : Critical value 

p : Significant level 

h : Net pay [ft] 

C : Carbonate fraction [%] 

DIP :  Downhole injection pressure 

[psig] 
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Appendix A  

Raw data of matrix acidizing in hydraulic fractured sandstone wells 

Well Name Successful/Unsuccessful k P h C V RP CRP T MIP MPR APR PL FL FW FH FV CP CG DIP CCP CCG AV GPF GBL GBO 

1 Unsuccessful 7.276 0.2 55.5 0.12 0.19 1203 1130 450 600 1.4 1 32 184 0.25 55.5 30 1831 0.67 1573 1792 0.66 1900 95 57 -4 

2 Unsuccessful 26.874 0.271 6.5 0.12 0.185 570 557 450 800 3.1 2.5 10 0 0 6.5 0 1498 0.55 1775 1491 0.55 2000 100 -11 -7 

3 Successful 1.353 0.19 43.5 0.15 0.473 886 886 650 800 3.9 2.5 20 486.38 0.3 43.5 75 1322 0.58 1583 1470 0.64 2200 110 71 48 

4 Unsuccessful 6.644 0.203 112.5 0.14 0.306 522 529 450 800 9 9 20 435 0.13 112.5 76 1462 0.54 1765 1466 0.54 2000 100 11 2 

5 Successful 9.005 0.213 72.5 0.16 0.233 811 861 450 800 2.4 1.6 11 189 0.06 72.5 10 1629 0.59 1779 1656 0.60 3024 100 139 20 

6 Unsuccessful 2.511 0.221 75 0.13 0.343 421 622 650 700 2 1.8 20 263 0.21 75 49 1046 0.44 1517 1364 0.58 1932 120 0 -8 

7 Successful 6.555 0.205 49 0.09 0.308 980 914 450 800 3.6 2 20 336 0.25 49 49 1686 0.63 1747 1652 0.62 882 44 182 160 

8 Successful 7.543 0.209 66 0.07 0.246 439 508 450 594 4.5 2 22 206 0.217 66 35 1378 0.53 1125 1414 0.54 1176 40 38 37 

9 Unsuccessful 5.714 0.192 84 0.08 0.252 969 885 450 749 1.1 0.7 40 215 0.2 84 43 1675 0.63 1792 1630 0.61 2280 110 18 3 

10 Unsuccessful 12.003 0.214 88.38 0.10 0.197 990 947 450 492 5 2.6 30 200 0.2 88.38 42 1695 0.63 1501 1672 0.62 4024 134 -76 2 

11 Unsuccessful 2.511 0.221 75 0.13 0.343 421 622 650 594 3.7 2.5 20 263 0.21 75 49 1046 0.44 1617 1364 0.58 941 47 -1 -3 

12 Successful 23.04 0.259 53 0.06 0.231 538 469 450 607 1.8 1.6 32 552 0.061 53 21 1460 0.54 1755 1423 0.53 1621 55 164 11 

13 Unsuccessful 7.276 0.2 55.5 0.12 0.19 1093 1130 450 551 1.6 1.3 32 184 0.25 55.5 30 1773 0.65 1773 1792 0.66 1433 40 -44 -5 

14 Unsuccessful 11.117 0.221 44.5 0.07 0.285 1003 927 450 525 3.2 2.5 16 203 0.37 44.5 40 1706 0.64 1754 1665 0.62 782 60 -123 -2 

15 Unsuccessful 9.005 0.213 72.5 0.16 0.233 808 861 450 654 2.9 2.2 89 189 0.06 72.5 10 1628 0.59 1779 1656 0.60 1303 60 32 -5 

16 Unsuccessful 54.153 0.289 83.5 0.09 0.24 308 342 450 749 4 4 20 122 0.412 83.5 50 1310 0.50 927 1328 0.51 1303 60 32 2 

17 Successful 7.276 0.2 55.5 0.12 0.19 1093 1130 450 526 1.5 1.2 32 184 0.25 55.5 30 1773 0.65 1773 1792 0.66 1433 40 88 19 

18 Successful 12.77 0.234 59 0.07 0.319 727 620 450 492 5 5 16 200 0.2 59 28 1556 0.58 1050 1499 0.56 782 40 120 90 

19 Unsuccessful 5.4 0.174 79.6 0.08 0.213 882 828 450 578 2.9 2.1 20 343 0.061 79.6 20 1648 0.61 1761 1620 0.60 912 40 14 2 

