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An effective process monitoring system serves as an early warning system for

influences affecting the chemical plant and helps plant operator to devise remedial
actions to mitigate the adverse effects. However, the design of such system presents
challenges such as complex cause-effect correlations, imprecise process model and
novelty identifiability. In this work, a two-step fault detection and diagnosis
framework is presented. This framework utilizes boundary models developed from
mass and energy balances for each section of the chemical plant. The fault detection
step consists of a fuzzy inference system (FIS) to analyze the balances and identify the
faulty section if the balances deviate from the normal boundary. Then, multiple
adaptive neuro-fuzzy inference system (ANFIS) classifiers are constructed to diagnose
the exact root causes of bad performance. The combination of boundary models and
FIS provides fault isolation of the faulty plant section even when novel faults have
occurred. Utilization of multiple ANFIS classifiers reduces the complexity of the
networks and improves the proficiency of the process monitoring system. The
proposed scheme is applied on a model of a large scale industrial process.
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INTRODUCTION

operating condition and identification of
malfunction components are one of the
main concerns of the process engineer to
improve process operation, increase plant
throughput, reduce process downtime and

environmental rules and safety regulations.
Various fault detection and diagnosis

methods have been proposed and studied
extensively. These methods can be

detection of  abnormal classified into three major categories:

qualitative  model-based, quantitative
model-based and data driven based.
Quantitative model-based methods such
as observer-based method and parameter
estimation utilize mathematical models
with  increasingly constructed from first

stringent principles for

process However,  the

effectiveness of this approach depends on

monitoring.
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the precision of the mathematic models
constructed.  Qualitative  model-based
methods such as signed digraphs and fault
trees  analysis employ cause-effect
reasoning to describe system behavior.
However, the qualitative model-based
approach is restricted to systems with a
relatively small number of variables or
states because the knowledge based
creation task can be time consuming.

Data driven methods find patterns or
compute meaningful statistics from the
process historical data, for example,
principal component analysis (PCA) and
neural networks. The applications of neural
networks and other artificial intelligence
techniques in the field of engineering as
well as process fault detection and
diagnosis have been extensively studied
[1]-[7]. The advantages of using artificial
intelligence include adaptation,
generalization and effective handling of
uncertainty.

To improve the process monitoring of
larger scale system, several methods have
been proposed to reduce the computation
loads and memory requirements. Power
and Bahri [8] proposed a two-step
supervisory framework utilizing neural
networks for fault diagnosis and Petri net
for fault detection of Bayer process.
Watanabe et al. [9] discussed and applied
hierarchical neural networks (HANN) for
multiple simultaneous fault diagnosis of a
chemical reactor. Ozurt and Kandel [10]
proposed a hybrid diagnostic
methodology based on hierarchical
perceptron-elliptical  neural  networks
structure and expert system for a
hydrocarbon chlorination plant.
Eslamloueyan [11] proposed a HANN for

isolating the faults of Tennessee Eastman
(TE) process through fuzzy C-mean
clustering of the fault patterns.

This work focuses on the use of fuzzy
inference system (FIS) for fault detection
and the use of adaptive neuro-fuzzy
inference  system (ANFIS) for fault
diagnosis of a dynamical process. Also,
multi-scale principal component analysis
(MSPCA) is incorporated into the diagnosis
module to improve the process
monitoring.

The paper is organized as follows. In
Section 2, a brief description of FIS, MSPCA
and ANFIS are described followed by the
description of the fault detection and
diagnosis framework. A case study is
presented in Section 3 for the proposed
method to detect and diagnose the faults
in Tennessee Eastman (TE) process. The
diagnosis results and the comparison with
multivariate statistical fault detection using
PCA are discussed in Section 4. The last
section contains some concluding remarks.

FAULT DETECTION AND DIAGNOSIS
Fuzzy inference system

A FIS formulates the mapping from a
given an input to an output using fuzzy
logic through the use of membership
functions, logical operations and /f-Then
rules as depicted in Fig. 1.

There are five parts of the fuzzy
inference process. Initially, the inputs are
converted into fuzzy domain and the
antecedent for each rule is evaluated
through logical operation. Then, the
weight of the rule is determined and the
membership function of the consequent is
determined through implication method.
The output of each rule are combined and
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Figure 1. A basic structure of FIS with two inputs, three rules and one output.

aggregated. Finally, the output is defuzzied
and the fuzzy set is transformed into a
crisp value.

