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Control valve stiction is considered as one of the main sources of control loops 

nonlinearities which impacts plants profitability. In turn, this phenomenon hinders the plant 

from being operated at optimal conditions.  Therefore, an efficient and accurate stiction 

quantification algorithm is required for accurate stiction compensation and timely 

scheduling of control valve maintenance. This research investigates the robustness and 

recommends improvements to the previously developed stiction quantification approach by 

Zabiri et al. The approach was tested under several operating conditions which were 

simulated in five case studies by using MATLAB software. The case studies investigated the 

impact of a wide range of stiction values, controller tuning, disturbance, time delay and 

noise on the quantification approach. The algorithm was found to be robust since it 

quantified the correct values of stiction regardless of the operating conditions. It was found 

that the accuracy of the quantification results depends on the process model accuracy, 

number of data samples and the search resolution. A number of improvements were 

recommended and validated by simulation in order to further enhance the current 

quantification approach. As conclusion, the algorithm can be applied on any type of process 

due to its robustness.  
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INTRODUCTION 

 

Control valve stiction and its 

deteriorating impacts on process plant 

performance is a broad research area. The 

topic itself is further split in the literature 

into subtopics such as stiction modeling, 

detection, quantification and 

compensation as classified in (Al-

Samarraie 2013, Brásio et al. 2014, Bedoui 

et al. 2014, Capaci et al. 2015).   

Control valve stiction is one of the most 

commonly faced constraints that hinders 

the plant from being operated optimally. 

Therefore, great amount of work in the 

academic and industrial fields have been 

done in the past ten years as summarized 

in (Brásio et al. 2014, Capaci et al. 2015). In 

the literature, the area of stiction modeling 

and identification is considered mature, 

unlike stiction quantification which is still 

considered an open research area as 
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mentioned in Zabiri et al. (2009) and 

Capaci et al. (2015).  

Stiction detection mechanisms falls into 

four categories which are cross-

correlation, limit cycles patterns, 

nonlinearity detection and waveform 

shape-based (Capaci et al. 2015).  Valve 

stiction quantification plays a vital role in 

stiction compensation and valve 

maintenance scheduling which ties back to 

product quality and profits.  Stiction-

induced oscillation has very unique MV-

OP data pattern, however, MV data that is 

the actual stem position is not available 

most of the time at the plant control 

system. Hence, stiction detection and 

quantitation mainly depend on the 

available data that is PV-OP. However, 

using PV-OP data poses a challenge 

because other disturbances-induced 

oscillation has similar patterns of PV-OP 

with stiction patterns which make it more 

difficult to differentiate (Capaci et al. 

2015). 

Brásio et al. (2014) and Capaci et al. 

(2015) conducted very extensive literature 

review on stiction in which they captured 

all the recent works on the topic until 

2015. The summary of stiction 

quantification works is listed in Table 1 

below. Capaci et al. (2015) found that 

Hammerstein system identification 

approach is the most common type of 

approach used for stiction quantification. 

The authors cited 27 techniques for 

stiction quantification of which 60% 

depends Hammestrein system 

identification approach. Zabiri et al. (2009), 

on the other hand, developed a stiction 

quantification method that depends on 

Artificial Neural Network process model 

and Choudhury’s valve stiction model as 

shown in Capaci et al. (2015). This method 

has the advantage of being applicable on 

all process loops as mentioned by Brásio 

et al. (2014). 

The scope of this paper focuses on 

control valve stiction quantification as a 

continuation to the research work done by 

Zabiri et al. (2009). The motive behind 

conducting this research is to contribute 

to finding a practical, efficient and 

accurate approach for stiction 

quantification. A contribution that can 

help in eliminating the deteriorating 

effects of stiction, lowering the plant 

maintenance cost due to the wear and 

tear of costly control valves and in turn 

increasing the plant profitability. Especially 

when considering the falling oil prices and 

the global recession that the oil and gas 

industry has undergone since 2014.  The 

objectives of this work are to test the 

robustness of the developed 

quantification method under several 

process condition scenarios, and to 

improve the developed quantification 

approach based on the results from the 

robustness test. This paper starts with the 

methodology in the next section, followed 

by results and discussion in Section 3, and 

finally, a conclusion is drawn and a 

recommendation is given. 

 

METHODOLOGY 

 

Zabiri’s Stiction Quantification 

Algorithm 

The works presented by Zabiri et al. 

(2009) utilizes artificial neural networks 

and Coudhury’s stiction model with error 

minimization algorithm for stiction 
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quantification. The details are explained in 

the following subsections. 

 

Choudhury’s Stiction Model and Plant 

Zabiri et al. quantification algorithm 

depends on Choudhury’s stiction model 

shown in (Choudhury et al. 2005, 2006, 

2008) for generating sticky manipulated 

variable (MV) data. The signal and data 

flow chart of Choudhury’s stiction model is 

shown below in Fig.1. The flow chart can 

be summarized as follows: 

1. The controller output is converted from 

4-20 mA to travel % by a look-up table. 