20 Unsuccessful 9.119 0.224 34.5 0.05 0.382 893 901 450 525 4 2.7 14 142 0.27 34.5 16 1675 0.61 1781 1679 0.61 652 40 548 -34 

21 Successful 10.838 0.216 37 0.12 0.244 387 428 450 800 2.1 1.8 14 208.88 0.83 37 76 1382 0.51 1757 1404 0.52 912 60 20 32 

22 Successful 8.585 0.217 55 0.05 0.24 887 681 450 480 3.9 3.9 24 145.4 0.284 55 27 1684 0.61 1474 1575 0.57 1563 60 90 74 

23 Successful 7.543 0.209 66 0.07 0.246 391 508 450 594 6 5 22 206 0.217 66 35 1352 0.52 975 1414 0.54 912 40 150 145 

24 Successful 63.499 0.27 65.5 0.08 0.185 424 510 450 607 4.5 4.5 36 210 0.2 65.5 33 1382 0.52 937 1428 0.54 2344 60 72 63 

25 Successful 22.954 0.261 68.93 0.10 0.004 486 870 450 300 4 4 40 234 0.26 68.93 50 1410 0.54 1232 1613 0.61 1303 60 64 60 

26 Successful 3.645 0.158 72 0.08 0.226 1104 1230 450 800 1 1 15 152 0.6 72 78 1783 0.65 1777 1849 0.68 652 40 20 15 

27 Successful 2.234 0.169 54.08 0.12 0.328 856 708 450 800 4 3.3 24 200 0.2 54.08 26 1666 0.60 1792 1588 0.57 1042 40 38 13 

28 Unsuccessful 56.027 0.295 76.5 0.06 0.218 780 1230 450 800 6 6 30 200 0.25 76.5 45 1576 0.59 1743 1814 0.68 1303 40 0 -11 

29 Unsuccessful 1.824 0.187 52 0.18 0.41 848 848 650 800 2 2 18 262 0.25 52 40 1300 0.57 1587 1454 0.63 912 40 -4 -12 

30 Successful 0.609 0.156 48 0.18 0.442 743 743 650 800 3.8 3 20 190 0.47 48 51 1251 0.53 1612 1423 0.60 912 40 16 13 

31 Successful 2.511 0.221 75 0.13 0.343 622 622 650 800 3.3 2.8 20 263 0.21 75 49 1176 0.50 1617 1364 0.58 1303 60 10 9 

32 Successful 1.926 0.206 63.5 0.11 0.342 835 835 650 800 3.4 3 20 368 0.25 63.5 69 1313 0.56 1615 1475 0.63 912 40 72 26 



 

33 Successful 63.499 0.27 65.5 0.08 0.185 403 510 450 800 5.5 2 36 210 0.2 65.5 33 1371 0.52 1737 1428 0.54 1493 40 128 27 

34 Successful 1.618 0.198 43.5 0.14 0.461 311 810 650 800 3.5 1.5 23 426 0.22 43.5 48 966 0.41 1605 1452 0.62 871 40 13 12 

35 Successful 6.479 0.279 67 0.13 0.218 683 702 650 800 3.5 2 29 327 0.3 67 78 1219 0.51 1621 1411 0.59 871 40 9 6 

36 Successful 14.192 0.231 47 0.10 0.301 712 918 450 800 2.7 1.8 18 280 0.44 47 69 1538 0.58 1741 1647 0.62 747 40 212 24 

37 Successful 26.874 0.271 6.5 0.12 0.185 839 557 450 800 2.4 1.5 10 0 0 6.5 69 1640 0.60 1775 1491 0.55 498 40 20 20 

38 Successful 1.825 0.204 50.5 0.11 0.346 802 802 650 800 1.5 0.8 19 376 0.2 50.5 45 1298 0.55 1623 1466 0.62 871 40 20 19 

39 Successful 10.838 0.216 37 0.12 0.244 415 428 450 800 1.8 1.5 14 208.88 0.83 37 76 1397 0.52 1757 1404 0.52 373 40 34 29 

