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Integrated waste management involves the use of appropriate techniques ranging
from pollution prevention/cleaner production {P2/CP) to conventional end-of-pipe
controls. Design or retrofit of process plants usuaily entails selection of an optimal
waste management measure from a number of alternatives. The selection process
involves consideration of multiple criteria and data uncertainty, the latter being arguably
possibilistic (fuzzy) rather than probabilistic (random) in nature. A fuzzy simple additive
weighting (SAW) algorithm is proposed for such problems and demonstrated on a
case study. The principal feature of the techniques shown is the retention of fuzzy
confidence levels during the assessment of different technological options.
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INTRODUCTION

The different options for the management
of wastes in the process industries can be
classified under four broad categories:

1. Reduction or elimination at source — use of
inherently clean production operations and
feedstocks through design for environment
(DfE) principles or plant retrofits using process
integration techniques. This approach is also
commonly known as pollution prevention (P2)
or cleaner production {CP).

2. Recycling and reuse — open- or closed-loop
options to maximize utilization of material or
energy resources.

3. Treatment ~ use of end-of-pipe controls to
convert pollutants into less harmful form.

4. Disposal - isolation of residues to minimize
interaction with the environment.

Of these approaches the first alternative is
generally regarded as the preferred option, with
the remaining options becoming progressively less
desirable (Crittenden and Kolaczkowski 1995,
Sharrat 1999). In practical terms, the choice of
which technique to use is influenced by
engineering and economic as well as
environmental considerations.

Integrated waste management relies on the
identification of the best available technology
{BAT) or best practical environmental option
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(BPEO) from a range of competing alternatives.
Different decision aids have been used in the
selection process, including AHP (Pineda-Henson
et al. 2002), PROMETHEE (Le Teno and
Mareschal 1998, Geldermann et al. 2000), and
expert systems (Culaba and Purvis 1999).
Selection involves consideration of multiple
criteria as well as data uncertainty, the latter being
arguably possibilistic or fuzzy, rather than
probabilistic, in nature. A simple multiple-attribute
decision-making (MADM) technique is developed
here for purposes of identifying optimal
technologies under such ambiguous conditions.

POSSIBILISTIC UNCERTAINTY
AND FUZZY NUMBERS

Probability theory is the most commonly used
model of data uncertainty. Classical probability
deals with quantifying tendencies of random
events based on the frequency of occurrence of
different outcomes. However, as explained by Tan
et al. (2002), this theory is inappropriate for
describing uncertainty arising from vagueness,
subjectivity, or incomplete information. This form
of uncertainty is fuzzy or possibilistic in nature and
is best dealt with using fuzzy mathematics (Dubois
and Prade 1988).

Imprecise quantities can be represented using
fuzzy numbers (Kaufmann and Gupta 1991,
Moore and Lodwick 2003). The membership
function of a fuzzy number is also referred to as
its possibility distribution. Generally, distributions
represent the subjective degree of belief, or
plausibility, of a range of values and, thus, unlike
probability distributions, do not necessarily result
from distinct mathematical rules. However, stylized
triangular or trapezoidal distributions are often
employed for simplicity {Mauris et al. 2001).

As an example, a fuzzy number with a
trapezoidal possibility distribution is shown in
Figure 1. The interval {2, 3] is called the kernef of
the fuzzy number, and represents the most
plausible range of values. This range is assigned
a possibility level of 1. The interval [0.5, 4]
represents the range of all marginally plausible
values with nonzero possibility, and is called the
support of the fuzzy number. For simplicity,
trapezoidal fuzzy numbers are denoted here by

the extremes of the kernel and support, so that
the number shown is (0.5, 2, 3, 4).
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Figure 1. The Trapezoidal Fuzzy Number
0.5,2,3,4)
FUZZY SAW