Table 1. Stiction quantification approaches (Capaci et al. 2015) 

Method 

Features 

Type 

Blocks Application 

on Industrial 

Data 
NL Model 

LIN 

Model 

Choudhury et al. PV(OP) fitting - - √ 

Cuadros et al. PV(OP) fitting - - x 

Yamashita PV(OP) fitting - - √ 

Stenman et al. Hammerstein Id. Stenman ARX x 

Srinivasan et al. Hammerstein Id. Stenman ARMAX √ 

Lee et al. Hammerstein Id. He ARX √ 

Choudhury et al. Hammerstein Id. Choudhury ARX √ 

Jelali [64] Hammerstein Id. Kano ARMAX √ 

Farenzena and 

Trierweiler  
Hammerstein Id. Kano ARMAX √ 

Ivan and 

Lakshminarayanan 
Hammerstein Id. He (modified) ARMAX √ 

Karra and Karim Hammerstein Id. Kano EARMAX √ 

Sivagamasundari and 

Sivakumar 
Hammerstein Id. He ARX √ (pilot) 

Shang et al. Hammerstein Id. Chen ARX √ (pilot) 

Brasio et al. Hammerstein Id. Chen ARX x 

Srinivasan B. et al. Hammerstein Id. Stenman ARMAX √ 

Bacci di Capaci and 

Scali 
Hammerstein Id. Kano ARX √ 

Bacci di Capaci et al. Hammerstein Id. Kano/He 5 types √ (pilot) 

Wang and Zhang Hammerstein Id. Asymmetric ARX √ 

Fang and Wang Hammerstein Id. Preisach ARX √ 

Wang and Wang Hamm – Wiener Chen Wiener x 

Romano and Garcia Hamm – Wiener Kano Wiener √ 

Ulaganathan and 

Rengaswamy 
Hamm – Wiener Stenman Wiener √ 

Chitralekha et al. 
Unknown input 

observer 
(Choudhury) - √ 

Zabiri et al. Neural Network Choudhury - x 

Nallasivam et al. 
Volterra Model – 

Based  
Stenman Volterra √ 

Araujo et al. 
Describing Function 

Semiphysical 
DF ARX √ 

He and Wang Stiction Model He (3 parameters) - √ 
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2. The algorithm checks for saturation 

conditions whether the valve is fully 

closed or fully open. 

3. If the valve is not saturated, then the 

algorithm calculates the slope of the 

controller output signal. 

4. The direction of the slope is used to 

determine the beginning of the valve 

stiction as follows: 

a. If there is a change in slope sign 

form + to – or vice versa, it indicates 

that the valve reversed its direction 

and the stiction starts. The controller 

output at the stiction point is 

recorded in Xss.  

b. If there is a change in slope sign 

form + or – to zero, it indicates that 

the valve gets stuck in the moving 

phase. At this point the indicator (I) 

is set to I = 1 and the controller 

output at the stiction point is 

recorded in Xss. 

c. If the difference value between the 

controller input and Xss is greater 

than S or J the valve slips and moves 

otherwise it remains stuck. 

d. The output is calculated using (1) 

below whenever the valve slips and 

moves. 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 − 𝑠𝑖𝑔𝑛 (𝑠𝑙𝑜𝑝𝑒) ∗
(𝑆−𝐽)

2
   (1) 

 

5. The output is converted to form travel 

% to 4-20 mA using a look-up table. 

 

The plant that is used for sticky data 

generation is shown in Fig.1. It consists of 

 

Fig.1: Signal and data flow chart of Choudhury’s model (Brásio et al. 2014, Choudhury et 

al. 2008)] 
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a linear first order transfer function as 

shown below. The loop is controlled by PI 

contoller that has the tuning settings 

shown in Table 2 (Control 2005, Zabiri et 

al. 2009). 

𝐺(𝑧) =
1.45𝑧 − 1

𝑧3 − 0.8𝑧2
 (2) 

 

Table 2. PI Controller Parameters 

No. Kc Ʈi 

1 0 0 

2 1 0.3 

3 5 1 

 

Artificial Neural Network 

Artificial Neural Network (ANN) is a 

group of artificial neurons interconnected 

in a way that resembles the human brain 

neural network. It is an artificial 

intelligence mathematical approach that is 

wildly used in nonlinear data modeling. 

The network consists of input layer, hidden 

layers and output layer. Each layer consists 

of neurons which consist adjustable 

weights, bias, threshold and activation 

function. The neuron calculates a weighted 

summation of inputs and compares it to a 

threshold.  If the summation is greater 

than the threshold, the output is set to a 

certain value based on a specific activation 

function as shown in Fig.3. The weights 

are dynamically adjusted based on 

mathematical algorithm in order to 

approximate the output of the network to 

the desired output. Therefore, ANN is 

categorized as an adaptive system as 

mentioned in Zabiri et al. (2009).  

 

Fig.3: ANN Neuron 

 

Six ANN architectures were investigated 

by Zabiri et al. (2009) for modeling the 

process dynamics. It was found that the 

Nonlinear Autoregressive Recurrent 

Network with Exogenous inputs and 

Serial-Parallel (NARXSP) structure gave the 

 

Fig.2: SIMULINK block diagram for stiction data generation 
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least Root Mean Square Error (RMSE). 