40 Unsuccessful 6.678 0.211 20 0.08 0.342 359 376 450 800 1.6 0.9 20 141.23 0.24363 20 8 1351 0.51 1741 1360 0.51 622 40 0 0 

41 Successful 1.075 0.179 31 0.15 0.446 487 784 650 800 4.1 3.5 20 221 0.127 31 10 1063 0.46 1583 1416 0.62 995 40 12 11 

42 Successful 2.221 0.215 80 0.14 0.369 844 844 650 551 2 2 36 187 0.25 80 44 1291 0.57 1583 1442 0.63 871 40 20 20 

43 Unsuccessful 10.165 0.221 76 0.09 0.248 816 447 450 400 2.5 2 20 216 0.8 76 156 1623 0.60 1370 1427 0.52 871 40 52 -2 

44 Successful 1.543 0.195 60 0.07 0.46 488 935 650 800 4.4 2.1 20 308 0.2 60 44 1063 0.47 1582 1494 0.65 871 40 8 8 

45 Successful 9.005 0.213 72.5 0.16 0.233 726 861 450 800 2.1 1.7 89 189 0.06 72.5 10 1584 0.58 1779 1656 0.60 1244 40 190 117 

46 Unsuccessful 5.714 0.192 84 0.08 0.252 674 885 450 800 1.2 0.5 40 215 0.2 84 43 1519 0.57 1742 1630 0.61 871 40 -8 -8 

47 Unsuccessful 6.842 0.206 75.5 0.08 0.266 414 687 450 800 2.5 2.1 17 0 0 75.5 43 1373 0.52 1734 1518 0.58 747 40 10 3 

48 Successful 54.153 0.289 83.5 0.09 0.24 756 342 450 250 2 1.4 20 122 0.412 83.5 50 1547 0.59 1177 1328 0.51 871 40 24 23 

49 Unsuccessful 0.419 0.125 20.04 0.08 0.201 460 361 450 900 0.3 0.3 15 120 0.37 20.04 11 1398 0.53 1835 1346 0.51 995 60 0 0 

50 Successful 1.926 0.206 63.5 0.11 0.342 835 835 650 300 2 1.7 20 368 0.25 63.5 69 1313 0.56 1115 1475 0.63 1244 60 64 28 

51 Successful 9.119 0.224 34.5 0.05 0.382 843 901 450 800 2.4 1.5 14 142 0.27 34.5 16 1649 0.60 1781 1679 0.61 622 40 294 82 

52 Unsuccessful 16.75 0.237 50 0.07 0.258 1230 1230 450 800 0.5 0.5 12 221 0.127 50 17 1852 0.67 1780 1852 0.67 747 60 0 0 

53 Unsuccessful 0.684 0.16 67 0.18 0.397 790 981 650 800 1.7 1.5 15 423 0.2 67 67 1283 0.54 1614 1551 0.66 995 60 0 0 

54 Successful 7.276 0.2 55.5 0.12 0.19 931 1130 450 800 2.5 2.5 32 184 0.25 55.5 30 1687 0.62 1773 1792 0.66 1369 40 30 10 

55 Successful 5.25 0.197 58.53 0.15 0.312 738 738 450 800 2 2 30 133.8 0.436 58.53 41 1586 0.58 1775 1586 0.58 1244 40 200 17 

56 Successful 2.145 0.171 48.76 0.09 0.345 592 515 450 525 2 1.5 18 228.4 0.252 48.76 33 1494 0.55 960 1453 0.54 747 40 109 54 

57 Successful 3.46 0.18 57 0.06 0.28 316 625 450 655 3.1 2.6 21 186 0.68 57 86 1321 0.50 934 1485 0.56 747 40 24 15 

58 Unsuccessful 11.32 0.205 48.62 0.14 0.239 459 576 450 800 0.7 0.7 16 210 0.33 48.62 40 1409 0.53 1746 1471 0.55 995 60 -20 -21 

59 Unsuccessful 3.008 0.18 55.5 0.10 0.325 951 974 450 800 1.2 0.8 20 308 0.25 55.5 51 1689 0.62 1765 1701 0.63 871 40 0 0 