Simple additive weighting (SAW) is an MADM
procedure that uses the weighted average of
normalized scores in the different decision criteria
to rank specified alternatives. It is widely used in
different decision domains because of its simplicity.
Here the basic SAW procedure is modified by
using trapezoidal fuzzy numbers to represent
imprecise scores and weights. Calculations are
carried out using fuzzy arithmetic {Kaufmann and
Gupta 1991, Moore and Lodwick 2003). The
procedure involves calculating the total
environmental impact rating of each alternative
using Eq. (1):

(2,2, 25,2)), = Z (w, w, wy, wy),x
{{Uss Y3 V3o V),
[max{y,),]"} (1)
where:

(2, 2,, 2,, 2,),

b & 23 fuzzy total environmental

impact of option ({j}
(w,, wy, w,, w,)=fuzzy weight of environmental
impact category (i)

fuzzy environmental impact of
option (j) for category (i)
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A preliminary ranking of the alternatives can be
done using the defuzzified, or “average,” total
scores. Eq. (2) uses the center of maximum (COM)
- to determine the crisp scores:

Zeom; (2, , + 2, /2 (2)
. where:
Zoom; = defuzzified total environmental
impact of option (j)
Z,, = lower bound of kernel of fuzzy
total impact of option {j)
z3 = upper bound of kernel of fuzzy

total impact of option (j)

Different variants of fuzzy SAW have been in
use for some time {Chen and Hwang 1992).
However, there has been considerable
disagreement as to how to establish outranking
relationships among fuzzy aggregate scores, not
only for SAW but also for related similar MADM
methods (Stansbury et al. 1992, Geldermann et
al. 2000, Chu 2002). Ranking based on crisp total
scores disregards the information available with
regard to the fuzzy uncertainty margins in the data.
Hence, a more complete analysis should consider
these margins and the associated confidence levels
{Tan and Culaba 2001, Tan 2002, Tan et al.
2003). This is achieved by using Eq. {3) to
determine the fuzzy indifference index for each
pair of alternatives:

Ifa,b) = max {min{y, (x), 1, (x)]}  (3)
where:
I{a,b) = fuzzy indifference index between
options (a} and (b}
#,(x) = membership function of
(2, 2,, 25 2,),
i, (x) = membership function of

(2, 2,5 25 2,),

The indifference index falls in the interval [0,
1] and quantifies the extent to which the fuzzy
scores overlap. Confidence in asserting the
superiority of one alternative over another

increases as the indifference index decreases. It is
possible to assign threshold values, in a manner
analogous to statistical tests of hypothesis.
Linguistic equivalents to different threshold values
have been proposed by Tan {2002).

CASE STUDY

The fuzzy SAW algorithm is illustrated using
data from the case study of Geldermann et al.
{2000). The problem involves identifying the best
option for the treatment of waste gases generated
by the ore sintering process in an integrated iron
works, and was originally solved using fuzzy
PROMETHEE.

The PROMETHEE method is an alternative
to SAW for selection and ranking problems, but
requires somewhat more complex computations
to implement. Full details can be found in
Geldermann et al. {2000). The alternatives to be
evaluated are listed in Table 1.

Table 1. Sintering Plant Air Emissions
Control Options

Option Description
A Electrostatic precipitator
B Fabric filter with electrostatic precipitator
Cc Cyclone
D Wet scrubber

Table 2. Environmental Impact
Categories and Units

5 Environmental )
g Impact ' Unit V'\:I:iz;i‘:t
= Category
O
1 Photochemical ¢ CoHy (2,3,3,9
Smog Formation | equivalent
2 | Eutrophication g P04~ (2,3,3 4)
equivalent
3 | Acidification kg SO2 (2,33 4)
equivalent
4 | Human 10° m* (air) {4,5,5,6)
Toxicity
5 | Ecotoxicity 10° m* (air) (2,33 4)
{Air)
6 | Ecotoxicity { (water) {(1,2,2. 3)
{(Water)
7 Hazardous kg {(1,.2,2,3)
Waste
8 | Direct Fossil GJ (2,33 4)
Energy Usage
9 | Electricity M/ (2,3,3,4)
Usage
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Although these options represent air pollution
control systems, an integrated or holistic
evaluation scheme that takes into account a
broader range of environmental flows and
impacts is employed. These evaluation criteria
are shown in Table 2. The fuzzy weights are based
on the scale used in the original case study. In
practice, these weights are problem-specific and
are influenced by both company policies and
government regulations. The COMs of the fuzzy
weights are rated on a 5-point scale depending
on the subjectively determined importance of
each environmental category to the decision
process, as shown in Figure 2.