Hence, it was chosen as the best ANN 

architecture to be used for the 

quantification algorithm. The NARXSP 

ANN structure is illustrated below in Fig. 4 

and Fig.5. 

 

Fig.5: NARX Series – Parallel Structure 

 

Stiction Quantification Algorithm 

 

The quantification algorithm quantifies 

the stiction by minimizing the RMSE value. 

This RMSE minimization is between the 

actual process variable 𝑃𝑉𝑃𝑙𝑎𝑛𝑡  and the 

simulated process variable 𝑃𝑉𝑚𝑜𝑑𝑒𝑙 which 

is the output from NARXSP ANN. The 

algorithm is explained in Fig.6 and Fig.7. 

The quantification algorithm is 

summarized as follow:  

1) The same controller output OP 

collected from Choudhury’s sticky 

loop is fed to Choudhury’s valve 

stiction model to produce sticky 

manipulated variable 𝑀𝑉𝑛 based on 

initial value of stiction parameters S 

and J. 

2) The sticky manipulated variable 𝑀𝑉𝑛 is 

fed to NARX to produce process 

variable 𝑃𝑉𝑚𝑜𝑑𝑒𝑙 which has stiction 

effect. 

3) The RMSE value is calculated between 

𝑃𝑉𝑃𝑙𝑎𝑛𝑡 and 𝑃𝑉𝑚𝑜𝑑𝑒𝑙 . 

4) The value of S is changed and new 

corresponding values of 𝑀𝑉𝑛 and 

 𝑃𝑉𝑚𝑜𝑑𝑒𝑙  are calculated. 

5) A new RMSE values between 

𝑃𝑉𝑃𝑙𝑎𝑛𝑡 and  𝑛𝑒𝑤 𝑃𝑉𝑚𝑜𝑑𝑒𝑙 is calculated. 

6) The algorithm compares the values of 

previous RMSE against new RMSE to 

determine the search direction as 

follow: 

a. If the new RMSE value is greater 

than old RMSE, then discard S 

value and choose S values in the 

opposite direction and calculate 

all corresponding values of 

RMSE. 

b. If the new RMSE value is smaller 

than old RMSE, then choose S 

values in the next S value in the 

same direction and calculate all 

 

Fig.4: NARX ANN Structure 
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corresponding values of RMSE. 

7) Select the S value that produces the 

least RMSE value. 

8) Repeat above steps for J stiction 

parameter. 

9) S and J that produces the least 

amount of RMSE are the quantified 

stiction parameters that describe the 

stiction in the loop. 

 

Research Methodology 

The research methodology flow chart 

shown in Fig.8 is described as follow: 

1) Build Zabiri’s algorithm and 

Choudhury’s stiction model and plant 

in MATLAB and Simulink software.  

2) Tune and train NARX Artificial Neural 

Network to mimic Choudhury’s plant 

dynamics.  MATLAB Neural Network 

Time Series Tool (ntstool) is used for 

this purpose. 

3) Conduct five case studies to test the 

robustness of Zabiri’s stiction 

quantification algorithm. The five case 

studies are explained below in section 

2.3.  

Fig.7: Stiction quantification algorithm 

adopted from Zabiri et al. (2009). 

 

Fig.6: Stiction quantification block diagram 
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Fig. 8: Research Flow Chart 

 

4) Evaluate and analyze the results from 

the case studies as explained below in 

section 2.3. 

5) Suggest possible improvements to 

Zabiri’s quantification algorithm. 

6) Validate the suggested improvements 

using simulation. 

7) Draw conclusion.  

 

Robustness Tests 

This stiction quantification algorithm in 

Zabiri et al. (2009) was subjected to 

stiction value up to S = 3 and J = 2 under 

different controller parameters as 

mentioned above in Table 2. Therefore, it 

is worthy to investigate the algorithm 

performance beyond these operating 

conditions to check its robustness which is 

the objective of this research. Hence, the 

following case studies are conducted: 

 

1- Case Study No.1 

It investigates the algorithm 

performance under stiction overshoot, 

undershoot and equal stiction in the 

absence of disturbance. The controller 

tuning parameters 𝐾𝑐 and 𝜏𝑖 are set to 

the most aggressive values i.e. 0.15 and 

0.15 respectively. 

 

2- Case Study No.2 

It investigates the algorithm 

performance under stiction overshoot 

(S < J), undershoot (S > J) and equal 

stiction (S = J) in the presence of 

sinusoidal disturbance, noise and time 

delay. The controller tuning parameters 

𝐾𝑐 and 𝜏𝑖 are set to the most aggressive 

values i.e. 0.15 and 0.15 respectively. 

 

3- Case Study No.3 

It investigates the impact of 

incorporating valve resolution on the 

algorithm performance for stiction 

overshoot (S < J), undershoot (S > J) 

and equal stiction (S = J). The controller 

tuning parameters 𝐾𝑐 and 𝜏𝑖 are set to 

the most aggressive values i.e. 0.15 and 

0.15 respectively. 