60 Successful 5.4 0.174 79.6 0.08 0.213 931 828 450 600 3.9 1 20 343 0.061 79.6 20 1674 0.62 1561 1620 0.60 871 40 52 34 

61 Unsuccessful 9.696 0.204 41.58 0.09 0.284 591 435 450 800 4.1 0.6 12 206 0.17 41.58 17 1496 0.55 1763 1414 0.52 498 40 -4 -2 

62 Unsuccessful 5.379 0.203 54.92 0.06 0.238 584 1198 450 580 3 2 30 219 0.3 54.92 43 1471 0.55 941 1796 0.68 1244 40 -58 -12 

63 Successful 12.77 0.234 59 0.07 0.319 583 620 450 800 3.4 2.1 16 200 0.2 59 28 1479 0.55 1750 1499 0.56 747 40 120 113 

64 Unsuccessful 0.965 0.173 41 0.10 0.437 749 604 650 800 3.2 2.7 20 356 0.42 41 73 1236 0.54 1588 1325 0.58 871 40 -5 1 

65 Successful 1.926 0.206 63.5 0.11 0.342 835 835 650 527 3.2 2.7 20 368 0.25 63.5 69 1313 0.56 1588 1475 0.63 871 40 41 25 

66 Successful 63.499 0.27 65.5 0.08 0.185 364 510 450 800 0.3 0.1 36 210 0.2 65.5 33 1350 0.51 1737 1428 0.54 1493 40 32 24 

67 Successful 56.027 0.295 76.5 0.06 0.218 670 1230 450 562 3 2 30 200 0.25 76.5 45 1518 0.57 953 1814 0.68 1244 40 19 17 

68 Unsuccessful 8.926 0.216 58.74 0.13 0.281 484 1019 450 700 3.3 3.3 14 209 0.39 58.74 57 1441 0.53 1664 1724 0.64 622 40 -34 5 



 

69 Successful 10.142 0.221 60 0.08 0.276 568 544 450 578 2 1.5 14 152 0.78 60 84 1524 0.55 1002 1512 0.54 622 40 136 18 

70 Successful 15.479 0.213 70 0.08 0.225 584 1084 450 800 2.5 1 24 118 0.34 70 33 1488 0.55 1758 1753 0.65 995 40 147 22 

71 Successful 2.145 0.171 48.76 0.09 0.345 424 515 450 525 2 2 18 228.4 0.252 48.76 33 1405 0.52 960 1453 0.54 747 40 52 34 

72 Successful 12.335 0.232 51.82 0.09 0.243 754 830 450 600 2.2 1.5 20 218 0.69 51.82 93 1599 0.58 1579 1639 0.60 1244 60 712 22 

 

New data from the latest jobs for validity check 

Well 
Nam

e 

Successful/Unsucces
sful 

k (mD) 
Porosity 
(Fractio

n) 

h 
(ft
) 

Carbonat
e 

(Fraction
) 

Vshal
e 

Resistivit
y 

(ohmm) 

Reservo
ir 

Pressur
e (psi) 

Max 
Injectio

n 
Pressur
e (psi) 

Max 
Pumpin
g Rate 
(bpm) 

Acid 
Pumpin
g Rate 
(bpm) 

Perforatio
n Length, 

ft 

Frac 
Lengt
h, ft 

Frac 
Widt

h, 
inch 

Frac 
Heigh

t, ft 

Frac 
Volum
e, bbl 

Closure 
Pressur
e, Psig 

Closure 
Gradien

t, 
Psig/ft 

Downhol
e 

Injection 
Pressure

, Psig 

Current 
Closure 
Pressur
e, Psig 

Current 
Closure 
Gradien

t, 
Psig/ft 

Acid 
Volum

e 
(gals) 

GP
F 

Gain 
BFP

D 

Gain 
BOP

D 

1 Unsuccessful 10.08 0.2 49 0.12 0.19 0.7 1077 570 5.5 2.3 20 145.2 0.151 81.2 25.2 1518 0.54 1974 1518 0.54 1050 53 106 1 

2 Successful 7.543 0.209 66 0.07 0.246 6.2 391 594 2 2 22 206 0.217 66 35 1352 0.52 975 1414 0.54 756 34 328 239 

3 Successful 5.714 0.192 84 0.08 0.252 4.8 674 800 3.9 0.2 40 215 0.2 84 43 1519 0.57 1742 1630 0.61 882 22 256 38 

 