The use of FIS enables the integration of
plant operator's experience and
knowledge and improves the transparency
of the diagnostic system. Detailed
description of FIS can be found in [12].

Feature extraction using MSPCA

The data from all practical processes are
multiscale in nature, for instance, the
variables are measured at different
sampling rates. Also, the events can occur
at different locations in the plant and with
different localization of time and frequency.
As a result, conventional feature extraction
method such as principal component
analysis (PCA) which assumes the data are
in single scale is not efficient in capturing
the slow and fable changes in the
measured variables.

The methodology of MSPCA can be
summarized into following steps:

i) The measurement data are
decomposed into wavelet coefficients.

(i) The PCA of the wavelet coefficients are
calculated and the coefficients with
significant events are retained.

(iii) The retained coefficients are
converted back into time domain.

(iv) The PCA loading vectors of the filtered
data are calculated.

Then, the observation data are projected
into lower dimensional score and residual
space.

MSPCA combines the advantages of
PCA to capture the correlation across the
measured variables with that of wavelet
analysis to extract autocorrelation within
the measured variables along the time axis.
Detailed formulation of MSPCA has been
discussed by Bakshi [13].

Adaptive neuro-fuzzy inference system

An ANFIS is a fuzzy inference system
enhanced with learning, generalization and
adaptively capabilities. A Sugeno-type
fuzzy inference system [12] is created
through fuzzy clustering of the data. By
identifying the grouping of the data into a
collection of If-Then rules, the
characteristics of a nonlinear system can
be concisely represented. Typically, a fuzzy
rule in a Sugeno fuzzy model has the
format

IfxisAandyisBthenz = f(x, y). (1)

where A and B are fuzzy sets in the
antecedent; z = f(x, y) is a crisp function in
the consequent. For a first-order Sugeno
fuzzy model, f(x, y) is a first-order
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Figure 2. A typical structure of ANFIS with two inputs and one output.

polynomial. For a zero-order Sugeno fuzzy

model, the output, f, is a constant. To

facilitate the learning of a Sugeno fuzzy
model, an adaptive network that can
search optimal parameters systematically
is incorporated. The resulting network
structure, as shown in Fig. 2, is termed as
adaptive neuro-fuzzy system (ANFIS).

The function of each layer in ANFIS is
summarized as follows:

(i) Layer 1 — convert the crisp input to
domain through a fuzzy membership
function.

(i) Layer 2 — generate the firing strength
of a rule through multiplication.

(ii) 3 - calculate the i firing strength to
the total firing strength.

(iv) ayer 4 — compute the contribution of
the " rules.

(v) Layer 5 - calculate the weighted
average output from each rule.

Detailed information of ANFIS has been

covered in [12].

Fault detection and diagnosis
framework

The two-step fault detection and
diagnosis framework is presented in Fig. 3.

A FIS fault detection module analyzes the
mass and energy balances of the process
and detects the faults based on the
dynamic process data. The rule of FIS can
be constructed from the process Failure
Mode and Effect Analysis (FMEA), the plant
operator troubleshooting knowledge and
past historical data.

The diagnosis is then directed to ANFIS
classifier. The MSPCA projects the
observation data into a lower dimensional
space and divides the data into score and
residual space. Normal and faulty
condition data are used to train ANFIS to
learn the cause-effect correlations of the
process. The ANFIS will monitor the
subspaces to determine whether a fault
has occurred. This two-step fault detection
and diagnosis framework enables the
isolation of the faulty section and quick
diagnosis of the fault.

CASE STUDY

In this section, the description of the TE
process and the process faults are
described. Then, the detection and

diagnosis results using the proposed
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Figure 3. The two-step fault detection and diagnosis framework.

framework are illustrated. Also, the
diagnosis results will be compared with the
process monitoring using multivariate
statistical PCA method.