 

4- Case Study No.4 

It investigates the impact of the process 

model accuracy on the algorithm 

stiction overshoot (S < J), undershoot (S 

> J) and equal stiction (S = J). In this 

case, the performance of NARX process 

model is compared against a first order 

process model. The controller tuning 
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parameters 𝐾𝑐 and 𝜏𝑖 are set to the 

most aggressive values i.e. 0.15 and 

0.15 respectively. 

 

5- Case Study No.5 

It investigates the application of the 

algorithm on MV feedback travel data 

rather PV data in case the feedback 

travel data is available at the plant 

thorough smart instrumentation.  

 

The above tests results are compared 

and evaluated based on the following 

types of errors:   

 

1- Mean Square Error (MSE) 

MSE is used for describing NARX and 

first order process model accuracies 

and it is calculated using (3) below. 

 

𝑀𝑆𝐸 =
∑ (𝑦′ − 𝑦)2𝑛

1

𝑛
 (3) 

 

2- Root Mean Square Error (RMSE) 

RMSE is used in the quantification 

algorithm for describing how close is 

from 𝑃𝑉𝑃𝑙𝑎𝑛𝑡 in each iteration the 

stiction values S or J is changed. It is 

calculated using (4) below. 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦′ − 𝑦)2𝑛

1

𝑛
 (4) 

 

3- Span Error 

It is used to measure the deviation of 

the quantified stiction values S and J 

from the actual stiction values (target 

values) built in Choudhury’s plant. It is 

calculated using (5) 

 

𝑆𝐸 =  𝑆𝑄𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑒𝑑 −  𝑆𝐴𝑐𝑡𝑢𝑎𝑙  (5a) 

 

𝑆𝐸 =  𝐽𝑄𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑒𝑑 − 𝐽𝐴𝑐𝑡𝑢𝑎𝑙  (5b) 

 

4- Absolute Span Error 

It is the absolute value of the span 

error. It is used to measure the absolute 

deviation of the quantified stiction 

values S and J from the actual stiction 

values (target values) built in 

Choudhury’s plant. It is calculated using 

(6). 

 

𝐴𝐵𝑆 = |𝑆𝐸| (6) 

 

5- Percentage Error 

It is used to measure the deviation 

between the RMSE values for quantified 

stiction and target stiction. It is 

calculated as shown in (7) below. 

 

𝑃𝐸 =  
|𝑅𝑀𝑆𝐸1 −  𝑅𝑀𝑆𝐸2|

𝑅𝑀𝑆𝐸1
 ×100 (7) 

 

RESULTS AND DISCUSSION 

 

NARX Process Model Training 

The artificial neural network process 

model (NARX) was trained to imitate the 

plant dynamics. NARX model has four 

parameters which are input delay (ID), 

feedback delay (FD), number of data 

samples (Ns) and number of hidden 

neurons (Nn). NARX performance which is 

measured in mean squared error (MSE) is 

directly impacted by the tuning of these 

parameters. It was observed that tuning 

NARX model was time consuming since it 

is completely heuristic process. The best 

parameters combination that produced 

the lowest MSE i.e. 2.17E-07 was ID = 0, 

FD = 18, Ns= 10,000 and Nn= 10.  This 
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combination was found after more than 

forty trails. Fig.9 shows NARX structure 

and its performance. 

 

Case Study No.1  

This case study investigated the 

algorithm behavior in the absence of 

disturbance and noise under strong 

stiction. The algorithm was tested under 

stiction overshoot (S<J), undershoot (S>J) 

and equal stiction (S=J). The controller 

parameters were set to  𝐾𝑐 = 0.15 and  𝜏𝑖 

= 0.15. The algorithm managed to 

quantify the stiction value built in the loop 

 

Fig.9: NARX structure and performance 
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within +/- 1 span error as shown in the 

Table 3. The detailed results of each case 

are further discussed in the subsections 

below. 

 

Stiction Undershoot (S>J) 

The quantification algorithm was tested 

under sticiton undershoot scenario where 

the stiction parameters set to stickband 

S=2 and slip-jump J =1. The quantification 

result based on RMSE value is shown in 

Table 4. 

The algorithm estimated the amount of 

stiction as S3J1 rather than S2J1 which is 

the actual value built in the simulation 

model. It was found that the algorithm 

produced smaller value of RMSE i.e. 

0.3708 for S3J1 stiction whereas RMSE of 

0.3766 for S2J1 that is the actual value of 

stiction as shown above in Table 4. It is 

worth noting that the percentage error 

between the two RMSE values is 1.5%. 

It was found that the RMSE calculation 

which is the core of the quantification 

algorithm improves by increasing the 

number of sampling points used in 

simulation. Hence, by increasing the 

number of the sampling points to 2500 

points the calculation of the RMSE 

improved and the algorithm succeeded in 

quantifying the right amount of stiction 

which is S2J1. 