The magnitudes of the environmental effects
_ are expressed relative to production volume to

allow for uniform comparison. The basis used is -
1 ton of sinter. Table 3 shows the numerical |
estimates of the impacts expressed as trapezoidal |
fuzzy numbers. These values were computed with |
Eq. (1), using fuzzy arithmetic implemented !
through alpha-cuts. Details of the algorithm are
described by Kaufmann and Gupta {1991). |
The fuzzy total environmental impacts of the |
four alternatives are shown in Figure 3. These fuzzy
scores are dimensionless as a result of Eq. (1).
Normalization into dimensionless form allows the
aggregation of environmental impacts which are
not directly comparable in the original units of
measure. [t must be emphasized, however, that
these dimensionless aggregate indexes represent
relative rather than absolute environmental
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Figure 2. Subjective Weights and Fuzzy Numerical Equivalents
{Geldermann et al. 2000)

Table 3. Environmental Flows and Impacts of Options
per Ton of Sinter

Criterion A B C D

1 (31, 34, 37, 41) (18,19.20,22) | (100, 110, 130, 140) | (9, 10, 11, 12)

2 (46, 50, 55, 60) (65, 68, 70, 76) (57, 63, 65, 73) (48, 51, 52, 56)

3 (1,14, 1.2, 1.4) (15,17, 18,2) (15,17.18,22) | (1.11,12,16)

4 (110,120, 190, 210) | (36,40, 50, 55) | (180, 190, 200, 210) | (36, 40, 50, 55)

5 (20, 25, 35, 40) (38, 40, 45, 48) (53, 58, 60, 65) (26, 28, 33, 35)

6 (0. 0,0, 0) ©,0,0,0) (0, 0, 0, 0) (2, 21, 22, 25)
7 (0, 0,0, 0) (0, 0,0, 0) ©,0.0,0) (13, .15, 15, .19)
8 | (165,17 1.7,175) ‘*51':éf?1'56' (1.6, 1.65, 1.65, 1.7) | (1.55, 1.6, 1.6, 1.65)
g

(355, 395, 395, 435)

(385, 425, 425, 465)

(305, 345, 345, 385)

(370, 410, 410, 450)
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Figure 3. Fuzzy Environmental Impacts of Pollution Control Options

impacts. These are meaningful only in the
context of comparisons among the four
predefined alternatives. The addition of a fifth
alternative, for instance, can change these impact
values. Visual inspection of Figure 2 reveals that
the total impacts of options A, B, and D are very
similar, as indicated by the overlap in their
possibility distributions. The aggregate impact of
option C is distinctly higher than those of the
other three.

Table 4. Crisp Ranking of Options

Option Dimensionless Crisp Rank
Total Impact
A 14.9 2
B 14.0 1
c 19.9 4
D 15.0 3

If the comparison of the four alternatives is
based on the defuzzified or “average” impact
scores, the ranking shown in Table 4 will result.
The use of crisp scores in this manner, however,
defeats the purpose of having fuzzy quantities in
the first place, since it ignores the effect of data
uncertainty on the decision-making process. This
point is the weakness of the methods developed
and used by Stansbury et al. (1992), Geldermann
et al. (2000), and Chu {2002).