Tennessee Eastman (TE) process

The process flowsheet of TE process is
illustrated in Fig. 4. The process consists of
five main units: a reactor, condenser,
compressor, separator and stripper. The
reactant A, C D and E are fed to the reactor
where the liquid product G and H are
formed through the following exothermic
reactions:

A(Q) +C(g)+D(qg) > G,
A@) +C(g +E(@>HI)
A(9) + E(g) > F (),
3D (9) > 2F (9),
The process has 22 continuous process

—

measurement variables, 19 composition
measurements and 12 manipulated
variables. All the process measurements
consist of Gaussian noise. At a particular

time instant, an observation vector is given

by:

X = [XMEAS(L)...XMEAS(22) XMV(1).. XMV (11)]
)

where the XMEAS and XMV stand for
measured and manipulated variables
respectively. Detailed of the process
description can be found in [13].

Process fault

There are 21 preprogrammed faults in
the TE process. Out of the 21 faults, only
five faults are selected for evaluating the
effectiveness of the proposed framework:
Fault 5 - Step change in condenser cooling
water temperature.
Fault 12 - Random variation in condenser
cooling water inlet temperature.
Fault 13 - Slow drift in reaction kinetics.
Fault 14 - Sticking of reactor cooling water
valve.
Fault 15 - Sticking of condenser cooling
water valve.

The simulation time of the TE process for
each fault was 48 hours. The simulation
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Figure 4. Reaction, Separation and Stripping section of the TE process

started with no fault, and the fault was
introduced after 8 hours into the run. The
total number of observations generated
was 960 and each sample was taken for
every 3 minutes.

RESULTS AND DISCUSSIONS

Below are diagnostic results for Fault 12
and 13 obtained from the diagnosis
module of the proposed scheme.

Fault 12 is an intermittent fault which
involves variation in the cooling water inlet
temperature. The extracted features are
shown in Fig. 5. Also, it exhibits different
fault patterns even at the same initial
operating point or mode. Residual space is
utilized to diagnose Fault 12 as it can
the
characteristic properties more effective

capture  random variation in
compared to the diagnosis using score
space. The ANFIS classifier corresponding
to Fault 12 is triggered at around 8 hours
and consistently gives value above the

threshold = 0.145 consistently.
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Figure 5. Diagnosis results using the
residual space for Fault 12
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Figure 6. Diagnosis results using the score
space for Fault 13
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However, the misdetection rates for Fault
15 are relatively high. This is because the
changes in the measured variables are less

than 3% from the normal condition [15]. As
the changes are insignificant and lack of

distinctive information, the diagnosis
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Fig.ure 8. The PCA multivariate statistics for fault detection for Fault 5

Table 1. Misdetection rates for faulty cases in the TE process

Misdetection rates

Fault  Propose )
PCA-T PCA-Q
d method

5 0 0.956 0.038
12 0.031 0.029 0.025
13 0.076 0.060 0.045
14 0.001 0.158 0
15 0.779 0.988 0.973
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module of the proposed framework unable
to discriminate the fault from normal
condition and thus, resulting high
misdetection rates. However, the results
are acceptable as the proposed method
successfully cover the diagnosis for nearly
all the faults.

The result of fault detection module and
the comparison with multivariate statistic
PCA are illustrated in Fig. 7 and Fig. 8
respectively. The fault is originated from
the condenser which is in the Separation
section. The detection module of the
proposed  framework identifies the

CONCLUSION

A two-step fault detection and diagnosis
framework was proposed for a relatively
complex chemical plant. The fault
detection module utilizes a FIS to analyze
the mass and energy balances developed
around the plant sections. The
membership functions of the inputs and
the rules were developed from the
operating range for normal and faulty
conditions. When a fault has occurred, the
mass and energy balances will be violated
and FIS will detect and isolate the faulty
section. The diagnosis module consists of
MSPCA feature extractor and multiple
ANFIS classifiers. Each of the classifier is
dedicated to one specific fault. The
subspace (score or residual space) which is
most sensitive to the fault will be
monitored by the ANFIS classifier. This
significantly improves the proficiency of
the process monitoring. The classifier will
analyze the extracted features and
determined which fault has occurred. The
use of multiple ANFIS classifiers reduces

Separation and Stripping section are faulty
after the fault is introduced at the 8-th
hour. However, the third output (Stripping
section) retreats to below 0.1 after 20
hours as the plant reaches its new steady
state and only the second output
(Separation section) continuous follows
the fault. The PCA statistics only can detect
the fault between the 8 to 17 hours. The
fault detection module can detect the fault
more consistently compare to the PCA
statistics.

computation load and complexity of the
network structure.
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