Table 3. Stiction quantification results without disturbance 

Case Study 
Target Value Quantified Value Span Error 

S J S J S J 

Undershoot 

2 1 2 1 0 0 

3 1 4 1 -1 0 

1 3 1 2 0 1 

Overshoot 2 4 3 4 -1 0 

Equal 
2 2 2 1 0 1 

4 4 5 4 -1 0 

 

Table 4. Stiction undershoot (S2J1) 

No. S J 
RMSE 

 ( n = 300) 

RMSE 

(n = 1500) 

RMSE 

(n = 1500) 
Remark 

1 1 1 0.8926 0.4557 0.3859  

2 1 2 0.9800 0.5617 0.5015  

3 1 3 1.0817 0.6858 0.6331  

4 2 1 0.8218 0.3766 0.2974 
Quantified and 

target value  

5 2 2 0.8865 0.4408 0.3677  

6 2 3 0.9710 0.5419 0.4783  

7 3 1 0.7807 0.3708 0.3003 Quantified value  

8 3 2 0.8188 0.3766 0.2982  

9 3 3 0.8819 0.4395 0.3669  
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Stiction Overshoot (S<J) 

The quantification algorithm was tested 

under stiction overshoot scenario where 

the stiction parameters set to stickband 

S=1 and slip-jump J =3. The quantification 

result is shown in Table 5. 

The stickband parameter (S) value was 

quantified correctly as 1 whereas the slip-

jump parameter (J) was quantified as 2 

instead of 3. The number of samples was 

increased from 2,500 points to 5,000 

points in order to improve the RMSE value 

for improving the quantification result. The 

algorithm percentage error between the 

RMSE value for 2,500 points and 5,000 

points dropped from 3.1 % to 2.6 %, 

however, the stiction quantification result 

did not change. The span error in the slip-

jump (J) which is – 1 is attributed to NARX 

model error as investigated in Case Study 

No.4. 

Equal Stiction (S=J) 

The quantification algorithm is tested 

under equal stiction scenario where the 

stiction parameters set to stickband S=4 

and slip-jump J =4. The quantification 

result is shown in Table 6. 

The stickband value (S) was quantified 

as 5 instead of 4 with 1 unit difference 

whereas the slip-jump (J) was quantified 

correctly as 4.  The RMSE value for 

quantified stiction S5J4 was found to be 

0.3054 against 0.4019 RMSE value for the 

actual amount of stiction i.e. S4J4. The 

span error in stickband (S) i.e. + 1  is 

attributed to the NARX model error as 

investigated in Case Study No.4 below. 

 

Case Study No.2 

A low frequency sinusoidal disturbance 

and noise sources were added to the loop 

as shown in Fig.10. The amplitude and the 

Table 5. Stiction Overshoot (S1J3)   

No. S J 
RMSE 

(n = 2500) 

RMSE 

(n = 5000) 
Remark 

1 1 1 0.3799 0.3371  

2 1 2 0.3346 0.2798 Quantified value  

3 1 3 0.3451 0.2870 Target value 

4 1 4 0.4072 0.3548  

5 2 1 0.4982 0.4711  

6 2 2 0.4543 0.4232  

7 2 3 0.4519 0.4191  

8 2 4 0.4915 0.4601  

9 3 1 0.6468 0.6284  

10 3 2 0.7306 0.7161  

11 3 3 0.8444 0.8337  

12 3 4 0.9778 0.9703  

13 4 1 0.6058 0.5843  

14 4 2 0.6474 0.6288  

15 4 3 0.7315 0.7166  

16 4 4 0.8455 0.8342  
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frequency of the sine wave were set to 0.5 

and 6 rad/s respectively. The remaining 

test conditions were maintained as same 

as in Case Study No.1. The quantification 

algorithm was tested under stiction 

overshoot (S<J), stiction undershoot (S>J) 

and equal stiction (S=J). The controller 

parameters were set to  𝐾𝑐 = 0.15 and  𝜏𝑖 

= 0.15.  It was found that the algorithm 

managed to quantify the stiction value 

built in the loop within +/- 1 span error as 

shown in the Table 7. NARX output versus 

plant output under disturbance is shown 

in Fig.11.  

The disturbance frequency and 

amplitude were increased by 4 folds in 

order to further check the algorithm 

robustness against disturbance. It was 

observed that the algorithm produced the 

same quantification result as in Table 7 

despite the increment in disturbance. It is 

concluded that the quantification 

algorithm is robust against disturbance 

and noise since it manged to produce a 

similar result to Case Study No. 1 which is 

without disturbance.  

Furthermore, the impact of process 

time delay in the control loop on the 

Table 6. Equal Stiction (S4J4)   

No. S J 
RMSE 

(n = 2500) 
Remark 

1 1 1 0.5596  

2 1 2 0.6628  

3 1 3 0.7812  

4 1 4 0.9089  

5 1 5 1.0424  

6 2 1 0.4705  

7 2 2 0.5314  

8 2 3 0.6231  

9 2 4 0.7342  

10 2 5 0.8570  

11 3 1 0.4409  

12 3 2 0.4348  

13 3 3 0.4782  

14 3 4 0.5596  

15 3 5 0.6652  

16 4 1 0.4845  

17 4 2 0.4067  

18 4 3 0.3756  

19 4 4 0.4019 Target value 

20 4 5 0.4763  

21 5 1 0.5860  

22 5 2 0.4638  

23 5 3 0.3630  

24 5 4 0.3054 Quantified Value 

25 5 5 0.3156  
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quantification algorithm was investigated. 