For effective decision support, two levels of
information must be preserved by the MADM
technique: first, the estimates of the magnitude
of the environmental impacts; and, second, the

associated uncertainty margins, or “confidence
levels,” of these estimates (Tan et al. 2003). This
principle underlies conventional statistical tests
but applies equally well to the comparison of
fuzzy numbers.

Uncertainty margins imply a threshold of
indifference, which must be exceeded for
superiority between any two alternatives to be
definitively established. For example, fuzzy
indifference indexes for the case study are
shown in Table 5a. The values close to 1
indicate strong similarity between two
alternatives. The indifference matrix may be
defuzzified by assigning a threshold value for
indifference. This process results in a binary
state matrix that indicates a value of 0 for
dominance and 1 for indifference.

Table 5a. Fuzzy Indifference Matrix

A B c D
A 1 1 0.77 1
B 1 1 0.6 0.98
c 0.77 0.8 1 0.72
D 1 0.98 0.72 1

Table 5b shows the defuzzified matrix for
a threshold of 0.8, The matrix indicates that
A, B, and D are not significantly differentiated,
while C is definitively different from the other
options. This result confirms the initial
impressions derived from a cursory glance at
Figure 2.
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Table 5b. Defuzzified Indifference Matrix

(o = 0.8)
A B C D
A 1 1 0 1
B 1 1 0 1
C 0 0 1 0
D 1 1 0 1

Adjusting the significance threshold further,
as shown in Table 5c, will eventually result in
the alternatives being deemed virtually
equivalent.

Table 5¢. Defuzzified Indifference Matrix
(0=0.6)

o0 >

A c
1 1
1 1
1 1
1 1

JEEY) Y Y Y
el el Bl B L™

Hence, the key to effective use of this
algorithm lies in selecting the proper
threshold level. At the very least, the
threshold used must be consistent with the
linguistic framework or the scale used to
deduce the possibility distributions of the
input data.

Tables 5b and 5c, thus, indicate how the final
decision on the degree of similarity changes as
the threshold value is adjusted. Linguistic
interpretations of numerical degrees of
indifference (or dominance} have also been
proposed (Tan 2002).

CONCLUSIONS

The use of fuzzy SAW for ranking waste
management options has been demonstrated.
Although fuzzy MADM techniques, including
SAW, have been used for some time, the
variant shown here differs in the use of
thresholds of indifference to determine
whether apparent differences in total
environmental impacts are significant in light
of the uncertainty contained in the input data
used. This concept is analogous to the use of
levels of significance in standard statistical
tests of hypotheses.

The technique used here is promising in
its simplicity and its ability to incorporate

fuzzy or possibilistic uncertainty in the
aggregation and ranking procedures.

Such uncertainties arise from a variety of
scenarios. For instance, comprehensive data
is often not available for new or emerging
technologies, thus making it necessary to use
subjective expert estimates. When
information is available, it may be
incomplete, outdated, or otherwise not fully
representative of the decision problem, as
when data from another geographical region
is used as surrogate in the absence of data
for the actual plant site. Uncertainties are
also present in the inherently subjective
exercise of assigning weights or values to
different environmental impact criteria.

The principal difficulty in the use of this
technique is the ambiguity encountered in the
interpretation of fuzzy uncertainty. Possibility
levels are inherently subjective and are best
interpreted in the context of linguistic.
expressions of belief or plausibility. This
vagueness often seems to lead to confusion
especially since the default model of
uncertainty used by most people is the
classical probability theory.

It must be noted that the practice of
assigning a numerical index to a degree of
belief is not fundamentally different from
the Bayesian interpretation of subjective
probabilities. Ultimately, the main benefit
of the use of possibility theory in fuzzy
SAW is that the decision-making process
becomes more rational and self-consistent;.
however, in practice, the element of human
subjectivity cannot be eliminated.

NOMENCLATURE

BAT Best available technology

BPEO Best practical
environmental option
COM Center of maximum

CP Cleaner production

DiE Design for environment

MADM Multiple attribute
decision-making

P2 Pollution prevention

SAW Simple additive weighting
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