It was observed that the control loop 

becomes marginally stable with sustained 

oscillation by adding 3 seconds time delay 

as shown below in Fig.12 under current 

controller settings in addition to stiction 

S2J1. The Simulink models are shown in 

Fig.13. 

The algorithm quantified the stiction 

values with span error of +/- 1 in 

 

Fig.10: Simulink plants with disturbance and noise 

 

 

Fig.11: Plant and NARX PV under noise and disturbance 
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overshoot and equal stiction cases, which 

is similar to the quantification results when 

the loop had no time delay. Hence, the 

algorithm is not affected by the presence 

of time delay in the loop since it managed 

to produce the same results in marginally 

stable condition.   However, the span error 

increased from +/-1 to +/-2 in the case of 

Table 7. Stiction quantification results under disturbance and noise 

Case Study 
Target Value Quantified Value Span Error 

S J S J S J 

Undershoot 
2 1 2 1 0 0 

3 1 4 1 -1 0 

Overshoot 
1 3 1 2 0 1 

2 4 2 3 0 -1 

Equal 
2 2 2 1 0 1 

4 4 5 4 -1 0 

 

 

Fig.12: Time delay impact 

 

 

Fig.13: Plants with time delay 
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stiction overshoot specifically when S = 1 

and J = 3 as shown in Table 8. This span 

error increment in case of stiction 

overshoot is attributed to the error in 

NARX model. The impact of model 

accuracy used in quantification algorithm 

is investigated in Case Study No.5 below. 

 

Case Study No.3 

In industry, the values of stiction 

parameters S and J in actual control loop 

can be any real number and not 

necessarily integers. Therefore, the 

algorithm and subsequently MATLAB code 

were modified to incorporate valve and 

search resolutions. Hence, different values 

of valve resolution were tested in an 

attempt to reduce the quantification error. 

In this case study, the algorithm was 

tested under stiction undershoot (S > J) 

and equal stiction (S = J) scenarios. It was 

expected that as the search resolution 

value gets smaller the span error reduces 

as well. However, it was observed that 

there was no clear reduction trend in the 

span error. For instance, in stiction 

undershoot case, the absolute span error 

of J parameter is 0.1 for resolution value 

equal to 0.8 whereas the absolute span 

error is 0.5 for resolution value equal to 

0.2 as shown in Table 9. 

In equal stiction case, the same 

behavior was observed whereby the 

absolute span error for J parameter is 0 for 

resolution value equal to 1, whereas the 

absolute span error is 0.9 when the 

Table 8. Quantification results under process time delay 

Case Study 
Target Value Quantified Value Span Error 

S J S J S J 

Undershoot 
2 1 3 1 -1 0 

3 1 4 1 -1 0 

Overshoot 
1 3 3 4 -2 -1 

2 4 3 4 -1 0 

Equal 
2 2 3 2 -1 0 

4 4 5 4 -1 0 

 

 

 

Table 9. Stiction undershoot under quantification with resolution 

Resolution 
Target Value Quantified Value Span Error 

S J S J S J 

1 2.7 1.5 3 1 -0.3 0.5 

0.8 2.7 1.5 3.2 1.6 -0.5 -0.1 

0.75 2.7 1.5 3.75 2.25 -1.05 -0.75 

0.6 2.7 1.5 3.6 1.8 -0.9 -0.3 

0.5 2.7 1.5 3.5 2 -0.8 -0.5 

0.2 2.7 1.5 3.6 2 -0.9 -0.5 

0.1 2.7 1.5 3.3 1.6 -0.6 -0.1 
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resolution decreased to 0.1. The error 

results versus the resolution values are 

shown in Table 10. The unsystematic error 

trend is attributed to the error between 

NARX model and plant model. Therefore, 

the impact of model accuracy on 

quantification error is investigated in Case 

Study No. 5 below. 

 

Case Study No.4 

This case study investigates the impact 

of model accuracy on quantification error. 

The plant dynamics was modeled as first 

order process model as shown in (8) and 

Fig.14.   

𝐺𝑃(𝑠) =
2.2506(1 + 2.8879𝑆)

(1 + 4.4823𝑆)
 (8) 

 

The first order mean squared error is 

3.158e-18 which is very accurate in 

describing the plant dynamics when 

compared with NARX model error i.e. 

2.174e-07.  It was observed that the 

quantification algorithm managed to 

quantify precisely the stiction value with 

RMSE approximately equal to 0 and 0 

span error. Unlike NARX model which has 

relatively large RMSE and +/- 1 span error. 

The quantification results with the span 

error for different values of stiction are 

Table 10. Equal stiction quantification with resolution 

Resolution 
Target Value Quantified Value Span Error 

S J S J S J 

1 4 4 5 4 -1 0 

0.8 4 4 4.8 4 -0.8 0 

0.75 4 4 4.5 3.75 -0.5 0.25 

0.6 4 4 4.8 4.2 -0.8 -0.2 

0.5 4 4 5 4.5 -1 -0.5 

0.2 4 4 4.8 4.2 -0.8 -0.2 

0.1 4 4 4.3 4.9 -0.3 -0.9 

0.01 4 4 4.9 4.3 -0.9 -0.3 

 

 

Fig.14: First Order Model Plant 
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shown in Table 11 and Table 12. 

In addition, the impact of using 

different search resolution values on the 

quantification accuracy was investigated. It 

was observed there was a clear reduction 

trend in error when the search resolution 

was reduced. For instance, stickband 

target value was set to S = 1.6, the 

quantified value improved from 2 then to 

1.5 then to 1.6 as the search resolution 

was reduced from 1 to 0.5 to 0.2 

respectively. The quantification results for 

different resolution values are shown in 

Table 13. In turn, it is concluded that 

using a model with higher accuracy 

eliminates the quantification span errors 

Table 11. Quantification results from high accuracy model 

No. S J 
RMSE 

(n = 2500) 
Remarks 

1 1 1 0.28138  

2 1 2 0.14068  

3 1 3 0.00003 Target and quantified values 

4 1 4 0.14071  

5 2 1 0.47424  

6 2 2 0.44545  

7 2 3 0.45995  

8 2 4 0.51410  

9 3 1 0.61038  

10 3 2 0.69501  

11 3 3 0.81086  

12 3 4 0.94653  

13 4 1 0.57158  

14 4 2 0.61174  

15 4 3 0.69694  

16 4 4 0.81314  

 

Table 12. Quantification results summary 

Case Study 
Target Value Quantified Value Span Error  

S J S J S J 

Undershoot 3 1 3 1 0 0 

Overshoot 1 3 1 3 0 0 

Equal 4 4 4 4 0 0 

 

Table 13. Quantification results from high accuracy model with resolution   

Resolution 
Target Value Quantified Value Span Error  

S J S J S J 

1 1.6 2.2 2 2 -0.4 0.2 

0.5 1.6 2.2 1.5 2 0.1 0.2 

0.2 1.6 2.2 1.6 2.2 0 0 
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encountered in the previous case studies. 

In addition, it is concluded that decreasing 

the search resolution reduces the 

quantification error in case the stiction 

parameters S and J are real values. 

In addition, the impact of time delay on 

the quantification algorithm was 

investigated. A time delay of 3 seconds 

was added to the first order plant as 

shown in Fig.15. It was observed that the 

quantification algorithm was not affected 

by the addition of the time delay. The 

algorithm quantified the stiction values 

exactly as in the case study without time 

delay as shown above in Table 12. As 

conclusion, the quantification algorithm 

was not affected by the time delay despite 

the fact that the time delay made the 

control loop marginally stable. 

 

Case Study No.5 

It was observed from the previous case 

studies that the quantification algorithm 

depends on the availability of an accurate 

process model. The process model has to 

be capable of describing the plant 

dynamics without stiction with relatively 

very small error to get good stiction 

estimates. Therefore the need arises for a 

stiction quantification algorithm that does 

not depend on the process model in 

finding the correct stiction values in the 

loop.  

A different quantitation approach that 

uses the actual valve travel feedback was 

investigated. This approach does not 

require the availability of the process 

model. Rather, it requires the availability of 

the valve travel feedback at the process 

control system. As mentioned above in the 

literature, nowadays smart instrumentation 

such as Digital Valve Controllers (DVC) or 

valve smart positioners can provide valve 

travel feedback through HART or 

Foundation Fieldbus communication 

protocol without the need for additional 

hardware. 

The proposed quantification approach 

relies on the same quantification 

algorithm to find stiction values. However, 

the algorithm utilizes the sticky actual 

feedback travel as shown in Fig.16 to 

calculate the RMSE value for finding the 

right stiction parameters S and J that 

minimizes RMSE. The Simulink model is 

used for this approach is shown in Fig.17. 

This approach was tested under several 

scenarios as in previous case studies. It 

was tested under stiction overshoot, 

undershoot and equal section. In addition, 

 

Fig.15: FOPTD Plant 
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the impact of the search resolution was 

also checked. It was observed that the 

algorithm successfully quantified the 

stiction with zero span error. Moreover, 

there was a clear reducing trend in error as 

the resolution value was reduced. As 

conclusion, this approach achieved the 

same accurate results as in case study no. 

4 without the need for process model at 

all. The results are shown in Table 14 and 

15. 

 

Improvements 

The summary of improvements on the 

existing quantification algorithm is 

summarized as follow:  

 

Fig.16: Valve travel feedback with stiction S2J3 

 

 

 

 

Fig.17: Quantification based on MV data 
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Elimination of Local Minimum 

It was observed that the current 

algorithm has a search direction based on 

the RMSE value as explained in 

methodology in chapter 3. Such approach 

might make the algorithm quantify the 

stiction parameters based on RMSE local 

minimum which leads to wrong 

quantification as shown in Fig.18. Hence, 

this issue can be resolved by calculating 

the RMSE values for all possible 

combinations of stiction parameters S and 

Table 14. Quantification results based on MV data 

Case Study 
Target Value Quantified Value Span Error  

S J S J S J 

Undershoot 
2 1 2 1 0 0 

3 1 3 1 0 0 

Overshoot 
1 3 1 3 0 0 

2 4 2 4 0 0 

Equal 
2 2 2 2 0 0 

4 4 4 4 0 0 

 

 

Table 15. Quantification results with different resolutions 

Resolution 
Target Value Quantified Value Span Error  

S J S J S J 

1 1.6 2.2 2 2 -0.4 0.2 

0.5 1.6 2.2 1.5 2 0.1 0.2 

0.2 1.6 2.2 1.6 2.2 0 0 

 

 

 

Fig.18: Local Minimum 
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J regardless of error direction. The 

modified algorithm is shown in Fig.19. 

 

 

 

Fig.19: Modified Algorithm Flow Chart 

 

 

Incorporation of Valve and Search 

Solutions 

As shown in Case Study No.3, including 

valve and search resolution improved the 

algorithm accuracy since the stiction in 

plant can be any real number rather than 

integers. It was shown that the span error 

was reduced by reducing the resolution. 

 

Algorithm Simplification by Using  

FOPTD 

It was shown in Case Study No.4 that 

using FOPTD eliminated the span error 

encountered while using NARX process 

model since it has higher MSE value. In 

addition, getting an accurate FOPTD 

model is much faster than getting an 

accurate NARX model since tuning NARX 

model is heuristic. 

 

Elimination of Process Model 

Dependency 

It was shown in Case Sturdy No.5 that 

the same algorithm can be applied on MV 

data rather than PV data in order to 

eliminate process model dependency. 

 

CONCLUSION AND 

RECOMMENDATION 

 

Five case studies were conducted the 

stiction quantification algorithm 

developed by Zabiri et al. The objectives 

are to test the robustness of the algorithm 

in several operating conditions and 

provide improvements. These operating 

conditions covered aggressive controller 

tuning, stiction values ranging from weak  

 

 

 

End 

Calculate all possible combinations 

of S and J  

Simulate Sticky MV for each S and 

J value   

Simulate PV_model based on 

process model for each sticky MV  

Calculate RMSE between PV_plant 

and PV_model for all sticky MV 

values  

Start  

Key in S max, J max 

and resolution   

Select lowest RMSE value and its 

corresponding S and J values 
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to strong stiction in the presence of 

disturbance, noise and time delay. In 

addition, the impact of process model 

accuracy and algorithm search resolution 

were investigated. Finally, the algorithm 

performance was tested on OP-MV data.  

It was observed that tuning and 

training NARX process model is time 

consuming process since it is heuristic in 

nature. The best parameters combination 

that produced the lowest MSE i.e. 2.17E-07 

is ID = 0, FD = 18, Ns= 10,000 and Nn= 

10, which took more than forty trails to be 

found.   The algorithm with NARX process 

model quantified the stiction parameters 

the stickband (S) and slip-jump (J) under 

above operating conditions with absolute 

span error equal to 1. This value of span 

error was sustained under all operating 

conditions. It is worth noting that the 

number of data samples used is 2500 

points which has direct impact on the 

RMSE calculation that is the core of the 

quantification algorithm.   

The impact of process model accuracy 

on the quantification algorithm was 

investigated. A first order process model 

with MSE equal to 3.158e-18 which is 

lower than NARX model was used to 

describe the plant dynamics. It was 

observed that the span error was 

completely eliminated and the stiction 

parameters were quantified correctly. It 

was noticed that different combination of 

stiction parameters result in very similar 

PV behaviors that have as low as 1% 

difference in RMSE values. The algorithm 

managed to quantify the stiction correctly 

despite the high similarity. It is 

recommended to use the first order 

process model for linear processes since it  

is faster to be obtained  and has  less  MSE  

than NARX model. On the other hand, 

NARX model to be used for highly 

nonlinear processes.  

The algorithm was improved by 

changing the search algorithm in order to 

avoid falling in a local minimum. Another 

improvement was incorporating the search 

and valve resolutions in the algorithm in 

order to enable the detection of stiction 

values with real numbers in industry. 

Besides that, the algorithm was simplified 

and its accuracy was improved by using 

first order process model.  Finally, the 

algorithm’s process model dependency 

was eliminated by applying it on OP-MV 

data by simulating plant smart 

instrumentation. 

As a conclusion, the five case studies 

showed that the algorithm is robust since 

it quantified the stiction correctly 

regardless of the operating conditions. 

Therefore, it can be applied on any type of 

process. The accuracy of the quantification 

results depends on the following factors:  

a) Process model accuracy such as in 

NARX and FOPTD     

b) Number of data samples used in 

RMSE calculation  

c) Search resolution value. 

 

In a nutshell, the research has met its 

objective since it improved the current 

algorithm and proved its robustness in 

several operating conditions. It is 

recommended as future work to test the 

algorithm performance under a different 

stiction model such the one developed by 

Kanu et al. (2004) against Choudhury’s 

model. 
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